ArticlePDF Available

Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers) for Aluminum Alloys


Abstract and Figures

Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers) as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD) to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.
Content may be subject to copyright.
Metals 2012, 2, 353-376; doi:10.3390/met2030353
ISSN 2075-4701
Magnesium-Based Sacrificial Anode Cathodic Protection
Coatings (Mg-Rich Primers) for Aluminum Alloys
Shashi S. Pathak, Sharathkumar K. Mendon, Michael D. Blanton and James W. Rawlins *
School of Polymers and High Performance Materials, The University of Southern Mississippi,
Hattiesburg, MS 39406, USA; E-Mails: (S.S.P.); (S.K.M.); (M.D.B.)
* Author to whom correspondence should be addressed; E-Mail:;
Tel.: +1-601-266-4781; Fax: +1-601-266-5880.
Received: 31 May 2012; in revised form: 6 August 2012 / Accepted: 21 August 2012 /
Published: 14 September 2012
Abstract: Magnesium is electrochemically the most active metal employed in common
structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide
cathodic protection of underground and undersea metallic structures, ships, submarines,
bridges, decks, aircraft and ground transportation systems. Following the same principle of
utilizing Mg characteristics in engineering advantages in a decade-long successful R&D
effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers) as a
sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion.
Mg-rich primers have performed very well on aluminum alloys when compared against the
current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are
being widely used by the Department of Defense (DoD) to protect its infrastructure and
fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating
matrix during exposure to aggressive corrosion environments, interaction of atmospheric
gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen
gas liberation at coating-metal interface, and primer adhesion need to be considered for
further development of Mg-rich primer technology.
Keywords: magnesium; sacrificial anode; cathodic protection; Mg-rich primers;
anticorrosive coatings; aluminum alloys; corrosion protection
Metals 2012, 2
1. Introduction
Magnesium is the sixth most abundant element found in the earth’s crust, occurring in over 80 minerals
that contain more than 20% Mg by weight. Carbonates are the most common form of Mg in nature.
Magnesite [MgCO3], dolomite [CaCO3·MgCO3], brucite [Mg(OH)2], bishovite [MgCl2·6H2O],
carnallite (KCl·MgCl2·6H2O) and olivine [(MgFe)2SiO4] have been considered as raw materials for
Mg metal production [1]. The other major source of Mg is MgCl2 from seawater.
Mg is the most electrochemically active metal used in engineering applications (Table 1), and
corrodes so readily in some environments that Mg and Mg alloys are purposely utilized as sacrificial
anodes on steel structures, such as ship hulls and steel pipes. Mg and Mg alloys stored at room
temperature (STP) or in humid atmospheric conditions develop a compositionally varied surface film,
consisting of Mg oxide, hydroxide, and carbonates. These films are less stable than the passive films
formed on metals such as aluminum and stainless steels. The corrosion protection ability of the surface
film is highly dependent on environmental conditions, such as humidity, chloride ion concentration,
and interaction with atmospheric gases. Corrosion behavior and corrosion protection methods of Mg
and its alloys have been reviewed by several researchers [2–5]. Corrosion resistance of Mg alloys
decreases with increasing relative humidity (RH) and decreasing pH (below 11.5). Consistently, Mg
resists corrosion in alkaline solutions when the pH value is above 11.5.
Table 1. Property comparison.
Properties of Magnesium Aluminum Iron
Crystal structure Hcp Fcc Bcc
Ease of fabrication and joining of Mg
Density at 20 °C (g/cc) 1.74 2.70 7.86
Al is ~2.9 × and Mg is ~4.5 × lighter than Fe
Coefficient of thermal expansion 20–100 (×106/°C) 25.2 23.6 11.7
Elastic modulus (106 psi) 6.4 10 30
Melting point (°C) 650 660 1536
Standard reduction potential (V vs. Standard
Hydrogen Electrode)
2.37 1.66 0.447
Higher reactivity of Mg and Al with atmosphere than Fe
Mg can act as sacrificial anode
Cost Mg > Al > Fe
Mg’s high strength to weight ratio, low density (~66% of aluminum and 25% of iron), high specific
stiffness, high thermal conductivity and electromagnetic shielding properties make it a popular choice
in various lightweight applications in aircrafts, automobiles, electronics, and medical implant components.
Although Mg is available commercially with purity above 99.5%, it is rarely used in engineering
applications without being alloyed, due to inherent limitations such as low elastic modulus, limited
high strength and creep resistance at elevated temperatures, high degree of shrinkage on solidification,
high chemical reactivity and limited corrosion resistance. The most commonly used Mg alloys contain
Al, Zn, and Mn; Al and Zn are added in ingot form, dissolving readily at normal melt temperature
(~700 °C). Al, Zn and Mn are the major alloying elements in Mg alloys. Keeping corrosion protection
in mind, alloying elements (Al, Zn, Mn) and heavy-metal impurities (Ni, Fe, Cu) of Mg alloys have to
Metals 2012, 2
be controlled according to the endurance limit. Excess addition of Mn enhances the formation of
nobler Al Mn (Fe) secondary phase with Al or Fe which is detrimental to the corrosion resistance of
Mg alloys. Mg alloys such as AZ91D, AZ91E, and AM60B contain very low levels of the heavy metal
impurities and offer far better corrosion resistance than ordinary Mg alloys. The number of
applications for Mg alloys is increasing every year, primarily in the automotive and aerospace sectors.
The established corrosion rate of the secondary phases in Mg alloys is very low when the pH is
between 4 and 14. Corrosion of Mg alloys in neutral or alkaline salt solutions is usually initiated as
pitting at secondary phase particles. The thickness of the oxide film on secondary phases formed in
solution (pH 12) was shown to be several times the thickness formed in air and increased with
decreasing pH [6]. The type of processing (ingot, die-cast and extruded Mg or its alloys) also
influenced the nature and severity of the corrosion process due to subtle but important morphology
differences. For instance, the corrosion rate of AZ91 ingot and die-cast was higher in acidic solutions
(pH 1–2) than in neutral and highly alkaline solutions (pH 4.5–12) [7]. In comparison, extruded
Mg alloy AM60 does not exhibit the same phenomenon in 3.5% NaCl solution at different pH values,
however, it undergoes severe pitting corrosion at pH 7 in the absence of pitting (except on the edges) at
pH 12. With the shift towards higher chloride ion concentration, the open circuit corrosion potentials
shift to more negative values and the corrosion rates increase at all pH levels.
Mg possesses a strong thermodynamic driving force for corrosion and its surface film does not
present a very protective kinetic barrier to corrosion [8]. Consequently, Mg is unsuitable for use
singularly in applications involving humid and aqueous environments with pH < 12. On the contrary,
structural metals such as steel and Al are cathodic to (more noble in galvanic series than) Mg. In these
cases, the undesirably high electrochemical activity of Mg has been capitalized upon to provide
cathodic protection of nobler structural metals/alloys in pipelines, tanks, and marine structures. The
premise of cathodic protection is for an electrical circuit to be established as a means to control the
corrosion of a structural metal surface by rendering it as the cathode of a galvanic cell. The use of Al,
Zn, Mg, and Sn/In to create activated aluminum alloys, as (1) sacrificial anodes and (2) impressed
current cathodic protection systems, are established methods to protect steel structures against
corrosion [9,10]. Mg and its alloys have been used as sacrificial anodes for several decades in cathodic
protection of oil and gas pipelines, oil drilling platforms cables, heat exchangers, aircraft, ships, and
bridges. In these applications, Mg acts sacrificially and transfer corrosion activity away from the
structural materials to be protected (cathode). The process results in Mg (anode) dissolution over a
given period of time. Figure 1 provides the schematic of sacrificial anode and impressed current
protection methods of a pipeline.
Metals 2012, 2
Figure 1. Schematic showing cathodic protection methods using sacrificial anode and
impressed current.
2. Interaction of Mg and Its Alloys with the Atmosphere
Corrosion behavior of Mg and its alloys in the atmosphere differs considerably from their behavior
in solution. For example, in the presence of sodium chloride in humid air, the surface of Mg is rapidly
converted and covered by the white, flaky corrosion products of magnesium hydroxide [11]. Chloride
ions are known to promote the corrosion of Mg in aqueous solutions [12]. The anodic reaction
(Mg dissolution) under a thin electrolyte layer is diminished compared to a bulk electrolyte [13].
Additionally, the main cathodic process in solution is water reduction, while oxygen reduction is the
main cathodic reaction during atmospheric corrosion in thin electrolyte layers [14,15]. The overall
rate of corrosion and nature of corrosion products are strongly influenced by the RH and chloride
ion concentration.
The natural affinity of Mg and magnesium hydroxide for carbon dioxide has been exploited for CO2
sequestration. Studies investigating the effects of CO2 pressure, temperature, and aqueous solution pH
on rates and mechanisms of magnesium oxide and magnesium hydroxide conversion to magnesium
carbonate have established that the combination of high CO2 pressure and high temperature increased
the rate of carbonate formation [16,17]. Dissolution of CO2 in the surface electrolyte neutralizes the
alkali formed in the cathodic reaction, which initially reduces pH in the surface electrolyte and
increases the dissolution rate of the surface film. The hydroxide ions (formed during the cathodic
reaction or dissolved from the film) react with carbonic acid, forming carbonates, which enhance the
corrosion performance of Mg alloys in humid air by forming a physical barrier [18]. The presence of
CO2, even at the atmospheric level of CO2, i.e., 350 ppm, reduces the corrosion rate by a factor of 3–4
compared that in a CO2-free atmosphere in the presence of NaCl (0–70 mg/cm2) [19,20]. Lin et al.
studied the role of CO2 in the initial stage of atmospheric corrosion of AZ91 magnesium alloy in the
presence of NaCl and concluded that CO2 inhibited NaCl-induced corrosion by generating the slightly
soluble hydroxy carbonates that provided a partly protective layer on the surface of the Mg alloy [21].
