Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The purpose of this study was to determine the influence of short-term creatine supplementation on sprint running performance (100 and 200 m) and circulating hormone [growth hormone (GH), testosterone and cortisol] concentrations. Twenty amateur male runners were randomly divided into a creatine supplementation group, or placebo group. Subjects were provided with capsules containing either creatine monohydrate or identical powdered cellulose placebo. Daily creatine monohydrate supplementation was 20 g/day parceled into three equal dosages to be consumed with each major meal. Subjects were tested for performance and resting blood hormone concentrations before and after six days. A double-blind research design was employed in this study. After this creatine loading, the mean running performance time of the creatine supplementation group decreased significantly in the 100 m, but not the 200 m. Serum GH, testosterone, and cortisol concentrations were not affected by creatine supplementation. It can therefore be concluded that although short-term creatine supplementation was found to improve sprint performance in the 100 m in amateur runners, this performance improvement did not appear to be hormonally mediated.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... For example, Op't Eijnde and Hespel [26] found that creatine supplementation (20 g/day for 5 d) did not alter cortisol and growth hormone levels in a single bout of heavy resistance exercise. In addition, Faraji et al. [27] assessed growth hormone, testosterone and cortisol immediately after sprint running performance (100 and 200 m) in creatine (20 g/d for 6 d) and placebo-supplemented subjects, and found no effect of creatine on growth hormone, testosterone and cortisol hormones status. However, the unchanged growth hormone and cortisol after creatine supplementation is also consistent with their reports. ...
... The present results suggest that under the experimental conditions using short-term creatine supplementation, amateur swimmers' performance increased only in 50 m. According to our data when combined with the findings of Faraji et al. [27], it seems unlikely that performance improvement to creatine supplementation is hormonally mediated and systemic changes have been ruled out via hormonal alterations. ...
Article
Objectifs Le but de cette étude était de déterminer l’influence à court terme d’une supplémentation en créatine sur la performance lors de sprints en natation (50 et 100 m) et sur les réponses hormonales (hormone de croissance, testostérone et le cortisol). Méthodes Vingt nageurs amateurs ont ingéré du monohydrate de créatine (CR) ou un placebo (PL) pendant six jours pendant lesquels ils ont poursuivi leur entraînement de natation. Les performances et les réponses hormonales ont été enregistrées le jour précédent et après cette période de charge orale en créatine. Résultats Le temps de nage moyen du groupe CR sur 50 m était significativement diminué (53,1 ± 3,73 secondes avant charge vs 50,7 ± 2,84 secondes après supplémentation). L’hormone de croissance et le cortisol n’ont pas été affectés par cette charge en créatine. En revanche, la concentration de testostérone était significativement plus élevée dans CR par rapport à PL après la période de supplémentation (p < 0,05). Conclusion Nos résultats suggèrent qu’une supplémentation de courte durée en créatine a amélioré de manière significative la performance lors de sprints sur 50 m chez des nageurs amateurs sans que l’on puisse imputer de manière objective une médiation hormonale.
... Previous research has reported seasonal variations in testosterone levels [17], however, based on the current research design we are unclear why there was a main effect of time and future research may be warranted. To date, there is some, albeit limited, evidence demonstrating a small increase in testosterone follow creatine supplementation [18], however, the majority of studies found no increase in testosterone [13,14,[19][20][21][22][23]. Overall, based on our current study and the majority of the evidence, creatine does not influence testosterone (free or total) and DHT. ...
Article
Full-text available
Background Creatine is a widely used ergogenic aid that enhances muscle strength and lean mass. However, concerns have been raised about the potential role in promoting hair loss by increasing dihydrotestosterone (DHT). Currently, there is no direct evidence examining the relationship between creatine supplementation and hair follicle health. Therefore, the purpose was to determine the effects of 12 weeks of creatine supplementation on androgen levels and hair follicle health in healthy young males. Methods Forty-five resistance-trained males (ages 18–40 years) were recruited and randomly assigned to either a creatine monohydrate (5 g/day) or placebo (5 g maltodextrin/day) group. Participants maintained their habitual diets and training routines. Blood samples were collected at baseline and after 12 weeks to measure total testosterone, free testosterone, and DHT. Hair follicle health was assessed using the Trichogram test and the FotoFinder system (hair density, follicular unit count, and cumulative hair thickness). Statistical analyses were performed using repeated measures ANOVA, and potential outliers were examined through sensitivity analysis. Results Thirty-eight participants completed the study, with no significant differences in baseline characteristics between groups. There were no group-by-time interactions observed for any hormones or hair-related outcomes (p > 0.05). While total testosterone increased (∆ = post value minus pre value: creatine = ∆124 ± 149 ng/dL; placebo = ∆216 ± 203 ng/dL) and free testosterone decreased (creatine = ∆-9.0 ± 8.7 pg/mL; placebo = ∆-9 ± 6.4 pg/mL) over time, these effects were independent of supplementation. There were no significant differences in DHT levels, DHT-to-testosterone ratio, or hair growth parameters between the creatine and placebo groups. Conclusion This study was the first to directly assess hair follicle health following creatine supplementation, providing strong evidence against the claim that creatine contributes to hair loss.
