ArticlePDF Available

Abstract and Figures

Teachers, from primary schools to college, experience challenges regarding both increased class sizes and a greater diversity of students having a broad spectrum of abilities, interests, needs, and goals. The aim of this paper is to investigate the effect of cooperative learning through Cooperative Problem-Solving (CPS) activities on homogenous and heterogeneous grouping in an engineering course. As a mixed method design, the study utilized both quantitative and qualitative data. The participants, 47 engineering students selected conveniently, were enrolled in a communication systems course. The analysis of the quantitative data indicated that no significant difference (p= .791) exists between the ways in which the students in homogenous and the students in heterogeneous group understand communication systems. In order to reveal the perceptions of students regarding the implementation, they were interviewed at the end of the semester. The qualitative data obtained from these interviews suggests that students prefer heterogeneous to homogenous grouping. The findings also imply that further research should concentrate on heterogeneous grouping strategies and more detailed qualitative data in order to reveal what kind of patterns emerge from students’ interactions in different groupings.
Content may be subject to copyright.
999
Heterogeneity in Classes:
Cooperative Problem-Solving
Activities through Cooperative
Learning
Ceyhan Cigdemoglu1, Kamil Yavuz Kapusuz2 and Ali Kara2
1 Department of Educational Sciences, Atılım University
2 Department of Electrical and Electronics Engineering, Atılım University
Abstract
Teachers, from primary schools to college, experience challenges regarding both
increased class sizes and a greater diversity of students having a broad spectrum
of abilities, interests, needs, and goals. The aim of this paper is to investigate the
effect of cooperative learning through Cooperative Problem-Solving (CPS) activities
on homogenous and heterogeneous grouping in an engineering course. As a
mixed method design, the study utilized both quantitative and qualitative data.
The participants, 47 engineering students selected conveniently, were enrolled in a
communication systems course. The analysis of the quantitative data indicated that
no significant difference (p= .791) exists between the ways in which the students in
homogenous and the students in heterogeneous group understand communication
systems. In order to reveal the perceptions of students regarding the implementation,
they were interviewed at the end of the semester. The qualitative data obtained from
these interviews suggests that students prefer heterogeneous to homogenous grouping.
The findings also imply that further research should concentrate on heterogeneous
grouping strategies and more detailed qualitative data in order to reveal what kind
of patterns emerge from students’ interactions in different groupings.
Key words: cooperative learning; cooperative problem-solving; engineering education;
within-class grouping.
Introduction
Cooperative learning is a way of learning where students work together in small
groups to achieve a task so that they could improve both their own learning and
Croatian Journal of Education
Vol.16; No.4/2014, pages: 999-1029
Preliminary communication
Paper submitted: 1st August 2013
Paper accepted: 1st July 2014
doi: 10.15516/cje.v16i4.1019
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1000
contribute to their group members’ learning (Johnson et al., 1998; Johnson, 2000). The
term “cooperative learning” is more than a generic term used to describe any teaching
approach in which students work in groups. It obviously covers much more than any
instructional technique in the classroom using interaction among students. During
cooperation on the given task, individuals seek the most beneficial outcome not only
for themselves, but also for the members of their group. Working in groups provides
students with a learning environment in which social interdependence and/or mutual
dependence is achieved rather than regarding it as mere competition. Previous research
has shown that cooperative learning enhances academic achievement (Johnson et al.,
1986; Slavin, 1995), motivation, and social-communication skills (Johnson & Johnson,
1999; Johnson et al., 2000). The way social interdependences are structured among
group members is the determinant of the types of interactions which have impact
on students’ achievements. Cooperation and positive interdependence among group
members result in more interaction, thus facilitating learning and communication
skills.