In general, magnesium carbonates, such as hydromagnesite [Mg5(CO3)4(OH)2·4H2O) and nesquehonite
Metals 2012, 2
(MgCO3·3H2O), have been determined to be the dominant corrosion products on the surface of Mg
and its alloys during NaCl-induced atmospheric corrosion [22]. The protective property of Mg
carbonates on atmospheric corrosion resistance of Mg alloys has been reported in a number of
investigations [23]. In the absence of CO2, Mg(OH)2 is the dominant corrosion product formed on Mg
surfaces in aqueous solutions and high humidity environments in the presence of NaCl [24].
Through the proper selection of Mg alloy components and selective use of coatings and insulation
materials, the risk and rates of corrosion can be significantly reduced. Some metallurgical processes,
such as rapid solidification and heat treatment, improve mechanical properties and also improve the
corrosion resistance of Mg alloys by refining grain size and distributing the β phase along grain
boundaries. Carbon inoculation (for Mg alloys containing Al and Mg-Zr hardeners (for Mg alloys
lacking Al) are commonly used for grain refining/modification.
3. Magnesium-Rich Primer
In the early 2000s, following, by analogy the formulation of Zn-rich primer coatings for the
protection of steel, researchers at North Dakota State University (NDSU) developed and refined the
concept of a Mg-rich primer for cathodic corrosion protection of Al alloys without the use of
chromate-based pretreatments or chromate pigments. The research was facilitated by the timely
availability of particulate Mg appropriate for use as a pigment in coatings. While particulate Mg can
pose a fire hazard, the thin layer of Mg oxide (4% by weight) on the Mg particles has been reported to
stabilize the bulk Mg against further oxidation [25]. Moreover, although the natural Mg oxidation
products are basic, they do not yield a pH high enough to directly corrode and dissolve Al. Since Mg is
more electronegative (2.37 V vs. SHE) than Al (1.67 V vs. SHE), the more noble Al substrate in this
galvanic couple is cathodically polarized, while the less noble Mg particles in the coating matrix are
anodically dissolved (Figure 2). Sacrificial Mg particles serve as a source of electrical energy. The
protective cathodic current generated by contact between Mg particles in the coating matrix is used in
the polarizing cathodic reaction on the Al substrate.
Figure 2. Schematic showing the open circuit potential (OCP) of Mg-rich primer coated
AA2024 substrate.
Mg-rich coatings, termed as such because they are formulated to ensure that the Mg loading
exceeds the critical pigment volume concentration (CPVC), contain Mg particles in physical and
Metals 2012, 2
electrical contact with each other as well as with the substrate. The formulation variables facilitate the
flow of cathodic protection current from Mg particles to the Al substrate with minimal resistance and
protect the underlying substrate from corrosion. Pigment volume concentration (PVC) is defined as the
ratio of pigment(s) by volume to the sum volume of pigment(s) and non-volatile binder. The CPVC is
the point at which just enough binder exists to cover all the pigment(s) at the densest possible packing
and fill the voids between the pigment particles. Beyond the CPVC, therefore, there is insufficient
polymer binder to coat the pigment surfaces completely, and the pigment particles are in physical
contact with each other. The CPVC is also the point where the dry coating film transitions from a
two-phase system of pigment and binder to a three-phase system through the introduction of trapped
air voids in the matrix. Mathematically, CPVC can be calculated for a solvent-based coating using
Equation 1 [26].
CPVC = 1/(1 + OAv) (1)
where OAv is the volumetric oil absorption, expressed as milliliter oil/milliliter pigment.
Mg-rich primers have proven in certain applications to be viable or potentially viable alternatives
for replacing chromate-based pretreatment and coatings for high strength and light weight aerospace
grade Al alloys such as AA2024 T-3 and AA7075 T-6. These phase-separated Al alloys are susceptible
to galvanic corrosion due to their highly complex metal-in-metal composite form. Chromates in the
form of pigments in primers and as pretreatments for the substrates perform exceptionally well in
protecting these alloys from corrosion as they function uniquely as anodic and cathodic inhibitors
at very low concentrations in electrolyte solutions, especially with chloride ions that affect Al
substrates [27,28]. However, hexavalent Cr has been recognized as a human respiratory carcinogen,
based on epidemiological and medical evidence accumulated for more than a century [29]. The
elimination of toxic Cr(VI) species in current painting and de-painting operations will have
tremendous environmental impact as the waste stream generated through these materials incurs
significant disposal costs to the Air Force. It is estimated that the Air Force spends over a billion
dollars annually in stripping and repainting aircraft [30]. Furthermore, recent reductions in the Cr(VI)
personnel exposure limit by the Occupational Safety and Health Administration will result
in increased compliance costs unless a viable alternative is identified and implemented. A
non-chrome/chrome replacement coating system would need to extend the life of existing Al-based
assets and facilitate expanded use of economical aluminum alloys in both DoD and commercial
applications [31]. Consequently, extensive research has been conducted in search of alternative
technologies, such as anodization [32], sol–gel treatment [33–35], pigmented coatings [36], plasma
polymer layers [37], conductive pigments/polymers [38,39], and pigment-based cathodic protection [40].
NDSU sought a patent on their research [41] and subsequently licensed the Mg-rich primer technology
to Akzo Nobel Aerospace Coatings who further improved upon the original formulation and resolved
the rougher than desirable appearance and usability issues by using smaller Mg particles. Akzo Nobel
further optimized the PVC, lowered the volatile organic compound (VOC) levels, and modified the
resin system to improve coating flexibility. In 2007, Akzo Nobel produced Aerodur® 2100 MgRP that
contained green pigment to increase the opacity and facilitate a better contrast ratio for painters to
judge wet film thickness [42]. Since that time, Mg-rich coatings have been the topic of research by
several researchers and evaluated in many potential applications. Mg-rich primers have proven to be
Metals 2012, 2
quite effective as part of a completely chromate-free coating system comprising a non-film forming
surface treatment and an Advanced Performance Coating (APC) grade topcoat, which exhibits
excellent corrosion protection of scribed AA2024-T3 panels in both ASTM B 117 and outdoor
exposure tests at Daytona Beach, FL [43]. Before discussing the detailed characteristics, stability and
performance of corrosion performance of Mg-rich primers, the principle of sacrificial cathodic
protection and metallurgical and electrochemical properties of Mg will be briefly discussed.
4. Principle of Sacrificial Anode Cathodic Protection
Cathodic protection is the most widely adopted electrochemical corrosion control technique and is
accomplished by applying a direct cathodic protection current (Figure 3) to a structure, effecting a
change in potential from the natural corrosion potential (Ecorr) to a protective potential in the immunity
region. Cathodic polarization of the structure controls the kinetics of the electrode processes occurring
on the metal-electrolyte interface. The required cathodic current is supplied by means of an impressed
current or attachment to a sacrificial anode. The metal structure in contact with an aqueous environment
having a near neutral pH is thereby cathodically protected.
Figure 3. Evans diagram explaining the principle of cathodic protection.
Corrosion involves the active dissolution of metal at anodic sites and reduction of oxygen and/or
water at cathodic sites. The severity of corrosion is directly proportional to the magnitude of the
difference in potential between the anode and the cathode. Electrons liberated in anodic reactions are
consumed in the cathodic reaction. Upon cathodic polarization, the potential of cathodic sites shifts the
Metals 2012, 2
potential of the anodic area to the point at which there is no potential difference between the anode and
cathode, thereby minimizing or even eliminating corrosion at the protected substrate. Complete
cathodic protection is achieved when the metallic structure becomes the cathode, i.e., more electronegative.
The principle of cathodic protection is well explained by the Wagner-Traud mixed potential theory.
According to this theory, any corrosion process can be divided into two or more oxidation and
reduction partial reactions with no net accumulation of electric charge during the process. The
corrosion reactions occurring in aluminum in an aqueous medium are shown in Equations 2–4:
Anodic reaction:
Al Al3+ + 3e (Aluminum dissolution) (2)
Cathodic reactions: O2 + 2H2O + 4e 4OH (Oxygen reduction on Al in neutral or basic solution) (3)
O2 + 4H+ + 4e H2O (Oxygen reduction on Al in acid solutions) (4)
Corrosion is initiated only when both the anodic and cathodic reactions occur simultaneously. The
total rate of oxidation must equal the total rate of reduction in any system. In Figure 3, the relationship
between the anodic and cathodic partial corrosion currents for Al has been shown, using mixed
potential theory and kinetic equations. As shown in Figure 1, polarization of the cathode in a negative
direction from the corrosion potential decreases the corrosion rate. By polarizing the system from Ecorr
to E’corr with a known applied current through sacrificial anode or direct current source, the corrosion
current density decreases from Icorr to I'corr. For complete inhibition of the corrosion processes, it is
necessary to polarize the metal to its reversible potential EAl/Al3+. The applied current at EAl/Al3+
potential is termed as the protection current [10,44]. We will limit our discussion here on sacrificial
anodes considering only their relevance to Mg-rich primers.
5. Open Circuit Potential and Potentiodynamic Dynamic Polarization Measurement of
Mg-Rich Primer
Driven by the electrical connection between the Mg-rich primer and the Al substrate, the
substrate/primer interface is polarized to the mixed potential of the Mg particles/Al substrate. The
mixed potential of Al substrate coated with Mg-rich primer is a cathodic potential relative to the open
circuit potential (OCP) of the Al substrate itself. OCP and potentiodynamic polarization plots provide
an idea of the extent of the cathodic protection versus time during service. An OCP below ~0.9 V
(SCE) for Al 2024 T provides an indication of the cathodic protection provided by Mg-rich primers [45].