Article
Nutritional ergogenic aids have been in use for a long time to enhance exercise and sports performance. Dietary components that exhibit ergogenic activity are numerous and their consumption is common and popular among athletes. They often come under scrutiny by legal authorities for their claimed benefits and safety concerns. Amino acid derivatives are propagated as being effective aids to enhance physical and mental performance in many ways, even though studies have pointed out that individuals who are deficient are more likely to benefit from dietary supplementation of amino acid derivatives than normal humans. In this review, some of the most common and widely used amino acids derivatives in sports and athletics namely creatine, tyrosine, carnitine, HMB and taurine have been discussed for their effects on exercise performance, mental activity as well as body strength and composition. Creatine, carnitine, HMB and taurine are reported to delay the onset of fatigue, improve exercise performance and body strength. HMB helps in increasing fat free mass and reduce exercise induced muscle injury. Taurine has been found to reduce oxidative stress during exercise and also act as an antihypertensive agent. Although, studies have not been able to find any favourable effect of tyrosine administration on exercise performance, it has been proved to be very effective in fighting stress, improving mood and cognitive performance particularly in sleep deprived subjects. While available data from published studies and findings are equivocal about the efficacy of creatine, tyrosine and HMB; more comprehensive researches on carnitine and taurine are necessary to provide evidence for the theoretical basis of their ergogenic role in nutritional modification and supplementation.
Article
Full-text available
Creatine supplementation is a widely used and heavily studied ergogenic aid. Athletes use creatine to increase muscle mass, strength, and muscle endurance. While the performance and muscle- building effects of creatine supplementation have been well documented, the mechanisms responsible for these muscular adaptations have been less studied. Objective: The purpose of this review is to examine studies of the mechanisms underlying muscular adaptations to creatine supplementation. Data sources: PubMed and SPORTDiscus databases were searched from 1992 to 2007 using the terms creatine, creatine supplementation, creatine monohydrate, and phosphocreatine. Study selection: Studies of creatine supplementation in healthy adults were included. Data extraction: Due to the small number of studies identified, a meta-analysis was not performed. Data synthesis: Several potential mechanisms underlying muscular adaptations to creatine supplementation were identified, including: metabolic adaptations, changes in protein turnover, hormonal alterations, stabilization of lipid membranes, molecular modifications, or as a general training aid. The mechanisms with the greatest amount of support (metabolic adaptations, molecular modifications, and general training aid) may work in concert rather than independently. Conclusions: Creatine supplementation may alter skeletal muscle directly, by increased muscle glycogen and phosphocreatine, faster phosphocreatine resynthesis, increased expression of endocrine and growth factor mRNA, or indirectly, through increased training volume. Keywords: dietary supplement, creatine monohydrate, phosphocreatine, muscle, sport nutrition
Article
Full-text available
This study was conducted to examine the effects of creatine (Cr) supplementation on sprint swimming performance and energy metabolism. Twenty highly trained swimmers (9 female, 11 male) were tested for blood ammonia and for blood lactate after the 25-, 50-, and 100-m performance in their best stroke on two occasions 7 d apart. After the first trial, subjects were evenly and randomly assigned to either a creatine (5 g creatine monohydrate 4 times per day for 5 d) or a placebo group (same dosage of a lactose placebo) in a double-blind research design. No significant differences in performance times were observed between trials. Post-exercise blood ammonia concentration decreased in the 50- and 100-m trials in the creatine group and in the 50-m trial in the placebo group. The supplementation period had no effect on post-exercise blood lactate. Therefore, creatine supplementation cannot be considered as an ergogenic aid for sprint performance in highly trained swimmers although adenine nucleotide degradation may be reduced during sprint exercise after 5 d of creatine ingestion.
Article
Full-text available
This study was conducted to investigate the effects of giving short-term doses of creatine by mouth to healthy older male subjects, taking into account their training status. A group of 42 volunteers was divided into three: a sedentary group composed of elderly sedentary men [n = 14, mean age 70.1 (SEM 1.2) years], a trained group composed of elderly trained cyclists [n = 14, mean age 66.4 (SEM 1.4) years] and a young group composed of young sedentary men [n = 14, mean age 26.0 (SEM 1.2) years]. In each group, double-blind randomization was carried out: one half was given creatine (3x5 g x day(-1)), and the other was given an iso-nitrogenated placebo (3x10 g x day(-1)). Before and after the 5 days during which the supplements were given, all subjects performed five all-out 10-s sprints separated by 60-s intervals of passive recovery, seated on a cycle ergometer. Power output, work done and heart rate data were recorded during each sprint. The elderly and the young sedentary subgroups given creatine showed significant (P < 0.05) improvements in maximal power (+3.7% and +2.0%, respectively) and work done (+4.1% and +5.1%, respectively) in the subsequent tests. In contrast, no significant change in pedalling performances was observed in the trained elderly subjects. The creatine did not change the exercise and recovery heart rate profiles, in any group. Our study suggested that creatine given by mouth increases the anaerobic power and work capacity of sedentary people of different ages during maximal pedalling tasks. However, the level of physical activity seems to be a determinant of the ergogenic effect of creatine in older subjects.
