Technical ReportPDF Available

Sanitary surveys (England and Wales). Review of progress, processes and outcomes

Authors:

Figures

Content may be subject to copyright.
... Norovirus contamination from shipping and recreational boating represents a limited, seasonal NoV contamination risk (Kershaw et al. 2012;ACMSF 2014). Overboard discharges from small boats are currently unregulated in the UK (ACMSF 2014; Campos and Lees 2014), although regulations are in place preventing large vessels ([400 Gt, or \400 Gt which are certified to carry more than 15 persons) from direct discharge of untreated effluents (Kershaw et al. 2012). ...
... Norovirus contamination from shipping and recreational boating represents a limited, seasonal NoV contamination risk (Kershaw et al. 2012;ACMSF 2014). Overboard discharges from small boats are currently unregulated in the UK (ACMSF 2014; Campos and Lees 2014), although regulations are in place preventing large vessels ([400 Gt, or \400 Gt which are certified to carry more than 15 persons) from direct discharge of untreated effluents (Kershaw et al. 2012). In urban areas, sewer misconnections are an additional concern where foul pipes from toilets can be connected to surface water outfalls or streams instead of the sewer. ...
... The use of sludge solids (from the sewage treatment process), as applied to land may pose a potential risk of spreading NoV (DEFRA 2012). However, the application of untreated sewage sludge to all food and non-food crops (Kershaw et al. 2012) has been restricted in the UK since 2005 (ADAS 2001) reducing to a minimum the viral contamination of shellfish waters from the application of sewage sludge to land. In addition, 75% of the sludge destined for land is treated by anaerobic digestion, potentially reducing viral titres by *99% (DEFRA 2012). ...
Article
Full-text available
We review the risk of norovirus (NoV) infection to the human population from consumption of contaminated shellfish. From a UK perspective, risk is apportioned for different vectors of NoV infection within the population. NoV spreads mainly by person-to-person contact or via unsanitary food handling. NoV also enters the coastal zone via wastewater discharges resulting in contamination of shellfish waters. Typically, NoV persists in the marine environment for several days, with its presence strongly linked to human population density, wastewater discharge rate, and efficacy of wastewater treatment. Shellfish bioaccumulate NoV and current post-harvest depuration is inefficient in its removal. While NoV can be inactivated by cooking (e.g. mussels), consumption of contaminated raw shellfish (e.g. oysters) represents a risk to human health. Consumption of contaminated food accounts for 3–11% of NoV cases in the UK (~74,000 cases/year), of which 16% are attributable to oyster consumption (11,800 cases/year). However, environmental and human factors influencing NoV infectivity remain poorly understood. Lack of standard methods for accurate quantification of infective and non-infective (damaged) NoV particles represent a major barrier, hampering identification of an appropriate lower NoV contamination limit for shellfish. Future management strategies may include shellfish quality assessment (at point of harvest or at point of supply) or harvesting controls. However, poor understanding of NoV inactivation in shellfish and the environment currently limits accurate apportionment and risk assessment for NoV and hence the identification of appropriate shellfish or environmental quality standards.
ResearchGate has not been able to resolve any references for this publication.