ArticlePDF Available

Abstract and Figures

Cryptography is an important in security purpose applications. This paper contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. In Encryption, when cipher key is inserted, the plain text is converted into cipher text by using complex parallelism. Similarly, in decryption, the cipher text is converted into original one by removing a cipher key. The complex parallelism technique involves the process of Substitution Byte, Shift Row, Mix Column and Add Round Key. The above four techniques are used to involve the process of shuffling the message. The complex parallelism is highly secured and the information is not broken by any other intruder.
Content may be subject to copyright.
A preview of the PDF is not available
... From that, the design of S-BOX is used to protect the message and also achieve a high throughput, high energy efficiency and occupy less area. [62] proposed a system which contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. ...
Preprint
Full-text available
At the forefront of technological innovation and scholarly discourse, the Journal of Electrical Systems (JES) is a peer-reviewed publication dedicated to advancing the understanding and application of electrical systems, communication systems and information science. With a commitment to excellence, we provide a platform for researchers, academics, and professionals to contribute to the ever-evolving field of electrical engineering, communication technology and Information Systems. The mission of JES is to foster the exchange of knowledge and ideas in electrical and communication systems, promoting cutting-edge research and facilitating discussions that drive progress in the field. We aim to be a beacon for those seeking to explore, challenge, and revolutionize the way we harness, distribute, and utilize electrical energy and information systems..
... From that, the design of S-BOX is used to protect the message and also achieve a high throughput, high energy efficiency and occupy less area. [62] proposed a system which contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. ...
Preprint
Full-text available
The research on Quantum Networked Artificial Intelligence is at the intersection of Quantum Information Science (QIS), Artificial Intelligence, Soft Computing, Computational Intelligence, Machine Learning, Deep Learning, Optimization, Etc. It Touches On Many Important Parts Of Near-Term Quantum Computing And Noisy Intermediate-Scale Quantum (NISQ) Devices. The research on quantum artificial intelligence is grounded in theories, modelling, and significant studies on hybrid classical-quantum algorithms using classical simulations, IBM Q services, PennyLane, Google Cirq, D-Wave quantum annealer etc. So far, the research on quantum artificial intelligence has given us the building blocks to achieve quantum advantage to solve problems in combinatorial optimization, soft computing, deep learning, and machine learning much faster than traditional classical computing. Solving these problems is important for making quantum computing useful for noise-resistant large-scale applications. This makes it much easier to see the big picture and helps with cutting-edge research across the quantum stack, making it an important part of any QIS effort. Researchers — almost daily — are making advances in the engineering and scientific challenges to create practical quantum networks powered with artificial intelligence
... From that, the design of S-BOX is used to protect the message and also achieve a high throughput, high energy efficiency and occupy less area. [62] proposed a system which contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. ...
Preprint
Full-text available
JoWUA is an online peer-reviewed journal and aims to provide an international forum for researchers, professionals, and industrial practitioners on all topics related to wireless mobile networks, ubiquitous computing, and their dependable applications. JoWUA consists of high-quality technical manuscripts on advances in the state-of-the-art of wireless mobile networks, ubiquitous computing, and their dependable applications; both theoretical approaches and practical approaches are encouraged to submit. All published articles in JoWUA are freely accessible in this website because it is an open access journal. JoWUA has four issues (March, June, September, December) per year with special issues covering specific research areas by guest editors. The editorial board of JoWUA makes an effort for the increase in the quality of accepted articles compared to other competing journals..
... From that, the design of S-BOX is used to protect the message and also achieve a high throughput, high energy efficiency and occupy less area. [62] proposed a system which contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. ...
Preprint
Full-text available
Proceedings on Engineering Sciences examines new research and development at the engineering. It provides a common forum for both front line engineering as well as pioneering academic research. The journal's multidisciplinary approach draws from such fields as Automation, Automotive engineering, Business, Chemical engineering, Civil engineering, Control and system engineering, Electrical and electronic engineering, Electronics, Environmental engineering, Industrial and manufacturing engineering, Industrial management, Information and communication technology, Management and Accounting, Management and quality studies, Management Science and Operations Research, Materials engineering, Mechanical engineering, Mechanics of Materials, Mining and energy, Safety, Risk, Reliability, and Quality, Software engineering, Surveying and transport, Architecture and urban engineering.