Article
Full-text available
GH treatment increases protein deposition and the efficiency of dietary protein used for growth. To identify the mechanisms that regulate tissue protein synthesis in response to exogenous GH treatment, fully fed, growing swine were treated with GH for 7 d. Fasted and fed pigs were infused with [1-(13)C]leucine to determine protein synthesis rates, and translation initiation factor activity levels were measured in skeletal muscle and liver. Feeding increased protein synthesis and translational efficiency in both muscle and liver of control and GH-treated pigs, and this was associated with increased 4E-BP1 and S6 kinase 1 phosphorylation, decreased association of eukaryotic initiation factor (eIF) 4E with 4E-BP1, and increased association of eIF4E with eIF4G. GH increased muscle protein synthesis and translational efficiency in fed pigs. GH increased liver protein synthesis of fasted and fed pigs in association with increased ribosome number. In muscle, but not liver, GH increased eIF2B activity and 4E-BP1 phosphorylation in both the fasted and fed state and increased the association of eIF4E with eIF4G in the fed state. We conclude that GH increases muscle protein synthesis in the fed state, in part, via mechanisms that enhance the binding of mRNA and methionyl-tRNA to the 40S ribosomal subunit, whereas GH increases liver protein synthesis in the fasted and fed states by increasing ribosome number. The results further indicate that the GH-induced protein synthetic response is dependent upon nutritional state and is tissue specific.
Article
Full-text available
Creatine has become a popular nutritional supplement among athletes. Recent research has also suggested that there may be a number of potential therapeutic uses of creatine. This paper reviews the available research that has examined the potential ergogenic value of creatine supplementation on exercise performance and training adaptations. Review of the literature indicates that over 500 research studies have evaluated the effects of creatine supplementation on muscle physiology and/or exercise capacity in healthy, trained, and various diseased populations. Short-term creatine supplementation (e.g. 20 g/day for 5-7 days) has typically been reported to increase total creatine content by 10-30% and phosphocreatine stores by 10-40%. Of the approximately 300 studies that have evaluated the potential ergogenic value of creatine supplementation, about 70% of these studies report statistically significant results while remaining studies generally report non-significant gains in performance. No study reports a statistically significant ergolytic effect. For example, short-term creatine supplementation has been reported to improve maximal power/strength (5-15%), work performed during sets of maximal effort muscle contractions (5-15%), single-effort sprint performance (1-5%), and work performed during repetitive sprint performance (5-15%). Moreover, creatine supplementation during training has been reported to promote significantly greater gains in strength, fat free mass, and performance primarily of high intensity exercise tasks. Although not all studies report significant results, the preponderance of scientific evidence indicates that creatine supplementation appears to be a generally effective nutritional ergogenic aid for a variety of exercise tasks in a number of athletic and clinical populations.
Article
Full-text available
We hypothesized that creatine supplementation would facilitate muscle anabolism by increasing the expression of growth factors and the phosphorylation of anabolic signaling molecules; we therefore tested the responses of mRNA for IGF-I and IGF-II and the phosphorylation state of components of anabolic signaling pathways p70(s6k) and 4E-BP1 to a bout of high-intensity resistance exercise after 5 d of creatine supplementation. In a double-blind cross-over design, muscle biopsies were taken from the m. vastus lateralis at rest and 3 and 24 h postexercise in subjects who had taken creatine or placebo for 5 d (21 g x d(-1)). For the first 3 h postexercise, the subjects were fed with a drink containing maltodextrin (0.3 g x kg(-1) body weight x h(-1)) and protein (0.08 g x kg(-1) body weight x h(-1)). After creatine supplementation, resting muscle expressed more mRNA for IGF-I (+30%, P < 0.05) and IGF-II (+40%, P = 0.054). Exercise caused an increase by 3 h postexercise in IGF-I (+24%, P < 0.05) and IGF-II (+48%, P < 0.05) and by 24 h postexercise in IGF-I (+29%, P < 0.05), but this effect was not potentiated by creatine supplementation. The phosphorylation states of p70(s6k) and 4E-BP1 were not affected by creatine at rest; phosphorylation of both increased (150-400%, P < 0.05) to similar levels under placebo and creatine conditions at 3 h postexercise plus feeding. However, the phosphorylation state of 4E-BP1 was higher in the creatine versus placebo condition at 24 h postexercise. The increase in lean body mass often reported after creatine supplementation could be mediated by signaling pathway(s) involving IGF and 4E-BP1.
Article
Full-text available
This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.