Figure 4 provides a visual summary of the cathodic protection offered by Mg-rich primer to Al
alloy AA2024 T3.
Mg shifts the potential (cathodically polarizes) of the Al substrate towards more negative
potential than the AA2024-T3 substrate. The variation in OCP of AA 2024-T3 (0.5 VAg/AgCl) and
Mg (1.3 to 1.5 VAg/AgCl) in 3.5 wt % NaCl solution are shown in Figure 4. The Mg-rich primer
coated AA2024-T3 aluminum alloy achieved a mix potential (about 0.9 VAg/AgCl) between those of
the bare AA2024 T3 substrate and the Mg particles.
Metals 2012, 2
Figure 4. Open circuit potential of Mg-rich primer coated AA2024T3, bare AA2024 T3,
and bare Mg in 3.5 wt % NaCl solution.
The DC potentiodynamic plot for bare Al alloy AA2024-T3, bare Mg, and Mg-rich primer coated
AA2024-T3 (Figure 5) support the concept of mixed potential theory describing the galvanic coupling
behavior between the primer and alloy substrate. Potentiodynamic scans show a bare Mg-rich primer
coated AA2024-T3 having an OCP in 3.5 wt % NaCl solution of about 1.26 V vs. Ag/AgCl
(sat. AgCl) while bare AA2024-T351 and bare Mg exhibit OCP values of about 0.56 V and 1.66 vs.
Ag/AgCl (sat. AgCl), respectively. The potentiodynamic plots of coated AA2024-T3 substrate are
shifted to lower currents when compared to the bare AA2024-T3.
6. Performance and Mechanism of Corrosion Protection by Mg-rich Primer
Mg-rich primers on Al alloys have been shown to perform very well on outdoor exposure at various
sites across the US in a variety of applications. The performance of Mg-rich primer depends on various
factors such as polymer properties, Mg PVC, type of Mg particle (pure Mg, Mg alloys or the presence
of oxide/hydroxide/carbonate layer on Mg particles) and the environment. Several electrochemical
studies, e.g., electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning
vibrating electrode technique (SVET) and scanning electrochemical microscopy (SECM), and OCP
studies have been conducted to understand the corrosion protection mechanism offered by Mg-rich
primers on aerospace grade Al alloys. These studies most often suggest that cathodic protection was
due to uniform corrosion/dissolution of the Mg particles in coatings matrix.
Metals 2012, 2
Figure 5. DC potentiodynamic polarization measurement of Mg-rich primer coated
AA2024T3, bare AA2024 T3 and bare Mg in 3.5 wt% NaCl solution. (scan rate of
0.166 mV/s, polarization range: OCP 0.25 mV and OCP +0.25 mV).
Battocchi et al. employed EIS, OCP and potentiodynamic polarization to study the electrochemical
behavior of Mg-rich primer on alloys AA2024 and AA7074, and showed that the Mg-rich primer
provides sacrificial protection to the Al substrate by a two-stage mechanism [46]. In the first stage, Mg
polarizes Al cathodically, shifting its potential below the pitting corrosion potential. The consequence
of this polarization can be either the prevention of pit nucleation at the exposed Al areas, or the
inhibition of pit growth for the nucleated pits. During this stage, any defects on the surface will
become cathodic, whereas the Mg particles will be anodic. At the cathodic areas, reduction of
hydrogen and possibly dissolved oxygen increases the pH above the threshold for the precipitation of
magnesium oxide. This precipitation leads to the formation of a porous layer that further inhibits
corrosion by a barrier mechanism. The typically high dissolution rate of Mg is significantly decreased
by its incorporation in the polymer (a polymeric membrane controlling water, oxygen and electrolytes
to varying degrees). In a subsequent paper, the same authors reported the corrosion behavior of the
same alloys coated with a magnesium-rich coating, of pure magnesium and of the bare aluminum
substrates in 0.1% NaCl solution and dilute Harrison’s solution (DHS), assessed using electrochemical
techniques [47]. The change from 0.1% NaCl to dilute Harrison solution (DHS) affected the OCP, the
corrosion rates and the equivalent circuits of the systems studied. All along, the Mg in the coating
maintained its protective properties by cathodically polarizing the Al substrates away from their pitting
potential. DHS caused pure magnesium to corrode faster due to cathodic de-polarization, which the
authors mentioned as being possibly due to the formation of a sulfate ion pair (or complex) of Mg, and
also resulted in increased electromotive force for cathodic protection of Al alloys by the
Mg-rich primer.
Allahar et al. modeled EIS data of a Mg-rich primer on a gold substrate under immersion in DHS
and analyzed it for consistency with Kramers-Kronig relations and applicability for use with a
transmission-line model [48]. The data in the frequency range of 1 mHz to 100 kHz were
Kramers-Kronig consistent, while the transmission-line model was shown to be applicable for data in
Metals 2012, 2
the 1 mHz to 10 kHz range. In a subsequent paper, Allahar et al. monitored the performance of a
Mg-rich primer with a standard US Air Force topcoat on an AA2024 T3 substrate via embedded
electrodes placed between the primer and the topcoat, where the coatings were subject to ASTM B117
exposure [49]. EIS and electrochemical noise method experiments indicated that cathodic protection
was due to a more uniform corrosion of the Mg particles, and the loss of cathodic protection resulted in
a shift toward a more localized corrosion.
Simões et al. investigated the mechanism of corrosion protection of AA2024 T3 by a Mg-rich
coating using SVET and SECM [40,50]. SVET measured the evolution of pit activity with time under
sacrificial protection, while SECM allowed indirect sensing of the cathodic activity above the
electrodes. The study was complemented by EIS and OCP measurements. The results showed that in
the first stage, Mg acted both by preventing pit nucleation as well as by inhibiting the growth of the
already existing ones, whereas at a later stage, the precipitation of a porous layer of magnesium oxide
at defective areas was seen to lead to some degree of barrier protection. Cathodic protection provided
by the Mg-rich coating was capable of inhibiting pit nucleation by shifting the potential of the system
towards the cathodic direction and decreasing the anodic activity at pre-existing pits. Changes in
oxygen reduction current indicated that the high corrosion activity of Mg led to some maintenance of
the cathodic reaction on Mg surface even when it behaved as a sacrificial anode for Al.
Li et al. investigated the effects of compositional variables associated with formulating a
two-component epoxy-amine based Mg-rich primer for protecting alloy AA20224 T3 [51]. An
optimized coating composition based on high molecular weight epoxy resin, amide-functional curing
agent, epoxy:amine ratio of 1, and Mg volume content of 50% passed over 3,000 hours of ASTM
B117 salt spray exposure. Corrosion protection was shown to occur through galvanic coupling
between Mg in the primer and the aluminum substrate. SEM-EDX mapping and electrochemical
measurements indicated that Mg oxidation products may also be playing a role in corrosion protection
by increasing the barrier properties over the coating lifetime.
King and Scully attempted to investigate the primary sacrificial and secondary barrier mechanisms
of protection afforded to the alloy AA2024-T351 substrate by a Mg-rich primer to estimate the total
residual stored Mg anode capacity and electrically “well-connected” Mg in the primer as sensed
electrochemically, after various environmental exposures [52]. Two possible modes of protection:
long-range protection of remote defects and local or short-range Mg pigment-based protection of local
and buried defects were suggested. Both modes of protection were believed to be mediated by the high
ionic and electrical resistance of the coating system as a function of PVC and primer/topcoat properties.
While most Mg-rich primers have been formulated with either thermoplastic epoxy resins or
thermosetting epoxy-amine systems, Ravindran et al. reported employing a silane-modified glycidyl
carbamate binder crosslinked with a polyamide or a polyamine as the continuous phase of their
Mg-rich primer [53]. Trimethoxy aminosilane was reacted with hexamethylene diisocyanate-based
biuret (10%, 15% and 20% silane modification) and the product was reacted with glycidol to
synthesize the silane-modified binder. While no corrosion data was presented, the authors reported that
the coatings possessed excellent thermal stability as determined via thermogravimetric analysis. As the
PVC was increased from 20% to 40%, the char content increased from ~40% to 80% (under nitrogen).
The weight gain was attributed to the formation of Mg3N2, which decomposes rapidly upon exposure
to air to form MgO/Mg(OH)2.
Metals 2012, 2
Hayes et al. reported that unlike Mg-rich primers, topcoating had negative impact on the corrosion
performance of commercial chromate primers. The authors opined that the topcoat may be acting as a
vapor/water barrier in limiting the amount of water that penetrated through to the chromate primer, a
necessary step which depends on inhibitor solubilization to provide corrosion protection. While the
Mg-rich primer also requires contact with water to function, the galvanic corrosion protection provided
by the Mg-rich primer does not require the transport of an active corrosion inhibiting species. The
authors also suggested that the galvanic protection mechanism could be robust enough where the
topcoat does not affect it significantly [54].
Lu et al. evaluated an epoxy primer with and without Mg particles on AZ91D alloy using EIS,
scanning electron microscopy (SEM) and X-ray diffraction (XRD), and concluded that the Mg-rich
primer provided better protection for the alloy than the coating without Mg particles. Upon immersion
in 3 wt % NaCl solution for 100 days, Mg(OH)2 was observed to have been formed that precipitates
and blocks micropores in the coating, which is beneficial for the coating structure and resistance
properties [55].