... From that, the design of S-BOX is used to protect the message and also achieve a high throughput, high energy efficiency and occupy less area. [62] proposed a system which contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. ...
Preprint
Full-text available
Utilitas Mathematica Journal is a broad scope journal that publishes original research and review articles on all aspects of both pure and applied mathematics. This journal is the official publication of the Utilitas Mathematica Academy, Canada. It enjoys good reputation and popularity at international level in terms of research papers and distribution worldwide. Offers selected original research in Pure and Applied Mathematics and Statistics. UMJ coverage extends to Operations Research, Mathematical Economics, Mathematics Biology and Computer Science. Published in association with the Utilitas Mathematica Academy. The leadership of the Utilitas Mathematica Journal commits to strengthening our professional community by making it more just, equitable, diverse, and inclusive. We affirm that our mission, Promote the Practice and Profession of Statistics, can be realized only by fully embracing justice, equity, diversity, and inclusivity in all of our operations. Individuals embody many traits, so the leadership will work with the members of UMJ to create and sustain responsive, flourishing, and safe environments that support individual needs, stimulate intellectual growth, and promote professional advancement for all.
... From that, the design of S-BOX is used to protect the message and also achieve a high throughput, high energy efficiency and occupy less area. [62] proposed a system which contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. ...
Preprint
Full-text available
Most experts would consider this the biggest challenge. Quantum computers are extremely sensitive to noise and errors caused by interactions with their environment. This can cause errors to accumulate and degrade the quality of computation. Developing reliable error correction techniques is therefore essential for building practical quantum computers. While quantum computers have shown impressive performance for some tasks, they are still relatively small compared to classical computers. Scaling up quantum computers to hundreds or thousands of qubits while maintaining high levels of coherence and low error rates remains a major challenge. Developing high-quality quantum hardware, such as qubits and control electronics, is a major challenge. There are many different qubit technologies, each with its own strengths and weaknesses, and developing a scalable, fault-tolerant qubit technology is a major focus of research. Funding agencies, such as government agencies, are rising to the occasion to invest in tackling these quantum computing challenges. Researchers — almost daily — are making advances in the engineering and scientific challenges to create practical quantum computers.
... From that, the design of S-BOX is used to protect the message and also achieve a high throughput, high energy efficiency and occupy less area. [62] proposed a system which contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. ...
Preprint
Full-text available
It is no surprise that Quantum Computing will prove to be a big change for the world. The practical examples of quantum computing can prove to be a good substitute for traditional computing methods. Quantum computing can be applied to many concepts in today’s era when technology has grown by leaps and bounds. It has a wide beach of applications ranging from Cryptography, Climate Change and Weather Forecasting, Drug Development and Discovery, Financial Modeling, Artificial Intelligence, etc. Giant firms have already begun the process of quantum computing in the field of artificial intelligence. The search algorithms of today are mostly designed according to classical computing methods. While Comparing Quantum Computers with Data Mining with Other Counterpart Systems, we are able to understand its significance thereby applying new techniques to obtain new real-time results and solutions.
... From that, the design of S-BOX is used to protect the message and also achieve a high throughput, high energy efficiency and occupy less area. [62] proposed a system which contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. ...
Preprint
Full-text available
Published since 2004, Periódico Tchê Química (PQT) is a is a triannual (published every four months), international, fully peer-reviewed, and open-access Journal that welcomes high-quality theoretically informed publications in the multi and interdisciplinary fields of Chemistry, Biology, Physics, Mathematics, Pharmacy, Medicine, Engineering, Agriculture and Education in Science. Researchers from all countries are invited to publish on its pages. The Journal is committed to achieving a broad international appeal, attracting contributions, and addressing issues from a range of disciplines. The Periódico Tchê Química is a double-blind peer-review journal dedicated to express views on the covered topics, thereby generating a cross current of ideas on emerging matters.
... From that, the design of S-BOX is used to protect the message and also achieve a high throughput, high energy efficiency and occupy less area. [62] proposed a system which contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. ...