Article
Full-text available
The purpose of this study was to determine the influence of a comprehensive multi-component nutritional supplement on performance, hormonal, and metabolic responses to an acute bout of resistance exercise. Nine healthy subjects ingested either Muscle Fuel (MF) or a matched placebo (PL) for 7 days. Subjects then reported to the laboratory, ingested the corresponding supplement, and performed two consecutive days of heavy resistance exercise testing with associated blood draws. MF supplementation improved vertical jump (VJ) power output and the number of repetitions performed at 80% of one repetition maximum (1RM). Additionally, MF supplementation potentiated growth hormone (GH), testosterone, and insulin-like growth factor-1 responses to exercise. Concentrations of circulating myoglobin and creatine kinase (CK) were attenuated immediately following resistance exercise during the MF trial, indicating that MF partially mediated some form of exercise-induced muscle tissue damage. In summary MF enhanced performance and hormonal responses associated with an acute bout of resistance exercise. These responses indicate that MF supplementation augments the quality of an acute bout of resistance exercise thereby increasing the endocrine signaling and recovery following heavy resistance exercise.
Article
Creatine has become a popular nutritional supplement among athletes. Recent research has also suggested that there may be a number of potential therapeutic uses of creatine. This paper reviews the available research that has examined the potential ergogenic value of creatine supplementation on exercise performance and training adaptations. Review of the literature indicates that over 500 research studies have evaluated the effects of creatine supplementation on muscle physiology and/or exercise capacity in healthy, trained, and various diseased populations. Short-term creatine supplementation (e.g. 20 g/day for 5–7 days) has typically been reported to increase total creatine content by 10–30% and phosphocreatine stores by 10–40%. Of the approximately 300 studies that have evaluated the potential ergogenic value of creatine supplementation, about 70% of these studies report statistically significant results while remaining studies generally report non-significant gains in performance. No study reports a statistically significant ergolytic effect. For example, short-term creatine supplementation has been reported to improve maximal power/strength (5–15%), work performed during sets of maximal effort muscle contractions (5–15%), single-effort sprint performance (1–5%), and work performed during repetitive sprint performance (5–15%). Moreover, creatine supplementation during training has been reported to promote significantly greater gains in strength, fat free mass, and performance primarily of high intensity exercise tasks. Although not all studies report significant results, the preponderance of scientific evidence indicates that creatine supplementation appears to be a generally effective nutritional ergogenic aid for a variety of exercise tasks in a number of athletic and clinical populations.
Article
This study investigated the influence of oral creatine monohydrate supplementation on hormone responses to high-intensity resistance exercise in 13 healthy, normally active men. Subjects were randomly assigned in double-blind fashion to either a creatine or placebo group. Both groups performed bench press and jump squat exercise protocols before (T1) and after (T1) ingesting either 25 g creatine monohydrate or placebo per day for 7 days. Blood samples were obtained pre- and 5 min postexercise to determine serum lactate, testosterone, and cortisol concentrations. Creatine ingestion resulted in a significant (p < 0.05) increase in body mass but no changes in skinfold thickness. Serum lactate concentrations were significantly higher at 5 min postexercise in both groups compared to resting values. From T1 to T2 there were no significant differences in postexercise lactate concentration during both exercise protocols in the placebo group, but the creatine group had significantly higher lactate concentrations after the bench press and a trend toward lower concentrations during the jump squat at T2. There were significant increases in testosterone concentration postexercise after the jump squat, but not the bench press, for both groups; 5-min postexercise cortisol concentrations did not differ significantly from preexercise values for both groups for either protocol. Creatine supplementation may increase body mass; however, test-osterone and cortisol may not mediate this initial effect. (C) 1997 National Strength and Conditioning Association
Article
Simple voltammetric determination of thiodiglycolic acid (TDGA) offers the possibility to follow individual deviations in metabolism of thiocompounds and one-carbon (1c) and two-carbon (2c) units, which take part in endogenous synthesis of creatine (CR). In three groups of young men the levels of TDGA in urine were followed after application of CR given as food supplement in 5 g daily doses. In the first group (7 men) it was found that the level of TDGA increased independently of the day time of application of CR. In the second group (9 men) the level of TDGA increased within an interval of 3–8.5 h after CR application and then dropped during 2 h to the normal level (20 mg L−1). In the third group (11 men), in 4 days’ study the effects of CR were compared in alternation to vitamin B12. Vitamin B12 was given in the evening of the 1st and 3rd day and CR in the morning of the 3rd and 4th day. CR increased the excretion of TDGA in all men, while B12 only in four men independently of CR application.