A considerable number of studies have been conducted on cooperative learning, of
which a great majority emphasizes that it favours students’ achievement more than
other approaches (Johnson et al., 1986; Johnson et al., 2000; Slavin, 1995; Springer et
al., 1999). For example, Springer et al. (1999) revealed that, for undergraduate students,
small-group learning is very effective. In line with such a conclusion, Felder and
Brent (2003) also extended the positive outcomes of cooperative learning to higher
education. Terenzini et al. (2001) compared the characteristics of cooperatively-taught
students with those taught in the traditional way, stating that the characteristics of
the former group are as follows: high academic achievement, high-level reasoning,
advanced critical thinking skills, better understanding of concepts, a low level of
anxiety and stress, more positive and supportive relationships with peers, positive
attitudes toward subject matter, higher self-esteem, and greater persistence through
graduation. That is, working in a group through cooperation is usually a very effective
teaching approach at all educational levels, from primary schools to universities.
Cooperative Problem-Solving (CPS) can be employed through cooperative learning
in order to increase effectiveness in the learning process, students’ achievement, and
social interaction in the class. As a relatively new concept in cooperative learning,
CPS can also be referred to as group problem-solving, and one which is quite new in
engineering education. There are limited number of studies regarding the application
of this concept, most of which are related to how cooperative problem-solving can be
implemented effectively in language education (Adodo & Agbayewa, 2011; Milrood,
2002). As the learning styles of students differ across the fields (engineering or
language), the strategies that are most effective in learning will probably differ as well
(Dunn, 1989). The CPS strategy may result in different outcomes in engineering; that
is, it may involve the possibility of constructing a platform for a better understanding
of concepts along with better student communication and reasoning skills.
1001
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
A critical decision for teachers is to determine how to group their students in these
learning environments since students have diverse abilities, backgrounds, needs,
interests, and goals (Lou et al., 2000). Thus, the question of the most effective grouping
still needs to be investigated in different fields. Among the papers published, Johnston
(2005), Bolton (1999), Vik (2011), Brewer and Mendelson (2003), Michaelon (2003),
Holtham, Melville, and Sodhi (2006), and Maples (1988) provide remarkable guidelines
on effective group formation, group management, and assessment strategies. Many
case studies have also reported how an efficient group work could be achieved by
introducing the results of practices along with quantitative measurements. Although
the most effective group formation in standard group work is still open to discussion,
group formation based on mixed-learning abilities (skills or levels) or same learning
abilities may still work positively for cooperative problem-solving (CPS) activities in
engineering classes. The aim in CPS activities is to reach the complete solution to a
problem, along with enhancing interaction among learners, in order to improve their
cognitive or affective characteristics. Therefore, further investigation into grouping
strategies in the engineering field should be carried out with CPS activities.
In classes with a homogenous student profile, learners’ levels of knowledge,
learning ability or potential learning ability are all assumed to be very similar. On the
other hand, a non-homogeneous or heterogeneous class (the concept referred to as
‘heterogeneity in classes’) is the one in which students’/learners’ levels are dissimilar
(different knowledge or background, different learning abilities or motivation level,
etc.) (Milrood, 2002; Pospisilova, 2008). The concept of heterogeneity in classes has
been studied extensively in primary and secondary schools, but not at higher levels -
and - certainly not in engineering education. In Turkey, a large number of universities
that offer scholarships to some of their students encounter quite different students
profiles in the same classrooms. Such a situation causes extreme heterogeneity in many
engineering classes. Having the problem of such extremely heterogeneous students
within the same class, the researchers need to investigate effective grouping strategies
with the implementation of CPS activities.
A meta-analysis study by Lou et al. (1996) on within-class grouping suggests that
the effects of group composition depend on the ability of students. Heterogeneous
groups are more beneficial for low-ability students, whereas average-ability individuals
perform better in homogenous groups. High-ability students perform well in both
groups. Also, high-ability learners studying with low-ability peers are more active in
speaking and more helpful (Jones & Carter, 1994). Saleh et al. (2007) propose that
high-ability students tend to accept the role of a teacher in the groups, and that this
peer tutoring fosters better learning for low-ability students. Low-ability learners
can get more support from more capable peers (Hooper & Hannafin, 1991). Thus,
learners can help each other in heterogeneous groups (Slavin, 1989). Barg and Schull
(1980) argue that providing explanations to low-achieving partners by high-achieving
students results in creating richer constructions due to cognitive restructuring. These
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1002
processes let learners detect and repair misconceptions and gaps in knowledge (Webb
& Palinscar, 1996). Heterogeneous grouping also provides opportunities for these
different-ability learners to share multiple views as well as diverse experiences (Brophy,
2004; Singhanayok & Hooper, 1998).