Preprint
Full-text available
Onkologia I Radioterapia is an international peer reviewed journal which publishes on both clinical and pre-clinical research related to cancer. Journal also provide latest information in field of oncology and radiotherapy to both clinical practitioner as well as basic researchers. Submission for publication can be submitted through online submission, Editorial manager system, or through email as attachment to journal office. For any issue, journal office can be contacted through email or phone for instatnt resolution of issue. Onkologia I Radioterapia is a peer-reviewed scopus indexed medical journal publishing original scientific (experimental, clinical, laboratory), review and case studies (case report) in the field of oncology and radiotherapy. In addition, publishes letters to the Editorial Board, reports on scientific conferences, book reviews, as well as announcements about planned congresses and scientific congresses. Oncology and Radiotherapy appear four times a year. All articles published with www.itmedical.pl and www.medicalproject.com.pl is now available on our new website.
... From that, the design of S-BOX is used to protect the message and also achieve a high throughput, high energy efficiency and occupy less area. [62] proposed a system which contributes the complex parallelism mechanism to protect the information by using Advanced Encryption Standard (AES) Technique. AES is an encryption algorithm which uses 128 bit as a data and generates a secured data. ...
Preprint
Full-text available
The journal is published every quarter and contains 200 pages in each issue. It is devoted to the study of Indian economy, polity and society. Research papers, review articles, book reviews are published in the journal. All research papers published in the journal are subject to an intensive refereeing process. Each issue of the journal also includes a section on documentation, which reproduces extensive excerpts of relevant reports of committees, working groups, task forces, etc., which may not be readily accessible, official documents compiled from scattered electronic and/or other sources and statistical supplement for ready reference of the readers. It is now in its nineteenth year of publication. So far, five special issues have been brought out, namely: (i) The Scheduled Castes: An Inter-Regional Perspective, (ii) Political Parties and Elections in Indian States : 1990-2003, (iii) Child Labour, (iv) World Trade Organisation Agreements, and (v) Basel-II and Indian Banks.
Conference Paper
Full-text available
A 167-processor 65 nm computational platform well suited for DSP, communication, and multimedia workloads contains 164 programmable processors with dynamic supply voltage and dynamic clock frequency circuits, three algorithm-specific processors, and three 16 KB shared memories, all clocked by independent oscillators and connected by configurable long-distance-capable links.
Article
An on-die, reconfigurable AES encrypt/decrypt hardware accelerator is fabricated in 45nm CMOS, targeted for content-protection in high-performance microprocessors. Compared to conventional AES implementations, this design computes the entire AES round in native GF(24)2 composite-field with one-time GF(28)-to-GF(24)2 mapping cost amortized over multiple AES iterations. This approach along with a fused Mix/InvMixColumns circuit and folded ShiftRow datapath results in 20% area savings and 67% reduction in worst-case interconnect length, enabling AES-128/192/256 ECB block throughput of 53/44/38Gbps, 125mW power measured at 1.1V, 50°C.
Article
The FPGA-based high throughput 128 bits AES cipher processor is proposed in this paper. We present an equivalent pipelined AES architecture working on CTR mode to provide the highest throughput up to date through inserting some registers in appropriate points making the delay shortest, when implementing the byte transformation in one clock period. The equivalent pipelined architecture does not change the data stream direction but change the inner process order in round transformation. Xilinx Foundation ISETM 10.1 FPGA design tool is used in the synthesis of the design. And the throughput of 73.737Gbps, clock frequency of 576.07MHz and resource efficiency of 3.21Mbps/LUT are provided by the proposed equivalent pipelined AES architecture. The proposed design reach higher throughput than the other designs up to date, and its resource efficiency is also very high.
Conference Paper
Advance Encryption Standard (AES) hardware implementation in FPGA as well as in ASIC has been intensely discussing, especially in high-throughput (over several tens Gbps). However, low area designs have also been investigated in recent years for the embedded hardware applications. This paper presents a 32-bit AES implementation with a low area of 156 slices and a throughput of 876 Mbps, which outperformed the best reported result of 648 Mbps throughput found in literature.