Article
1. The present study was undertaken to test whether creatine given as a supplement to normal subjects was absorbed, and if continued resulted in an increase in the total creatine pool in muscle. An additional effect of exercise upon uptake into muscle was also investigated. 2. Low doses (1 g of creatine monohydrate or less in water) produced only a modest rise in the plasma creatine concentration, whereas 5 g resulted in a mean peak after 1 h of 795 (sd 104) μmol/l in three subjects weighing 76–87 kg. Repeated dosing with 5 g every 2 h sustained the plasma concentration at around 1000 μmol/l. A single 5 g dose corresponds to the creatine content of 1.1 kg of fresh, uncooked steak. 3. Supplementation with 5 g of creatine monohydrate, four or six times a day for 2 or more days resulted in a significant increase in the total creatine content of the quadriceps femoris muscle measured in 17 subjects. This was greatest in subjects with a low initial total creatine content and the effect was to raise the content in these subjects closer to the upper limit of the normal range. In some the increase was as much as 50%. 4. Uptake into muscle was greatest during the first 2 days of supplementation accounting for 32% of the dose administered in three subjects receiving 6 × 5 g of creatine monohydrate/day. In these subjects renal excretion was 40, 61 and 68% of the creatine dose over the first 3 days. Approximately 20% or more of the creatine taken up was measured as phosphocreatine. No changes were apparent in the muscle ATP content. 5. No side effects of creatine supplementation were noted. 6. One hour of hard exercise per day using one leg augmented the increase in the total creatine content of the exercised leg, but had no effect in the collateral. In these subjects the mean total creatine content increased from 118.1 (sd 3.0) mmol/kg dry muscle before supplementation to 148.5 (sd 5.2) in the control leg, and to 162.2 (sd 12.5) in the exercised leg. Supplementation and exercise resulted in a total creatine content in one subject of 182.8 mmol/kg dry muscle, of which 112.0 mmol/kg dry muscle was in the form of phosphocreatine.
Article
Anthropometry is the method of choice for estimating body composition in the clinical setting. The method can be accurate, and requires little time, space, equipment, or financial outlay. Although used extensively in epidemiological research, height/weight indices are not as accurate as skinfold and circumference measures for estimating body composition. The validity of estimating body density is enhanced by using a combination of skin-fold and circumference measures in a multiple-regression model. Some recently developed generalized equations may have a broader application for use in varied populations than several population-specific equations. The newer equations take into account the potential change in ratio of internal to external fat and bone density with age, and the nonlinear relationship between skinfold fat and body density. The validity of using skinfolds for estimating body density can be significantly affected by caliper selection and measurement procedures. Inter-observer errors appear to be the most problematic, with improper skinfold site selection causing the greatest variation among observers. To improve the validity of the anthropometric technique for use in the clinical setting, more precise standards and description of methods need to be developed.
Article
Biopsy samples were obtained from the vastus lateralis muscle of eight subjects after 0, 20, 60, and 120 s of recovery from intense electrically evoked isometric contraction. Later (10 days), the same procedures were performed using the other leg, but subjects ingested 20 g creatine (Cr)/day for the preceding 5 days. Muscle ATP, phosphocreatine (PCr), free Cr, and lactate concentrations were measured, and total Cr was calculated as the sum of PCr and free Cr concentrations. In five of the eight subjects, Cr ingestion substantially increased muscle total Cr concentration (mean 29 +/- 3 mmol/kg dry matter, 25 +/- 3%; range 19-35 mmol/kg dry matter, 15-32%) and PCr resynthesis during recovery (mean 19 +/- 4 mmol/kg dry matter, 35 +/- 6%; range 11-28 mmol/kg dry matter, 23-53%). In the remaining three subjects, Cr ingestion had little effect on muscle total Cr concentration, producing increases of 8-9 mmol/kg dry matter (5-7%), and did not increase PCr resynthesis. The data suggest that a dietary-induced increase in muscle total Cr concentration can increase PCr resynthesis during the 2nd min of recovery from intense contraction.
Article
1. The present experiment was undertaken to investigate the influence of oral creatine supplementation, shown previously to increase the total creatine content of human skeletal muscle (Harris RC, Soderlund K, Hultman E. Clin Sci 1992; 83: 367–74), on skeletal muscle isokinetic torque and the accumulation of plasma ammonia and blood lactate during five bouts of maximal exercise. 2. Twelve subjects undertook five bouts of 30 maximal voluntary isokinetic contractions, interspersed with 1 min recovery periods, before and after 5 days of placebo (4 × 6 g of glucose/day, n = 6) or creatine (4 × 5 g of creatine plus 1 g of glucose/day, n = 6) oral supplementation. Muscle torque production and plasma ammonia and blood lactate accumulation were measured during and after exercise on each treatment 3. No difference was seen when comparing muscle peak torque production during exercise before and after placebo ingestion. After creatine ingestion, muscle peak torque production was greater in all subjects during the final 10 contractions of exercise bout 1 (P <0.05), throughout the whole of exercise bouts 2 (P <0.01), 3 (P <0.05) and 4 (P = 0.057) and during contractions 11–20 of the final exercise bout (P <0.05), when compared with the corresponding measurements made before creatine ingestion. Plasma ammonia accumulation was lower during and after exercise after creatine ingestion. No differences were found when comparing blood lactate levels. 4. There is evidence to suggest that the decrease in the degree of muscle torque loss after dietary creatine supplementation may be a consequence of a creatine-induced acceleration of skeletal muscle phosphocreatine resynthesis. It is postulated that an increased availability of phosphocreatine would maintain better the required rate of ATP demand during contraction. This is supported by the observed lower accumulation of plasma ammonia during exercise after creatine ingestion.