Friendship also plays an important role in group interactions. When the group
consists of friends, students have higher motivation to accomplish tasks and show
more responsibility for their learning (Abrami et al., 1995). Students in cohesive
groups are more likely to assist others during learning activities (Sharan & Sharan,
1992). Members in a homogenous group can also study at a similar pace (Kulik &
Kulik, 1987).
As has previously been mentioned, in engineering education, studies incorporating
both homogenous and heterogeneous group formations are limited. Cooperative
problem- solving (CPS) can be employed in extremely heterogeneous classes in
order to increase effectiveness in the learning process and uplift students’ academic
achievement in the class. Therefore, the study reported in this article has a potential
to contribute to the literature by revealing the effectiveness of cooperative problem-
solving (CPS) on students’ understanding in homogenous and heterogeneous groups.
Specifically, this study aims to answer the following research questions: (1) What
is the effect of cooperative problem-solving activities (CPS) through cooperative
learning on homogenous and heterogeneous groups of junior electrical and electronics
(EE) students’ understanding of communication systems?, (2) Is there a difference
between the understanding of low achievers, average achievers, and high achievers
in homogenous and heterogeneous groups?, (3) How do students perceive the CPS
activities and the process?
Method and Procedure
Design
Fraenkel and Wallen (2000) describe experimental research as the best way of
building cause-effect relationship between variables among other types of research
designs. In line with the purpose of the present study, a mixed method is utilized.
Experimental research methodology was used for the quantitative part; the interviews
were conducted in order to collect qualitative data. In order to compare the effect of
CPS implementation on the understanding of communication systems among the
students in homogenous versus heterogeneous group, the students were purposely
assigned to groups. Based on their achievement level (high, average, and low), students
were selected and assigned to homogenous or heterogeneous groups randomly. The
research design of the study is presented in Table 1.
The homogenous and heterogeneous groups took the same test regarding the pre-
conceptions that constitute the base for the understanding of communication systems
concepts. This test was administered to the students before the implementation. As
seen in Table 1, the students in both the homogeneous (HG) and heterogeneous
1003
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
groups (HtG) were exposed to cooperative learning through cooperative problem-
solving activities (CPS). During the implementation, each group was expected to solve
8 different CPS activities. The activities took approximately an hour. Throughout
the semester, the students had taken 2 different midterm exams and at the end of
the semester they took the final test (UCST) which was created with the purpose
of revealing students’ understanding of communication systems. At the end of the
semester the focus group interviews were conducted to reveal students’ perceptions
of CPS activities and the process.
Table 1
Experimental Design
Groups Pre-test Implementation Post-Test
Homogenous Pre-Con CPS UCST
Heterogeneous Pre-Con CPS UCST
Pre-Con: Pre-conceptions for communication systems test, CPS: Cooperative problem-solving, UCST:
Understanding of communication systems test.
Sample
The students who participated in this study were enrolled to communication
systems course, a “core curriculum course” for third year Electrical and Electronics
Engineering department students in a foundation university. There were 47 students,
9 of which were female and 38 were male. The age range of the students was between
20 and 25. The sample was selected conveniently since one of the researchers was
offering the course, and the CPS activities were piloted in communication systems
course during the previous semester. Based on the aim to reveal the students’ ideas
about the implementation, all students were interviewed as focus groups at the end of
the semester. There were almost 6 students with varying ability levels (high, average,
and low) in the focus group.