7. Unnoticed Factors that Influence the Behavior of Mg-Rich Primers
Bierwagen concluded that the total system performance of the Mg-rich primer + topcoat was a
synergistic blend of the cathodic/sacrificial protection of the primer, the inhibition/thin barrier layer
effects of the MgO/Mg(OH)2 formed as oxidation products of the Mg, the barrier properties of the
polymer in the Mg-rich primer, plus the barrier properties of the topcoat [56]. Indeed, panels coated
with Mg-rich primers have performed very well on outdoor exposure at various sites across the US.
However, it has also been observed that these same Mg-rich primers fail rapidly and exhibit heavy
blistering very early on in salt spray tests (ASTM B117), which is still a key MIL-SPEC test in
certifying coatings for corrosion protection. This duality in performance could not be explained by the
Mg products mentioned above. The performance contradiction is possibly unique to Mg-rich primers
and magnifies the importance of matching mechanisms to outdoor performance in judging and
specifying accelerated weathering tests. Failure in salt spray testing may result in a complete dismissal
of otherwise viable new technologies for corrosion control materials. Pathak et al. investigated the
behavioral dichotomy by exposing Mg-rich primers to salt spray testing and natural weathering and
characterizing them at periodic intervals [57]. The coatings were formulated at a PVC of 45% in a high
molecular weight high performance thermoplastic epoxy resin, Eponol®, that is supplied as a 35%
solution (by weight) in a blend of methyl ethyl ketone and propylene glycol methyl ether (75:25 by
weight), and is reported to have a specific gravity of 0.934 at 25 °C and 26.6% volume solids. Eponol
was employed as a model polymer in this study as it closely mimics the thermosetting epoxy-amine
systems commonly employed in anticorrosive coatings, while affording broader characterization
studies because of its thermoplastic nature. The authors reported the presence of a thin and porous
magnesium hydroxide layer in Mg-rich primers exposed to salt spray, while a thicker, protective
magnesium carbonate layer was detected in the samples when subject to natural weathering. The
carbonate film was shown to inhibit both the anodic and the cathodic corrosion processes and does not
result in blister formation. Consequently, Mg-rich primers exposed to natural weathering exhibit
Metals 2012, 2
excellent corrosion resistance. However, salt spray conditions are not conducive to facilitate
magnesium carbonate formation at a rate versus the rate of dissolution and corrosion.
Strekalov inferred that the amount of adsorbed water present on a magnesium surface at 95% RH
and 22 °C corresponds to more than 16 monolayers [58]. At very low concentrations of CO2, this
adsorbed water will react with the surface film to form magnesium hydroxide, i.e., brucite, (Equation 5).
Mg + 2H2O Mg(OH)2 + H2 (5)
In the presence of CO2, protolysis of carbonic acid decreases the surface pH (Equations 6 and 7) [59].
CO2 (aq) + H2O HCO3 + H+ (6)
HCO3 CO32 + H+ (7)
Magnesium hydroxide is thermodynamically stable only at low CO2 partial pressure and is
converted into magnesite (MgCO3) in the presence of atmospheric levels of CO2 (Equation 8) [60–62].
CO2 + Mg(OH)2 MgCO3 (s) + H2O (8)
At high RH, magnesite forms a stable hydrated magnesium carbonate, i.e., nesquehonite (Equation 9).
MgCO3 (s) + 3H2O MgCO3·3H2O (s) (9)
Equations 5–9 help to explain why Mg(OH)2 was not transformed into magnesium carbonate in
Mg-rich primers at the relatively low CO2 content in the salt-spray chamber environment as well as
primer film exposed to humid environments in glass jars. The relative proportions of magnesium
hydroxide and magnesium carbonate are influenced by CO2 concentration (the salt-spray chamber has
less CO2 than field exposure), CO2 solubility (in water/salt water) [63], and chloride concentration [64]
all relative to the rates of dissolution and corrosion. Moreover, the solubility of CO2 in water decreases
in the presence of sodium chloride (NaCl concentration is 5 wt % in salt-spray chamber and 3.5 wt %
in sea water) [65]. The limited availability of CO2 at the surface of the Mg-rich primer and the reduced
solubility of CO2 in 5 wt % salt solution favors rapid dissolution of Mg in water to form magnesium
hydroxide (brucite) with liberation of hydrogen that results in blister formation. Brucite was shown to
be only semi-protective due to its plate-like structure. Moreover, the film undergoes compressive
rupture due to the higher molar volume of magnesium hydroxide compared to metallic magnesium,
resulting in the constant exposure of fresh metal and allowing direct and facile electrolyte ingress [8].
The absence of magnesium carbonate passivation also contributes to poor corrosion protection in
Mg-rich primers exposed to salt spray test. Lindström et al. studied the influence of ambient
concentrations of CO2 on the atmospheric corrosion of Mg and reported that in the absence of CO2, a
passivating magnesium hydroxide film forms on the Mg surface that is unable to act as a cathode [20].
In the presence of CO2, the Mg surface was rendered more passive due to the formation of a thick
magnesium hydroxy carbonate film that inhibited both the anodic and the cathodic processes. The
authors also reported that immersing Mg in aqueous NaCl solution with a limited supply of CO2
resulted in rapid corrosion, which is consistent with the performance of Mg-rich primers in salt spray test.
Pathak et al. reported that SEM micrographs of Mg-rich primer films exposed to salt spray for
30 days exhibited the characteristic “sand rose” [66] or “sunflower” [67] morphology of brucite that
was also noted by Bierwagen et al. during electrochemical dissolution of magnesium pigment in water
Metals 2012, 2
and chloride environment (Figure 6). XRD and FTIR data also validated the formation of magnesium
hydroxide on Mg-rich primers in the salt-spray chamber. On the other hand, SEM micrographs of free
primer films exposed to natural weathering showed the presence of needle-like crystals reported for
magnesium carbonate by several authors [22,68,69].
Figure 6. Characterization of Mg particles used in the formulation of Mg-rich primers.
Metals 2012, 2
Pathak et al. formulated Mg-rich primers with Eponol, applied them on AA 2024 panels and
exposed the coated panels at Daytona, FL and Hawaii (Rain forest) for 6 months [70]. The panels were
evaluated via FT-IR (ATR) spectroscopy and compared to similar spectra obtained for Mg particles
treated for 3 h in carbonic acid (Figure 7a). The peaks around 845 cm1 and in between 1380 and
1530 cm1 suggest the formation of magnesium carbonates (nesquehonite and/or hydroxy magnesium
carbonates). The peak around 3695 cm1 is due to magnesium hydroxide which appears along with
hydroxy magnesium carbonate (3650 cm1 from O-H stretching of water molecule, 845 cm1 C-O
anti-symmetric stretching of carbonate, 1380–1530 cm1 C-O symmetric stretching of carbonate) on
Daytona and Hawaii exposed Mg-rich primer. The formation of magnesium hydroxide and carbonates
in coatings exposed to natural weathering support the explanation behind the behavioral dichotomy of
Mg-rich primers.
Figure 7b,c summarize the Raman spectra corroborating the FTIR spectra data. Raman spectra
(Figure 7b) of Mg particles treated with carbonic acid solution showing the presence of peak around
1101 cm1 (Raman shift) corresponding to magnesium carbonate. The Raman spectra of Mg particles
and Mg-rich primer (Figure 7c) under various exposure/treatment condition showing the formation of
magnesium carbonate naturally with interaction of atmospheric CO2 with Mg particles in primer and
on treated Mg particles in simulated carbonic acid solution. The peak around 1099 cm1 (Raman shift)
in spectra of treated Mg particles and Mg-rich primers validate the interaction of Mg with CO2. An
overlapping peak around 1108 cm1 (Raman shift) also comes from the resin Eponol.
Figure 7. (a) FT-IR (ATR) spectra of Mg-rich primer coated on AA2024 and Mg (untreated
and treated) particles; (b) Raman spectra of Mg powder (untreated and treated for 30 min and
120 min); and (c) Raman spectra of Mg particles treated with carbonic acid, Mg-rich primer
exposed outdoors, and Eponol coating.
Metals 2012, 2
Figure 7. Cont.
8. Further Technology Development
8.1. Improving Electrochemical Stability by Surface Treatment of Magnesium Particles
Building upon their earlier work, Pathak et al. treated Mg powder to develop a layer of protective
magnesium carbonate on or within Mg particles at ambient conditions and evaluated the pretreated Mg
in Mg-rich primers [71]. Specifically, Mg powder was treated with aqueous carbonic acid (CO2–H2O
solution) for varying lengths of time at ambient conditions and the resulting products were formulated
into systematically varying but controllably treated Mg-rich primers with Eponol. The same
formulation with the untreated Mg powder was employed as the control. While nesquehonite was
Metals 2012, 2
identified as a reaction product (Figure 8), magnesium hydroxide formation was not detected in any of
the XRD patterns, possibly due to being below the lower detection limit of standard XRD (2%) and the
fact that the hydroxide under these conditions was converted quickly to the carbonate Mg counterpart [72].
FTIR and FT-Raman analysis indicated that MgCO
O appeared after 20 min of treating Mg while
XRD analysis indicated the presence of MgCO
O after 30 min of treatment. Extended treatment
resulted in a flower-like morphology, possibly due to conversion of nesquehonite to hydroxy
magnesium carbonate.
Figure 8. Treatment of Mg particles prior to coating formulation.