Article
This investigation examined the effects of creatine (Cr) supplementation on intermittent high-intensity exercise activities specific to competitive soccer. On two occasions 7 d apart, 17 highly trained male soccer players performed a counter-movement jump test (CMJT), a repeated sprint test (RST) consisting of six maximal 15-m runs with a 30-s recovery, an intermittent endurance test (IET) consisting of forty 15-s bouts of high-intensity running interspersed by 10-s bouts of low-intensity running, and a recovery CMJT consisting of three jumps. After the initial testing session, players were evenly and randomly included in a CREATINE (5 g of Cr, four times per day for 6 d) or a PLACEBO group (same dosage of maltodextrins) using a double-blind research design. The CREATINE group's average 5-m and 15-m times during the RST were consistently faster after the intervention (0.95 +/- 0.03 vs 0.97 +/- 0.02 s, P < 0.05 and 2.29 +/- 0.08 vs 2.32 +/- 0.07 s, P = 0.07, respectively). Neither group showed significant changes in the CMJT or the IET. The CREATINE group's recovery CMJT performance relative to the resting CMJT remained unchanged postsupplementation, whereas it tended to decrease in the PLACEBO group. In conclusion, acute Cr supplementation favorably affected repeated sprint performance and limited the decay in jumping ability after the IET in highly trained soccer players. Intermittent endurance performance was not affected by Cr.
Article
The object of this study was to evaluate the effect of creatine (Cr) supplementation in well trained male sprinters. The study was performed as a single blind test on 18 sprinters at a local competition level. During the last two years a substantial part of their training had consisted of a series of maximal sprints with short rest periods to improve their fatigue resistance. The participants consumed either 20 g Cr+20 g glucose per day (Cr group, n=9) or 40 g glucose per day (placebo group, n=9), divided into 4 equal dosages. The effect of Cr on sprint performance was evaluated in two tests, 1 x 100 m sprint and an intermittent 6x60 m sprint. Cr supplementation increased the 100 m sprint velocity (11.68+/-0.27 s vs 11.59+/-0.31 s) and reduced the total time of 6 intermittent 60 m sprints (45.63+/-1.11 s vs 45.12+/-1.1 s), whereas no changes were observed in the placebo group. The sprint velocity was significantly increased in 5 out of 6 intermittent 60 m sprints. Venous blood was drawn 5 min after finishing the final intermittent 60 m run. Plasma lactate, Cr and serum creatinine (Crn) were all increased in the Cr group compared to presupplementation values; no changes were observed in the placebo group. The improved sprint performance suggests an increased availability of energy substrate for performing work, possibly as a result of increased skeletal muscle creatine phosphate (PCr).
Article
In this study, the effect of short-term creatine supplementation on the growth hormone, testosterone, and cortisol response to heavy resistance training was investigated. According to a double-blind crossover study design, 11 healthy young male volunteers underwent a 1-h standardized heavy resistance training session (3 series of 10RM; 12 exercises), both before (pretest) and after (posttest) 5 d of either placebo (P, maltodextrine) or creatine (CR; 20 g.d-1, 5 d) supplementation. A 5-wk washout period separated the treatments. Thirty minutes before each training session, CR subjects ingested 10 g of creatine monohydrate (CR) while P subjects received placebo. Venous blood was sampled before, immediately after, and 30 and 60 min after the training session. The exercise-induced increase (P < 0.05) of serum growth hormone was not altered by acute creatine intake and was similar in P and CR. The weight training session, either or not in conjunction with acute or chronic creatine intake, did not significantly impact on serum testosterone. However, serum cortisol during recovery tended to be higher in CR than in P. It is concluded that short-term creatine supplementation does not alter the responses of growth hormone, testosterone, and cortisol to a single bout of heavy resistance training.
Article
The main objective of this study was to explore the effect of acute creatine (Cr) ingestion on the secretion of human growth hormone (GH). In a comparative cross-sectional study, 6 healthy male subjects ingested in resting conditions a single dose of 20 g creatine (Cr-test) vs a control (c-test). During 6 hours the Cr, creatinine and GH concentrations in blood serum were measured after Cr ingestion (Cr-test). During the Cr-test, all subjects showed a significant stimulation of GH (p<0.05), but with a large interindividual variability in the GH response: the difference between Cr-test and c-test averaged 83% (SD 45%). For the majority of subjects the maximum GH concentration occurred between 2 hrs and 6 hrs after the acute Cr ingestion. In resting conditions and at high dosages Cr enhances GH secretion, mimicking the response of strong exercise which also stimulates GH secretion. Acute body weight gain and strength increase observed after Cr supplementation should consider the indirect anabolic property of Cr.