Article
Abstract-This paper describes an on-die, reconfigurable AES encrypt/decrypt hardware accelerator fabricated in 45 nm CMOS, targeted for content-protection in high-performance microprocessors. 100% round computation in native GF(24)2 composite-field arithmetic, unified reconfigurable datapath for encrypt/decrypt, optimized ground & composite-field polynomials, integrated affine/bypass multiplexer circuits, fused Mix/InvMixColumn circuits and a folded ShiftRow datapath enable peak 2.2 Tbps/Watt AES-128 energy efficiency with a dense 2-round layout occupying 0.052 mm2, while achieving: (i) 53/44/38 Gbps AES-128/192/256 performance, 125 mW, measured at 1.1 V, 50 °C, (ii) scalable AES-128 performance up to 66 Gbps, measured at 1.35 V, 50 °C, (iii) wide operating supply voltage range with robust subthreshold voltage performance of 800 Mbps, 409 μW, measured at 320 mV, 50 °C (iv) 37% Sbox delay reduction and 25% area reduction with a compact Sbox layout occupying 759 μm2 (v) 67% reduction in worst-case interconnect length and 33% reduction in ShiftRow wiring tracks and (vi) 43 % reduction in Mix/InvMixColumn area with no performance penalty.
Conference Paper
This paper presents new speed records for AES software, taking advantage of (1) architecture-dependent reduction of instructions used to compute AES and (2) microarchitecture-dependent reduction of cycles used for those instructions. A wide variety of common CPU architectures—amd64, ppc32, sparcv9, and x86—are discussed in detail, along with several specific microarchitectures.
Conference Paper
This paper presents the many-core architecture, with hundreds to thousands of small cores, to deliver unprecedented compute performance in an affordable power envelope. We discuss fine grain power management, memory bandwidth, on die networks, and system resiliency for the many-core system.
Article
Wireless networks are very widespread nowadays, so secure and fast cryptographic algorithms are needed. The most widely used security technology in wireless computer networks is WPA2, which employs the AES algorithm, a powerful and robust cryptographic algorithm. In order not to degrade the Quality of Service (QoS) of these networks, the encryption speed is very important, for which reason we have implemented the AES algorithm in an FPGA, taking advantage of the hardware characteristics and the software-like flexibility of these devices. In this paper, we propose our own methodology for doing an FPGA-based AES implementation. This methodology combines the use of three hardware languages (Handel-C, VHDL and JBits) with partial and dynamic reconfiguration, and a pipelined and parallel implementation. The same design methodology could be extended to other cryptographic algorithms. Thanks to all these improvements our pipelined and parallel implementation reaches a very high throughput (24.922Gb/s) and the best efficiency (throughput/area ratio) of all the related works found in the literature (6.97Mb/s per slice).
Conference Paper
This paper presents the architecture of a fully pipelined AES encryption processor on a single chip FPGA. By using loop unrolling and inner-round and outer-round pipelining techniques, a maximum throughput of 21.54 Gbits/s is achieved. A fast and an area efficient composite field implementation of the byte substitution phase is designed using an optimum number of pipeline stages for FPGA implementation. A 21.54 Gbits/s throughput is achieved using 84 block RAMs and 5177 slices of a VirtexII-Pro FPGA with a latency of 31 cycles and throughput per area rate of 4.2 Mbps/Slice.
Article
This paper explores the area-throughput trade-off for an ASIC implementation of the advanced encryption standard (AES). Different pipelined implementations of the AES algorithm as well as the design decisions and the area optimizations that lead to a low area and high throughput AES encryption processor are presented. With loop unrolling and outer-round pipelining techniques, throughputs of 30 Gbits/s to 70 Gbits/s are achievable in a 0.18-/spl mu/m CMOS technology. Moreover, by pipelining the composite field implementation of the byte substitution phase of the AES algorithm (inner-round pipelining), the area consumption is reduced up to 35 percent. By designing an offline key scheduling unit for the AES processor the area cost is further reduced by 28 percent, which results in a total reduction of 48 percent while the same throughput is maintained. Therefore, the over 30 Gbits/s, fully pipelined AES processor operating in the counter mode of operation can be used for the encryption of data on optical links.