The primer formulated with untreated Mg powder exhibited severe blistering within 4 h of being
placed in a salt spray chamber (following ASTM B117). However, the primer formulated with Mg
powder treated for 30 min did not exhibit any detectable or visible changes like blisters even after
being in the salt spray chamber for 2160 h. This confirms that coatings formulated with the aqueous
carbonic acid-treated Mg pigment performed similarly to Mg-rich primers exposed to natural
weathering where few, if any, failures have been reported in a variety of applications and
environmental conditions. The carbonic acid treatment was thus proven to be effective in stabilizing
the Mg particles by reducing its reactivity and rate of dissolution with water and is a more facile
approach than other techniques, such as the use of Mg-Al alloy instead of pure Mg [26] or surface
treatment of Mg by organic coatings [73]. Turel et al. established that adding Mg to an aqueous
solution of carbonic acid was the optimal method of generating significant amounts of nesquehonite
from Mg and that a combination of nesquehonite and free Mg is necessary to protect Al substrates
from corrosion [74].
Maier and Frankel studied the behavior of Mg-rich primers on AA2024 T3 panels and observed that
basic or cathodic corrosion of AA2024-T3 is possible for samples in contact with Mg-rich primers [75].
Thin electrolyte layer experiments and cathodic polarization curves in solutions equilibrated with
different gases showed that CO
in high concentration shifts the corrosion potential of Mg towards
cathodic direction and buffers the pH on the AA2024-T3 surface such that no basic corrosion occurred.
However, the amount of atmospheric CO
was not enough to prevent corrosion in an air-exposed
Metals 2012, 2
AA2024-T3 sample polarized cathodically. The authors also proposed that dissolved Mg ions could
play a role in the protection provided by Mg-rich primers and this influence could be different for
exposures in outdoor environments and accelerated weathering environments. Insoluble Mg
compounds formed in the coating pores could function as a protective barrier and such precipitates
could form more readily in the moist and cyclic exposure of real environments than in the constant
wetness of a salt spray chamber.
8.2. Use of Mg Alloys instead of Pure Mg Particles
Xu et al. investigated three different Mg alloys (AM60, AZ91B, and LNR91 with Al content of 5%,
8.5% and 50%, respectively) as pigments in an epoxy-polyamide system at various PVC values [76]. The
alloy pigments were characterized by large particle sizes (>60 microns) and varying shapes,
e.g., AM60 has a plate-like shape with a smooth edge, AZ91B has a chip-like shape, and LNR91 has a
cubic-like shape with a sharp edge. EIS and SEM studies indicated that the Mg alloy pigments
provided sacrificial protection to the Al alloy substrates and that precipitates formed from oxidation of
the Mg alloy particles were similar to the ones found in pure Mg-rich primers. In a subsequent paper,
Bierwagen et al. discussed the surface compositions of two Mg alloy pigments, AM60 and AZ91B,
and how coatings formulated with them changed in Prohesion chamber (where DHS is employed as
the spray solution) studies [77]. For both these alloy pigments, XPS depth profile revealed a three layer
structure (from outside to inside) as (a) MgCO3; (b) MgCO3; MgO and metallic Mg, Al mixture; and
(c) metallic core of Mg and Al. In Prohesion chamber studies with AM60, the nature of the corrosion
products changed as a function of the PVC. Below the critical PVC (CPVC), the major corrosion
products were identified as MgAl2O4, Al2O3, and AlOOH. Above CPVC, the major corrosion product
changed to MgCO3. Below CPVC, the DHS acts primarily at the coating surface where it oxidizes the
Mg first to Mg(OH)2 and then the Al to Al(OH)3 at higher pH. In the drying cycle, these products form
MgAl2O4, Al2O3, and AlOOH. Above the CPVC, the DHS is able to penetrate into the coating where it
neutralizes the area around the Mg particles as it is oxidized and maintains the pH low enough to
prevent the oxidation of Al. The coating porosity also facilitates the penetration of CO2 into the coating
matrix, which converts the Mg(OH)2 to MgCO3.
8.3. Additional Corrosion Inhibitive Components to Improve Mg-rich Performance
Addition of small amounts of cerium oxide (0.5% by weight) to a Mg-rich primer was shown to
significantly improve the protection performance of a Mg-rich primer on AZ91D magnesium alloy [78].
While the ceria particles did not change the protection mechanisms of the Mg-rich primer on AZ91D
magnesium alloy, the authors claimed that the electrochemical activity of the Mg particles increased
the service life of the Mg-rich primer. Apart from providing a barrier effect, ceria particles increased
the corrosion potential and decreased the current density of the AZ91D alloy, which is beneficial for
cathodic protection of the Mg particles. Lu et al. reported improved adhesion and better corrosion
protection when the surface of AZ91D magnesium alloy substrates were coated with γ-glycidoxy
propyl trimethoxy silane, due to the formation of Si–O–Mg covalent bonds between the silane film
and the substrate and Si-O-Si bonds within the silane film, each shifting the water and oxygen
permeability drastically [79].
Metals 2012, 2
9. Conclusion
Mg-rich primers represent the first commercially viable, high performance (in corrosion control
terms) and non-toxic alternative to the use of carcinogenic Cr(VI) pretreatments and pigments for
preventing corrosion on metal substrates, especially on aluminum alloys used in the aircraft industry.
Mg-rich primer technology has advanced drastically since its conception with many of the limitations
having been overcome via thorough understanding of the mechanisms by which Mg particles afford
their corrosion protection abilities. Yet, incremental and important improvements are still occurring in
Mg-rich primer technology, both in the academic and industrial laboratories and applications, and it is
possible that it will not be too long before these primers become the standard against which all other
anti-corrosive primer alternatives will be evaluated.
The authors gratefully acknowledge the financial support of Mandaree Enterprise Corporation
(FA8501-06-D-0001), Engineer Research and Development Center (ERDC W9132T-09-2-0019) and
The United States Air Force (FA7000-10-2-0014) through funding by the Department of Defense and
collaborative efforts for Corrosion Prevention and Understanding via the Technical Corrosion
Collaboration working group comprising The University of Virginia, The University of Hawaii, The
Ohio State University, the Air Force Academy, The University of Akron, The University of Southern
Mississippi, the Air Force Institute of Technology, the Naval Postgraduate School, the US Naval
Academy, and Nippon Paper Chemicals Co., Ltd.
Conflict of Interest
The authors declare no conflict of interest.
1. Simandl, G.J.; Schultes, H.; Simandl, J.; Paradis, S. Magnesium-raw materials, metal extraction
and economics—Global picture. In Digging Deeper, Proceedings of the Ninth Biennial SGA
Meeting; Irish Association for Economic Geology: Dublin, UK, 2007; pp. 827–831.
2. Guo, K.W. A review of magnesium/magnesium alloys corrosion. Recent Pat. Corros. Sci. 2011,
1, 72–90.
3. Wu, C.-Y.; Zhang, J. State-of-art on corrosion and protection of magnesium alloys based on
patent literatures. Trans. Nonferrous Met. Soc. China 2011, 21, 892–902.
4. Gray, J.E.; Luan, B. Protective coatings on magnesium and its alloys—A critical review. J. Alloy
Compd. 2002, 336, 88–113.
5. Zeng, R.-C.; Zhang, J.; Huang, W.-J.; Dietzel, W.; Kainer, K.U.; Blawert, C.; Ke, W. Review of
studies on corrosion of magnesium alloys. Trans. Nonferrous Met. Soc. China 2006, 16, 763–771.
6. Song, G.; Atrens, A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1999, 1,
7. Ambat, R.; Aung, N.N.; Zhou, W. Evaluation of microstructural effects on corrosion behavior of
AZ91D magnesium alloy. Corros. Sci. 2000, 42, 1433–1455.
Metals 2012, 2
8. Shaw, B.A.; Wolfe, R.C. Corrosion of Magnesium and Magnesium-Base Alloys. In ASM
Handbook, Corrosion: Materials; Cramer, S.D., Covino, B.S., Jr., Eds.; ASM International:
Russell Township, OH, USA, 2005; Volume 13B, pp. 205–227.
9. Gurrappa, I. Cathodic protection of cooling water systems and selection of appropriate materials.
J. Mater. Process. Technol. 2005, 166, 256–267.
10. Popov, B.N.; Kumaraguru, S.P. Cathodic Protection of Pipelines. In Handbook of Environmental
Degradation of Materials; Myer, K., Ed.; William Andrew Publishing: Norwich, NY, USA, 2005;
Chapter 24, pp. 503–521.
11. Lindström, R. Atmospheric Corrosion of Magnesium alloys Influence of Microstructure and
Environment. Ph.D. Thesis, Göteborg University, Göteborg, Sweden, 2007.
12. Loose, W.S. Corrosion and Protection of Magnesium. In Metals Handbook; Pidgeon, L.M.,
Mathes, J.C., Woldmen. N.E., Eds.; ASM International: Russell Township, OH, USA, 1946;
pp. 173–260.
13. Rozenfeld, I.L. Atmospheric Corrosion of Metals; National Association of Corrosion Engineers:
Houston, TX, USA, 1972.
14. Tomashov, N.D. Theory and Protection of Metals: The Science of Corrosion; The Macmillan
Company: London, UK, 1966; pp. 367–398.
15. Jönsson, M.; Persson, D.; Leygraf, C. Atmospheric corrosion of field-exposed magnesium alloy
AZ91D. Corros. Sci. 2008, 50, 1406–1413.
16. Prigiobbe, V.; Hänchen, M.; Werner, M.; Baciocchi, R.; Mazzotti, M. Mineral carbonation
process for CO2 sequestration. Energy Proced. 2009, 1, 4885–4890.
17. Bruant, R.G., Jr.; Giammar, D.E.; Myneni, S.C.B.; Peters, C.A. Effect of pressure, temperature,
and aqueous carbon dioxide concentration on mineral weathering as applied to geologic storage of
carbon dioxide. In Proceedings of the 6th International Conference on Greenhouse Gas Control
Technologies, Kyoto, Japan, 1–4 October 2002; pp. 1609–1612.