Article
Creatine supplementation has been shown to enhance muscle strength and power after only 5-7 d in young adults. Creatine supplementation could therefore benefit older individuals because aging is associated with a decrease in muscle strength and explosive power. We examined the effects of 7 d of creatine supplementation in normally active older men (59-72 yr) by using a double-blind, placebo-controlled design with repeated measures. After a 3-wk familiarization period to minimize learning effects, a battery of tests was completed on three occasions separated by 7 d (T1, T2, and T3). After T1, subjects were matched and randomly assigned into creatine (N = 10) and placebo (N = 8) groups. After T2, subjects consumed supplements (0.3 g x kg(-1) x d(-1)) for 7 d until T3. All subjects were tested for maximal dynamic strength (one-repetition maximum leg press and bench press), maximal isometric strength (knee extension/flexion), upper- and lower-body explosive power (6 x 10-s sprints on a cycle ergometer), and lower-extremity functional ability (timed sit-stand test and tandem gait test). Body composition was assessed via hydrostatic weighing, and blood samples were obtained to assess renal and hepatic responses and muscle creatine concentrations. No significant increases in any performance measures were observed from T1 to T2 with the exception of isometric right-knee flexion in the placebo group indicating stability in the testing protocols. Significant group-by -time interactions indicated the responses from T2 to T3 were significantly greater (P <or= 0.05) in the creatine compared with the placebo group, respectively, for body mass (1.86 and -1.01 kg), fat-free mass (2.22 and 0.00 kg), maximal dynamic strength (7-8 and 1-2%), maximal isometric strength (9-15 and -6 to 1%), lower-body mean power (11 and 0%), and lower-extremity functional capacity (6-9 and 1-2%). No adverse side effects were observed. These data indicate that 7 d of creatine supplementation is effective at increasing several indices of muscle performance, including functional tests in older men without adverse side effects. Creatine supplementation may be a useful therapeutic strategy for older adults to attenuate loss in muscle strength and performance of functional living tasks.
Article
Creatine (Cr) supplementation has yielded inconsistent results when applied to competitive swimming. To further define the role of Cr, we tested the hypothesis that a Cr supplementation group of Division III swimmers would demonstrate enhanced performance when compared with placebo. In order to test this hypothesis, 8 male and 7 female collegiate Division III swimmers were assigned in a random, double-blind manner into either a Cr supplementation group (0.3 g Cr.kg(-1) body mass) or a placebo group. Loading was maintained for 5 days followed by a 9-day period where Cr-supplemented subjects consumed 2.25 g Cr regardless of body weight. A 50- and 100-yd sprint was performed prior to and following the supplementation regimens. The Cr supplementation group decreased their finish times in both the 50- and 100-yd sprints. Support of the hypothesis suggests that Cr supplementation for swimming events is effective for singular effort sprints of 50 and 100 yd in Division III athletes.
Article
The purpose of this study was to examine the influence of short-term creatine (Cr) supplementation on exercise-induced transverse relaxation time (T2) and sprint performance during maximum intermittent cycling exercise using the muscle functional magnetic resonance imaging (mfMRI) technique. Twelve men were divided into a Cr supplementation group [the Cr group, taking 4 x (5 g Cr monohydrate + 2.5 g maltodextrin)/day], or a placebo supplementation group (the P group, taking 4 x 7.5 g maltodextrin/day). The allocation to the groups was based on cycling tests and the subject's physical characteristics, and thus was not randomized. A double-blind research design was employed for a 5-day supplementation period. mfMR images of the right thigh were collected at rest and immediately after two, five, and ten 6-s sprint bouts of maximum intermittent cycling exercise with a 30-s recovery interval between sets. Before and after supplementation, blood was taken to calculate lactate accumulation, and the muscle volume of the thigh was determined by MRI. Following supplementation, there was significant body mass gain in the Cr group ( P<0.05), whereas the P group did not change. The exercise-induced T2, blood lactate levels and sprint performance were not affected by Cr supplementation in any sprint bouts. These results suggest that short-term Cr supplementation does not influence short duration repetitive sprint performance and muscle activation and/or metabolic state during sprint cycling evaluated by mfMRI of the skeletal muscle in humans.
Article
To highlight recent data demonstrating direct anabolic effects of androgens on the mammalian skeletal muscle and review the mechanisms by which testosterone regulates body composition. Testosterone increases lean body mass and decreases fat mass in young men; the magnitude of the changes induced by testosterone in lean and fat mass are correlated with testosterone dose and the prevalent testosterone concentrations. Older men are as responsive to the anabolic effects of testosterone on the muscle as young men, but have increased frequency of adverse events with higher testosterone doses. This reciprocal change in lean and fat mass induced by androgens is best explained by the hypothesis that androgens promote the commitment of mesenchymal pluripotent cells into myogenic lineage and inhibit adipogenesis through an androgen receptor mediated pathway. Resident muscle satellite cells increase in number with testosterone administration forming myoblasts leading to greater numbers of myonuclei in larger myofibers. Testosterone administration is associated with increased size of motor neurons. The roles of 5-alpha reduction and aromatization of testosterone into dihydrotestosterone and estradiol, respectively, in mediating testosterone effects on body composition are poorly understood. Testosterone induces skeletal muscle hypertrophy by multiple mechanisms, including its effects in modulating the commitment of pluripotent mesenchymal cells. These changes in skeletal muscle lead to improved muscle strength and leg power; however, further studies are needed to determine the effects of testosterone on physical function and health-related outcomes in sarcopenia associated with aging and chronic illness.