Procedure
Heterogeneity in Classes; Group Formation
Students took the standardized test for the admission to higher education in Turkey
which is administered by the Student Selection and Placement Center (ÖSYM). Within
the Turkish education system, the only way to enter a university is through this exam.
Almost 1,700,000 high school graduates take the exam each year. It is a multiple choice
exam with five choices. Students choose universities (state or foundation) through the
centralized placement system that includes a two-stage process: a common university
entrance exam followed by placement. Students fill a placement form to choose
the universities and departments according to their scores achieved on the exams
they had taken. The private, or ‘foundation’, universities in Turkey are non-profit
organizations which provide partial or full scholarships to students who scored high
among the students who had chosen the same department. As a result, in a typical
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1004
engineering class of most foundation universities, there may be students with no
scholarship, partial scholarship, or full scholarship. In Table 2, the maximum and
minimum scores of university entrance examination (taken from the nationwide
placement table for a popular engineering department) for a foundation university
and three state universities in a typical class are presented. The difference between the
maximum and minimum scores is more than 233 points for a foundation university,
whereas it is almost 60 points among the state universities exemplified in Table 2.
Such an extremely large difference in scores naturally causes heterogeneous classes in
foundation universities, implying that they can be quite different from those in state
universities and, consequently, different educational approaches and methodologies
should be employed to handle them successfully. The present study basically aims to
shed light on the type of group formation that students will most benefit from.
Table 2
Comparison of entrance examination scores of foundation and state universities
University Type Category (Level) Minimum Maximum Difference
Foundation
University
Full scholarship (L1) 430.1 450.8
212.6/208.3
(L4-L1)
Partial scholarship (50%) (L2) 333.6 379.7
Partial scholarship (25%) (L3) 250.4 318.4
No scholarship (L4) 217.5 242.5
State University A 403.4 445.3 41.9
State University B 408.1 468.4 60.3
State University C 382.3 425.8 43.5
Table 2 indicates categorization in foundation and state universities with minimum
and maximum placement scores and the differences between them. The information
presented in Table 2 has been taken from the official documents of Student Selection
and Placement Centre (OSYM, 2012), and the points represent the same engineering
discipline. As shown in Table 2, the difference between the maximum and the
minimum for Foundation University is 212.6 whereas the difference is almost 60 for
state universities.
In order to determine which group type is more beneficial for students in
communication systems course, homogenous and heterogonous groups were formed.
Students’ university entrance examination scores, grade point averages (GPA), and pre-
test scores (the test which was developed to reveal students pre-conceptions required
for new concept construction related to communication systems) were used to form
homogenous and heterogeneous groups. Based on these three values, each student
had an overall score and the scores of all students were sorted from top to bottom.
The students were divided into three groups: high achievers, average achievers, and
low achievers. During the implementation, the class was divided into two groups:
homogenous and heterogeneous. Homogenous groups consisted of team members
having the same achievement level whereas heterogeneous groups consisted of team
members with different achievement levels. The lectures were given in identical
1005
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
conditions (the same instructor, the same classroom, and the same instructional
materials) except for team composition. Each heterogeneous team consisted of 3
members, one having high achievement level, one having average achievement level,
and one having low achievement level. Homogeneous teams included three members
from the same achievement level. The implementation started after the formation
of teams, so each team was involved in cooperative problem-solving activities.
Throughout the semester, the students were administered two midterm exams and a
final test at the end of the semester.
Cooperative Problem-Solving (CPS) Activities
The CPS activities were introduced as a new cooperative learning tool within the
course in 2013 academic year, spring semester. In total, there were 8 CPS activities
covering all the topics covered in the course during the semester. The activities were
prepared according to the objectives of the course and during a full-hour lesson. The
instructor enriched the lesson with questioning and discussion among students as
a part of cooperative learning. After completing the lecture, the instructor assigned
a cooperative problem activity to each group. Students were allowed to use formula
sheets and any other course materials throughout the sessions. No inter-group
discussion was permitted. Figure 1 indicates a sample CPS activity employed in the
implementation.