18. Feliu, S., Jr.; Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Arrabal, R. Correlation between the
surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys.
Appl. Surf. Sci. 2009, 255, 4102–4108.
19. Lindström, R.; Johansson, L.G.; Svensson, J.E. The influence of NaCl and CO2 on the
atmospheric corrosion of magnesium alloy AZ91. Mater. Corros. 2003, 54, 587–594.
20. Lindström, R.; Johansson, L.G.; Thompson, G.E.; Skeldon, P.; Svensson, J.E. Corrosion of
magnesium in humid air. Corros. Sci. 2004, 46, 1141–1158.
21. Lin, C.; Li, X. Role of CO2 in the initial stage of atmospheric corrosion of AZ91 magnesium alloy
in the presence of NaCl. Rare Met. 2006, 25, 190–196.
22. Hao, Z.; Du, F. Synthesis of basic magnesium carbonate microrods with a “house of cards”
surface structure using rod-like particle template. J. Phys. Chem. Solids 2009, 70, 401–404.
23. Blücher, D.B.; Svensson, J.-E.; Johansson, L.-G.; Rohwerder, M.; Stratmann, M. Scanning Kelvin
probe force microscopy: A useful tool for studying atmospheric corrosion of MgAl alloys in situ.
J. Electrochem. Soc. 2004, 151, B621–B626.
24. Lindström, R.; Svensson, J.-E.; Johansson, L.-G. The influence of carbon dioxide on the
atmospheric corrosion of some magnesium alloys in the presence of NaCl. J. Electrochem. Soc.
2002, 149, B103–B107.
Metals 2012, 2
25. Nanna, M.E.; Bierwagen, G.P. Mg-rich coatings: A new paradigm for Cr-free corrosion protection
of Al aerospace alloys. J. Coat. Technol. Res. 2004, 1, 69–80.
26. Glancy, C.W. Oil Absorption of Pigments. In Paint and Coating Testing Manual: 15th Edition of
the Gardner-Sward Handbook; Joseph, K., Ed.; ASTM International: West Conshohocken, PA,
USA, 2012; Chapter 29, pp. 304–305.
27. Bierwagen, G.P.; Brown, R.; Battocchi, D.; Hayes, S. Active metal-based corrosion protective
coating systems for aircraft requiring no-chromate pretreatment. Prog. Org. Coat. 2010, 68, 48–61.
28. Osborne, J.H.; Blohowiak, K.Y.; Taylor, S.R.; Hunter, C.; Bierwagen, G.P.; Carslon, B.;
Bernard, D.; Donley, M.S. Testing and evaluation of non-chromated coating systems for
aerospace applications. Prog. Org. Coat. 2001, 41, 217–225.
29. Covino, J.J.; Sugden, K.D. Genotoxicity of chromate. Adv. Mol. Toxic. 2008, 2, 1–24.
30. Morris, E.; Ray, C.; Albers, R.; McLaughlin, J.; Bean, S.; DeAntoni, A.; Patel, R. Using chrome-free
primer technology to develop a chrome-free pretreatment. In Proceedings of the 2007
Tri-Service Corrosion Conference, Denver, CO, USA, 3–6 December 2007; Available online:
ogy%20to%20develop%20a%20chrome-free%20pretreatment.pdf (accessed on 30 May 2012).
31. Joint DoD Demonstration and Validation of Magnesium Rich Primer Coating Technology.
Available online:
Engineering-and-Structural-Materials/Coatings/WP-200731 (accessed on 30 April 2012).
32. Twite, R.L.; Bierwagen, G.P. Review of alternatives to chromate for corrosion protection of
aluminum aerospace alloys. Prog. Org. Coat. 1998, 33, 91–100.
33. Pathak, S.S.; Khanna, A.S. Synthesis and performance evaluation of environmentally compliant
epoxysilane coatings for aluminum alloy. Prog. Org. Coat. 2008, 62, 409–416.
34. Pathak, S.S.; Khanna, A.S. Investigation of anti-corrosion behavior of waterborne
organosilane–polyester coatings for AA6011 aluminum alloy. Prog. Org. Coat. 2009, 65,
35. Pathak, S.S.; Sharma, A.; Khanna, A.S. Value addition to waterborne polyurethane resin by
silicone modification for developing high performance coating on aluminum alloy. Prog. Org.
Coat. 2009, 65, 206–216.
36. Hamdy, A.S. Enhancing corrosion resistance of aluminum composites in 3.5% NaCl using
pigmented epoxy fluoropolymer. Prog. Org. Coat. 2006, 55, 218–224.
37. Yasuda, H.K.; Reddy, C.M.; Yu, Q.S.; Deffeyes, J.; Bierwagen, G.P.; He, L. Effect of scribing on
corrosion test results. Corrosion 2001, 57, 29–34.
38. He, J.; Gelling, V.J.; Tallman, D.E.; Bierwagen, G.P.; Wallace, G.G. Conducting polymers and
corrosion. III. A scanning vibrating electrode study of poly(3-octyl pyrrole) on steel and
aluminum. J. Electrochem. Soc. 2000, 147, 3667–3672.
39. Tallman, D.E.; Pae, Y.; Bierwagen, G.P. Conducting polymers and corrosion. 2. Polyaniline on
aluminum alloys. Corrosion 2000, 56, 401–410.
40. Simões, A.; Battocchi, D.; Tallman, D.; Bierwagen, G.P. Assessment of the corrosion protection
of aluminium substrates by a Mg-rich primer: EIS, SVET and SECM study. Prog. Org. Coat.
2008, 63, 260–266.
Metals 2012, 2
41. Bierwagen, G.P.; Nanna, M.E.; Battocchi, D. Magnesium Rich Coatings and Coating Systems.
U.S. Patent 20,070,128,351, 7 October 2004.
42. Price, C.J.; Johnson, J. Performance Evaluation of a Magnesium-Rich Primer for Chrome-Free
Aerospace Coating Systems. Available online:
symposium2008/posters/upload/w189-joseph.pdf (accessed on 30 May 2012).
43. Johnson, J.A. Magnesium rich primer for chrome free protection of aluminum alloys.
In Proceedings of the Tri-Service Corrosion Conference 2007, Denver, CO, USA,
3–7 December 2007.
44. Ahmad, Z. Cathodic Protection. In Principles of Corrosion Engineering and Corrosion Control;
Butterworth-Heinemann: Oxford, UK, 2006; pp. 271–351.
45. Bierwagen, G.; Battocchi, D.; Simoes, A.; Stamness, A.; Tallman, D. The use of multiple
electrochemical techniques to characterize Mg-rich primers for Al alloys. Prog. Org. Coat. 2007,
59, 172–178.
46. Battocchi, D.; Simões, A.M.; Tallman, D.E.; Bierwagen, G.P. Electrochemical behaviour of a
Mg-rich primer in the protection of Al alloys. Corros. Sci. 2006, 48, 1292–1306.
47. Battocchi, D.; Simões, A.M.; Tallman, D.E.; Bierwagen, G.P. Comparison of testing solutions on
the protection of Al-alloys using a Mg-rich primer. Corros. Sci. 2006, 48, 2226–2240.
48. Allahar, K.N.; Battocchi, D.; Orazem, M.E.; Bierwagen, G.P.; Tallman, D.E. Modeling of
electrochemical impedance data of a magnesium-rich primer. J. Electrochem. Soc. 2008, 155,
49. Allahar, K.N.; Wang, D.; Battocchi, D.; Bierwagen, G.P.; Balbyshev, S. Real-time monitoring of
a United States air force topcoat/Mg-rich primer system in ASTM B117 exposure by embedded
electrodes. Corrosion 2010, 66, 075003:1–075003:11.
50. Simões, A.M.; Battocchi, D.; Tallman, D.E.; Bierwagen, G.P. SVET and SECM imaging of
cathodic protection of aluminium by a Mg-rich coating. Corros. Sci. 2007, 49, 3838–3849.
51. Li, J.; He, J.; Chisholm, B.J.; Stafslien, M.; Battocchi, D.; Bierwagen, G.P. An investigation of the
effects of polymer binder compositional variables on the corrosion control of aluminum alloys
using magnesium-rich primers. J. Coat. Technol. Res. 2010, 7, 757–764.
52. King, A.D.; Scully, J.R. Sacrificial anode-based galvanic and barrier corrosion protection of
2024-T351 by a Mg-rich primer and development of test methods for remaining life assessment.
Corrosion 2011, 67, 055004:1–055004:22.
53. Ravindran, N.; Chattopadhyay, D. K.; Zakula, A.; Battocchi, D.; Webster, D.C.; Bierwagen, G.P.
Thermal stability of magnesium-rich primers based on glycidyl carbamate resins. Polym Degrad.
Stab. 2010, 95, 1160–1166.
54. Hayes, S.; Brown, R.; Visser, P.; Adams, P.; Chapman, M. Magnesium rich primers and related
developments for the replacement of chromium containing aerospace primers. In Proceedings of
the 2011 Corrosion Conference, Houston, TX, USA, 13–17 March 2011; Available online:
%20of%20chromium%20contraining%20aerospace%20primers.pdf (accessed on 30 April 2012).
55. Lu, X.; Zuo, Y.; Zhao, X.; Tang, Y.; Feng, X. The study of a Mg-rich epoxy primer for protection
of AZ91D magnesium alloy. Corros. Sci. 2011, 53, 153–160.
Metals 2012, 2
56. Bierwagen, G. The physical chemistry of organic coatings revisited—Viewing coatings as a
materials scientist. J. Coat. Technol. Res. 2008, 5, 133–155.