Article
The objective of this study was to determine the effect of creatine supplementation on performance and body composition of swimmers. Eighteen swimmers were evaluated in terms of post-performance lactate accumulation, body composition, creatine and creatinine excretion, and serum creatinine concentrations before and after creatine or placebo supplementation. No significant differences were observed in the marks obtained in swimming tests after supplementation, although lactate concentrations were higher in placebo group during this period. In the creatine-supplemented group, urinary creatine, creatinine, and body mass, lean mass and body water were significantly increased, but no significant difference in muscle or bone mass was observed. These results suggest that creatine supplementation cannot be considered to be an ergogenic supplement ensuring improved performance and muscle mass gain in swimmers.
Article
To examine the efficacy of a low-dose, short-duration creatine monohydrate supplement, 40 physically active men were randomly assigned to either a placebo or creatine supplementation group (6 g of creatine monohydrate per day). Testing occurred before and at the end of 6 days of supplementation. During each testing session, subjects performed three 15-second Wingate anaerobic power tests. No significant (p > 0.05) group or time differences were observed in body mass, peak power, mean power, or total work. In addition, no significant (p > 0.05) differences were observed in peak power, mean power, or total work. However, the change in the rate of fatigue of total work was significantly (p < 0.05) lower in the creatine supplementation group than in the placebo group, indicating a reduced fatigue rate in subjects supplementing with creatine compared with the placebo. Although the results of this study demonstrated reduced fatigue rates in patients during high-intensity sprint intervals, further research is necessary in examining the efficacy of low-dose, short-term creatine supplementation.
Article
Muscle power and strength decrease with age leading to reduced independence and increased health risk from falls. Creatine supplementation can increase muscle power and strength. The purpose of this study was to examine the effects of 7 days of creatine supplementation on body composition, muscular strength, and lower-body motor functional performance in older women. Thirty 58-71 year old women performed three test sessions (T1-T3) each separated by one week. Each session consisted of one repetition maximum tests for bench press and leg press, and isometric hand-grip, tandem gait, upper-body ergometer, and lower-body ergometer tests. Following T2, subjects were assigned to a creatine monohydrate (0.3 g kg body mass(-1) for 7 days) (CR: 63.31 +/- 1.22 year, 160.00 +/- 1.58 cm, 67.11 +/- 4.38 kg) or a placebo (PL: 62.98 +/- 1.11 year, 162.25 +/- 2.09 cm, 67.84 +/- 3.90 kg) supplementation group. CR significantly (P < 0.05) increased bench press (1.7 +/- 0.4 kg), leg press (5.2 +/- 1.8 kg), body mass (0.49 +/- 0.04 kg) and fat free mass (0.52 +/- 0.05) and decreased completion time on the functional tandem gait tests from T2-T3. No significant changes were found for PL on any of the measured variables. No adverse side-effects were reported by either group. Short-term creatine supplementation resulted in an increase in strength, power, and lower-body motor functional performance in older women without any adverse side effects.
Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance
  • W Anomasiri
  • S Sanguanrungsiirikul
  • P Saichandee
ANOMASIRI, W.; SANGUANRUNGSIIRIKUL, S. & SAICHANDEE, P. (2004). Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance. Journal of the Medical Association of Thailand, 87: 228-232.
Creatine supplementation improves muscular performance in older women
  • L A Gotshalk
  • W J Kraemer
  • M A Mendonca
  • G L Vingren
  • A M Kenny
  • S A Barry
  • D L Hatweld
  • M S Fragala
  • J S Volek
GOTSHALK, L.A.; KRAEMER, W.J.; MENDONCA, M.A.; VINGREN, G.L.; KENNY, A.M.; BARRY, S.A.; HATWELD, D.L.; FRAGALA, M.S. & VOLEK, J.S. (2008). Creatine supplementation improves muscular performance in older women. European Journal of Applied Physiology, 102: 223-231.
Effects of a multi-nutrient supplement on exercise performance and hormonal responses to resistance exercise
  • W J Kraemer
  • D L Hatweld
  • B A Spiering
  • L Jakob
  • M S Vingren
  • J H Fragala
  • J V Volek
  • J M Anderson
  • C M Maresh
KRAEMER, W.J.; HATWELD, D.L.; SPIERING, B.A.; JAKOB, L.; VINGREN, M.S.; FRAGALA, J.H.; VOLEK, J.V.; ANDERSON, J.M. & MARESH, C.M. (2007). Effects of a multi-nutrient supplement on exercise performance and hormonal responses to resistance exercise. European Journal of Applied Physiology, 101: 637-646.
Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training
  • S Olsen
  • P Aagaard
  • F Kadi
  • T Goran
  • V Julien
  • L Olsen
  • S Charlotte
  • M Kjaer
OLSEN, S.; AAGAARD, P.; KADI, F.; GORAN, T.; JULIEN, V.; OLSEN, L.; CHARLOTTE, S. & KJAER, M. (2006). Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. Journal of Physiology, 573: 525-534.