57. Pathak, S.S.; Blanton, M.D.; Mendon, S.K.; Rawlins, J.W. Investigation on dual corrosion
performance of magnesium-rich primer for aluminum alloys under salt spray test (ASTM B117)
and natural exposure. Corros. Sci. 2010, 52, 1453–1463.
58. Strekalov, P.V. The atmospheric corrosion of metals by adsorbed polymolecular moisture layers.
Prot. Met. 1998, 34, 501–519.
59. Smith, R.M.; Martell, A.E. Critical Stability Constants; Plenum Press: New York, NY,
USA, 1973.
60. Jönsson, M.; Persson, D.; Thierry, D. Corrosion product formation during NaCl induced
atmospheric corrosion of magnesium alloy AZ91D. Corros. Sci. 2007, 49, 1540–1558.
61. White, W.B. Thermodynamic equilibrium kinetics, activation barriers, and reaction mechanisms
for chemical reactions in Karst Terrains. Environ. Geol. 1997, 30, 46–58.
62. Hosking, N.C.; Ström, M.A.; Shipway, P.H.; Rudd, C.D. Corrosion resistance of zinc–magnesium
coated steel. Corros. Sci. 2007, 49, 3669–3695.
63. Duan, Z.; Sun, R. An improved model calculating CO2 solubility in pure water and aqueous NaCl
solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 2002, 193, 257–271.
64. Yao, H.B.; Li, Y.; Wee, A.T.S. An XPS investigation of the oxidation/corrosion of melt-spun Mg.
Appl. Surf. Sci. 2000, 158, 112–119.
65. Portier, S.; Rochelle, C. Modelling CO2 solubility in pure water and NaCl-type waters from
0 to 300 °C and from 1 to 300 bar: Application to the Utsira Formation at Sleipner. Chem. Geol.
2005, 217, 187–199.
66. Henrist, C.; Mathieu, J.-P.; Vogels, C.; Rulmont, A.; Cloots, R. Morphological study of
magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J. Cryst. Growth
2003, 249, 321–330.
67. Gao, Y.; Wang, H.; Su, Y.; Shen, Q.; Wang, D. Influence of magnesium source on the
crystallization behaviors of magnesium hydroxide. J. Cryst. Growth 2008, 310, 3771–3778.
68. Wang, Y.; Li, Z.; Demopoulos, G.P. Controlled precipitation of nesquehonite (MgCO3·3H2O) by
the reaction of MgCl2 with (NH4)2CO3. J. Cryst. Growth 2008, 310, 1220–1227.
69. Mitsuhashi, K.; Tagami, N.; Tanabe, K.; Ohkubo, T.; Sakai, H.; Koishi, M.; Abe, M. Synthesis of
microtubes with a surface of “house of cards” structure via needlelike particles and control of
their pore size. Langmuir 2005, 21, 3659–3663.
70. Pathak, S.S.; Blanton, M.D.; Mendon, S.K. School of Polymes and High Performance Materials,
The University of Southern Mississippi Hattiesburg, MS, USA. Unpublished work, 2011.
71. Pathak, S.S.; Blanton, M.D.; Mendon, S.K.; Rawlins, J.W. Carbonation of Mg powder to enhance
the corrosion resistance of Mg-rich primers. Corros. Sci. 2010, 52, 3782–3792.
72. Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay
Minerals; Oxford University Press: New York, NY, USA, 1989.
73. Khramov, A.N.; Balbyshev, V.N.; Kasten, L.S.; Mantz, R.A. Sol–gel coatings with phosphonate
functionalities for surface modification of magnesium alloys. Thin Solid Films 2006, 514, 174–181.
Metals 2012, 2
74. Turel, T.; Pathak, S.S.; Blanton, M.D.; Mendon, S.K.; Rawlins, J.W. Optimizing the
Transformation of Magnesium Powder to Enhance its Corrosion Protection. In Proceedings of the
38th Annual International Waterborne, High-Solids, and Powder Coatings Symposium, New
Orleans, LA, USA, 28 February–4 March 2011; pp. 430–437.
75. Maier, B.; Frankel, G.S. Behavior of magnesium-rich primers on AA2024-T3. Corrosion 2011,
67, 055001:1–055001:15.
76. Xu, H.; Battocchi, D.; Tallman, D.E.; Bierwagen, G.P. Use of magnesium alloys as pigments in
magnesium-rich primers for protecting aluminum alloys. Corrosion 2009, 65, 318–325.
77. Bierwagen, G.; Brown, R.; Battocchi, D.; Hayes, S. Active metal-based corrosion protective
coating systems for aircraft requiring no-chromate pretreatment. Prog. Org. Coat. 2010, 67,
78. Wang, Y.-P.; Zhao, X.-H.; Lu, X.-Y.; Zuo, Y. Corrosion protection of ceria particle in Mg-rich
primer on AZ91D magnesium alloy. Acta Phys. Chim. Sin. 2012, 28, 407–413.
79. Lu, X.; Zuo, Y.; Zhao, X.; Tang, Y. The improved performance of a Mg-rich epoxy coating on
AZ91D magnesium alloy by silane pretreatment. Corros. Sci. 2012, 60, 165–172.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
... Magnesium alloys due to their outstanding physicochemical properties, like low density, recyclability, biocompatibility, good corrosion resistance under specific conditions, excellent mechanical properties, etc., find applications in many different areas [1−3]. A broad range of applications include industrial applications as a construction material in automotive, aviation, and space technology [4,5], sacrificial anodes or additives to organic coatings in cathodic protection [6,7], primary and water-activated battery [8,9], biomedical applications [10−14], and hydrogen storage materials [15]. ...
... Unfortunately, except indoor or some other environments, Mg and its alloy obey different kinds of corrosion, and form Mg(OH) 2 , as suggested by many authors [4,6,16]. Nevertheless, in the contact with electrolyte if the corrosive medium contains chloride ions with the concentration beyond 150 mmol/L [17], the magnesium oxide/hydroxide will be converted to magnesium chloride (MgCl 2 ) that is highly soluble, 54.3 g/100 mL at 20 °C, in aqueous solution according to the following reaction [18]: ...
Full-text available
The initial corrosion behavior of AZ63 magnesium alloy is investigated in 1, 3, 5 and 7 wt.% NaCl by the means of corrosion potential, linear polarization, electrochemical impedance spectroscopy, and polarization measurements, during exposure in the corrosion media. Results show that increases in chloride concentrations provoke an increase in the corrosion rate. Based on the obtained kinetics parameters the mechanism of anodic dissolution and hydrogen evolution reactions are discussed, and kinetic models are proposed. It is concluded that anodic dissolution proceeds under Temkin conditions and hydrogen evolution reaction depend on the surface coverage of Mg(OH)2 species.
... V with standard hydrogen electrode (SHE) as a reference], it is quite susceptible to corrosion. 34 Thus, even low amounts of magnesium in an alloy should yield relatively fast corrosion times. As pure magnesium is highly reactive, it is often alloyed with other metals such as aluminum (Al), which improves the corrosion resistance. ...
... Magnesium (Mg) sacrificial anodes are widely used to protect buried metal pipelines, reinforced concrete structures, and other steel structures, due to their inherent negative potential, large driving voltage, and large current output per unit weight [1][2][3][4]. The current commercial use of magnesium alloy sacrificial anode is mainly focused on casting AZ63, as it has uniform surface dissolution and high current efficiency [5][6][7]. ...
Full-text available
AZ63 sacrificial anode is widely used to protect buried metal pipelines and reinforced concrete structures and so on. The interfacial metallurgical bonding between AZ63 sacrificial anode and Q235 wiring terminal directly affects its cathodic protection performance. Therefore, microstructure and mechanical properties of interfacial between AZ63 and Q235 by solid–liquid compound casting with hot-dip galvanized and post-casting solution-aging treatment (T6) were investigated. The results indicate that hot-dip galvanizing on the surface of Q235 is beneficial to the formation of intermetallic compounds at the interface. At the same time, it can promote the metallurgical bonding of the interface between AZ63 and Q235. After T6 heat treatment, the intermetallic compound at the interface between AZ63 and galvanized Q235 was refined. The electron-probe microanalyzer (EPMA) revealed that the intermetallic compounds at the interfaces between AZ63 and galvanized Q235 were Fe2Al5 before and after T6 treatment. Push-out testing and microhardness were used to investigate the mechanical properties of interface between AZ63 and Q235. It is shown that the hot-dip galvanization of the Q235 surface and T6 treatment were beneficial to improve the metallurgical bonding shear strength and microhardness of the interface. After T6 heat treatment, the highest shear strength at the interface between AZ63 and galvanized Q235 was up to 31.9 ± 1.9 MPa.
... When magnesium is coupled with steel, it not only corrodes itself but also protects the steel structure (Pathak et al., 2012). The cathodic reaction (oxygen reduction) takes place largely on the steel surface to enhance the pH of the metal, which further facilitates the precipitation of protective carbonate compounds on that surface (Fontana, 2005) and provides cathodic protection by making the steel structure a cathode. ...
Full-text available
It is an attributed fact that magnesium, in normal conditions, behaves as active or anodic material and steel as a noble or cathodic material in a galvanic cell. In the current study, various experiments have been conducted to investigate the electrochemical behavior of magnesium and mild steel galvanic couples in tap water and 0.1M NaHCO3 corrosive environments at different temperatures (40 ℃ to 80 ℃). The potentiodynamic results have confirmed that in tap water, magnesium acts as an anode as it corrodes itself and protects steel surfaces under the influence of galvanic action at selected temperatures. However, magnesium became passive under 0.1M NaHCO3 making steel anodic, which deteriorates aggressively at higher temperatures in 0.1M NaHCO3. The polarity reversal phenomenon was also observed in the magnesium-steel couple when exposed to this environment. The microstructural examination has shown that passivation occurred due to the formation of an oxide layer that grew towards the steel side in the galvanic couple as the temperature increased. Thus, the study revealed that the magnesium would be more damaging to steel in a NaHCO3 environment if utilized in the temperature range of 60 ℃to 80 ℃.
... Magnesium alloys are widely used for the cathodic protection of pipelines as sacrificial anodes [9][10][11], but severe self-corrosion limits their application in coastal mudflat environments [12][13][14]. Some studies have argued that a sustained expansion of local corrosion of magnesium anodes leads to spalling off of anode particles [15]. ...
Full-text available
To study the abnormal failure of magnesium anodes for buried pipelines in marine engineering in the unique environment of mudflats, a strain of a sulfate–reducing prokaryote (SRP) was isolated from pipe–laying soil, and identified as Desulfovibrio sp. HQM3. Weight–loss test, electrochemical measurements, SEM, EDS, XRD, and CLSM techniques were used to study the effect of corrosion on the AZ31B magnesium alloy. Under the influence of SRP, the magnesium alloy corroded severely at rates up to 1.31 mm/year in the mudflat environment. SRP accelerated corrosion by 0.3 mm/year. Pitting occurred on the samples in both abiotic and biotic systems. The pitting depth reached 163.47 μm in the biotic system after 14 days. The main composition of a petal–like corrosion product was Mg(OH)2. The results show that a mudflat environment can lead to an accelerated corrosion of magnesium alloys.
... The sacrificial anode protection method is a relatively mature electrochemical protection method, which has the advantages of simple equipment, convenient installation, low maintenance difficulty, long service life, low cost, and so on. It has been widely used in the field of industrial anticorrosion [1][2][3][4][5]. Due to the advantages of negative potential, large capacitance, and low price, aluminum has developed rapidly as a sacrificial anode material [6][7][8]. ...
Full-text available
The effect of Er-rich precipitates on microstructure and electrochemical behavior of the Al–Zn–In anode alloy is investigated. The results showed that with the increase in Er content, the microstructure was refined, the amount of interdendritic precipitates gradually increased, and the morphology changed from discontinuous to continuous network gradually. With the addition of Er element, the self-corrosion potential of the Al–5Zn–0.03In–xEr alloy moved positively, the self-corrosion current density decreased, and the corrosion resistance increased. When the Er content was less than 1 wt.%, the addition of Er improved the dissolution state of the Al–5Zn–0.03In–xEr alloy, and increased the current efficiency of the Al–5Zn–0.03In–xEr alloy. When the Er content was more than 1 wt.%, the current efficiency was reduced. The major precipitate of the alloy was Al3Er. According to the element composition of Al3Er in the Al–Zn–In–Er alloy, the simulated-segregated-phase alloy was melted to explain the effect of Al3Er segregation on the electrochemical behavior of alloys, and the polarization curve and AC impedance spectrum of the simulated-segregated-phase alloy and the Al–Zn–In alloy were measured. The results showed that Al3Er was an anodic segregation phase in the Al–Zn–In–Er alloy, and the preferential dissolution of the segregation phase would occur in the alloy, but the Al3Er phase itself was passivated in the dissolution process, which inhibited the further activation of the dissolution reaction of the Al–Zn–In–Er alloy to a certain extent.
Corrosion resistance of materials is predominately dependent on their surface roughness. Therefore, surface finishing techniques can effectively improve the corrosion resistance of the components. Ultrasonic-assisted burnishing (UAB) process is a newly developed surface finishing technique capable of flattening the surface of components without material removal. This research experimentally investigated the effects of amplitude in the UAB process on surface roughness and corrosion performance of AA7075-T6 aluminum alloys. Turned sample (control) was treated by conventional burnishing (CB), followed by UAB with an amplitude of 10, 20, and 30 µm. Then, the surface roughness, microstructure, microhardness, and corrosion resistance of the treated samples were assessed. The surface roughness showed an improvement upon burnishing of the samples, where the best surface was achieved by UAB with an amplitude of 10 µm. UAB process also led to grain refinement such that finer grains could be achieved by increasing the amplitude. Microhardness also increased after the UAB process which got intensified by increasing the amplitude. The turned sample showed the least corrosion resistance, while the UAB-treated specimens (amplitude of 10 µm) exhibited minimal corrosion rate. Furthermore, the enhancement of UAB amplitude increased the surface roughness, causing a decline in corrosion resistance.
A primary seawater battery is a purpose-built electricity storage system that are usually designed as a reserve-type battery, used in the seawater. The primary seawater battery specially developed for military purposes for use in the marine environment has the characteristics of long shelf life, fast activation when used and higher power then other primary batteries. After the development of Mg-AgCl batteries using magnesium and silver chloride as electrodes and seawater as electrolyte, research on cheaper materials and higher output and energy have been conducted. The purpose of this chapter is to provide an overview of primary (un-rechargeable) seawater batteries focusing on battery science, materials, and their technologies. The chapter starts with a brief history of batteries in general, followed by an introduction to the history, principles, composition, and classification of primary seawater batteries. Understanding the primary seawater battery introduced in this chapter is necessary for understanding the secondary (rechargeable) seawater battery introduced in Chap. 3.
A new high nitrogen steel (Cr18Mn15Mo1.5N) with nitrogen content of 0.54% for marine engineering is prepared using vacuum induction furnace and remelting furnace. The effects of nitrogen on the microstructure, yield strength, yield ratio, elongation, and corrosion resistance are studied by holding the experimental steel at 800 °C, 900 °C, 1000 °C, 1100 °C and 1200 °C for 1h, 3h and 5h respectively, which are compared with 316 steel series. The results of solution treatment show that the second phase including Cr2N precipitates at 800 and 900 °C, the second phase dissolves at 1000 and 1100 °C, and ferrite precipitates at 1200 °C, respectively. The yield strength of Cr18Mn15Mo1.5N steel is 2.5 times that of 316 steel and the plasticity is equivalent. The corrosion resistance of the experimental steel treated at 1100 °C for 1h is 7.94 times better than that of 316 steel. This article is protected by copyright. All rights reserved.
A worldwide empirical data file accumulated for the last 30 years and concerning the corrosion of metals by the adsorbed moisture films is systematized. The following problems are considered: the formation of adsorption layers and the dependence of their thickness on the humidity of atmosphere; the effect of the metal surface morphology on the physical adsorption of water; the chemisorption of water on metals; the change in the composition of the adsorbed films with time; the adsorption of gaseous pollutants; the mechanism of the initial corrosion stages in a pure atmosphere (on zinc); and the corrosion of iron, zinc, copper, silver, tin, nickel, and cobalt in the atmosphere containing small amounts (10-4 to 10-7%) of individual or mixed corrosive stimulants H2S, SO2, O3, NO2, and Cl2.
Corrosion is a huge issue for materials, mechanical, civil and petrochemical engineers. With comprehensive coverage of the principles of corrosion engineering, this book is a one-stop text and reference for students and practicing corrosion engineers. Highly illustrated, with worked examples and definitions, it covers basic corrosion principles, and more advanced information for postgraduate students and professionals. Basic principles of electrochemistry and chemical thermodynamics are incorporated to make the book accessible for students and engineers who do not have prior knowledge of this area. Each form of corrosion covered in the book has a definition, description, mechanism, examples and preventative methods. Case histories of failure are cited for each form. End of chapter questions are accompanied by an online solutions manual. * Comprehensively covers the principles of corrosion engineering, methods of corrosion protection and corrosion processes and control in selected engineering environments * Structured for corrosion science and engineering classes at senior undergraduate and graduate level, and is an ideal reference that readers will want to use in their professional work * Worked examples, extensive end of chapter exercises and accompanying online solutions and written by an expert from a key pretochemical university.
This chapter focuses on cathodic protection (CP) of pipelines, as pipelines are exposed to aggressive soil, varying climatic conditions, micro-organism, and stray currents that initiate corrosion processes. Cathodic protection is defined as reduction or elimination of corrosion by making the metal a cathode by means of an impressed current or attachment to a sacrificial anode. This is an electrochemical method that uses cathodic polarization to control the kinetics of the electrode processes occurring on the metal/electrolyte interface. The chapter categorizes CP systems into two types based on the type of the polarization used to protect the structure: sacrificial anode and impressed current systems. The criteria for CP are documented by National Association of Corrosion Engineers (NACE). The successful application of CP depends upon the selection, design, installation, and maintenance of the system. Before designing cathodic protection, adequate field data must be collected, analyzed, and evaluated. It discusses that the effectiveness of the CP can be determined by monitoring the pipeline potential using the close interval potential survey (CIPS) method or by using direct current voltage gradient (DCVG) or IR coupons techniques. © 2005 William Andrew Inc. Published by null. All rights reserved.
This chapter discusses cathodic protection. Cathodic protection is a proven corrosion control method for protection of underground and undersea metallic structures, such as oil and gas pipelines, cables, utility lines, and structural foundations. The chapter illustrates the simple principle of cathodic protection. On application of an external current, the difference of potential between the cathodes and anodes on the structure decreases. It also discusses factors leading to corrosion of underground metallic structures. It has been shown that there must be a source of current to supply electrons to the areas of the metal that is corroding. Anodic protection is widely applied in the transport of acids and corrosives in containers and other applications. The two types of cathodic protection systems that are discussed are: galvanic anode system or sacrificial anode system and impressed current anode system. The details of galvanic and impressed current anodes are provided later in the chapter. It discusses the various components of galvanic systems, impressed current systems, AC/DC systems, and a rectifier. Some commercial specifications and details of zinc anodes are appended to this chapter.