A measured FM spectrum is shown
in Fig.1. (European Radio Remote
Laboratory System) Typically, the
spectrum of a unity amplitude FM
signal, like the one in Fig.1, can be
written as
where
fc: carrier frequency
fm: message signal frequency
β=Δf/ fm=2.0
By showing your work clearly in the
gure, determine the following:
a) Message signal frequency
b) Carrier frequency
c) Frequency Deviation
d) Bandwidth of the FM signal
shown in the gure.
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
70.000 80.000 90.000 100.000 110.000 120.000 130.000
Modulated Signal in Frequency Domain
Frequency (Hz)
Log Magnitude (Db)
Figure 1. A sample CPS activity
X(f) = Σ Jn(β)δ[f (fc + nfm)]
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1006
Each CPS activity served at least one of the learning outcomes (objectives) of the
course and mainly aimed to improve a student’s learning and problem-solving skills
on communication systems’ concepts. Especially students who had weaknesses in
learning and problem-solving were expected to benefit more from the implementation.
Each CPS activity continued for almost a full-hour lesson depending on the problem
content and the importance of the subject taught. The students solved the problem
cooperatively in the given time and each cooperative solution was graded. Each group
member received the same grade for the same CPS activity.
Instruments
Pre-conceptions for communication systems test (Pre-Con) were developed to reveal
students’ conceptions required for understanding of communication systems. There
were 14 items in the test, all of which were in an open-ended format. The test was
piloted with the students who had already taken the course. The Cronbach alpha
reliability coefficient of the test scores was found to be .84, which means that the test
is reliable. During the semester, students had taken two different midterm exams (MT1
and MT2) covering the topics included in the CPS activities. The scores obtained
from these exams constituted each student’s individual score. Understanding of
communication systems test (UCST) was developed based on the objectives of the
course. It had five items, all of which were in an open-ended format, and was piloted
with students who had already taken the course. The Cronbach alpha reliability of the
test scores was obtained as .88, and the test was administered to students individually
at the end of the semester.
Data Collection and Analysis
The study provided some quantitative data to reveal the effect of the implementation
on homogenous and heterogeneous groups. The data obtained from students’ test
scores and students’ demographic features were entered to Predictive Analytics
Software (PASW) Statistics 18. For each student, an overall collective score was
calculated based on the mid-term exams (MT1 and MT2) and final exam (UCST)
grades. Additionally, students took 8 CPS activities and were graded for each. This
overall collective score and overall CPS scores served as the dependent variables
of the study. Prior to implementation, students’ Pre-Con test scores were used to
compare the homogenous and heterogeneous groups. If there was a difference at
the beginning, it would serve as a covariate for further analysis. The group type
(homogenous/heterogeneous) and students’ achievement level (high/average/low)
were two independent variables used in the analysis.
In order to reveal what students think about CPS activities, a sequence of interviews
with more than 40 students was conducted (focus group interviews) at the end
of the implementation. Researchers conducted the interviews and each session
took approximately 20 minutes. The interview question was structured. However,
1007
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
researchers usually clarified and directed follow-up questions to probe unclear
statements or responses.
Results and Discussion
Statistical Analysis of Pre-test Scores
Before the treatment, independent sample t-tests were used to determine if a
statistically significant mean difference exists between the students of homogenous
and heterogeneous groups with respect to their pre-conception test scores. Then, the
statistical analyses were conducted at .05 significance level with SPSS 18 program.
The descriptive statistical data based on the pre-tests scores is reported in Table 3.
Table 3
Descriptive statistics for Pre-Con scores
Test N Mean Std Dev
HG HtG HG HtG HG HtG
Pre-Con 22 25 47.861 40.295 33.121 31.084
N: Sample size, HG: Homogenous group, HtG: Heterogeneous group
As seen in Table 3, HGs have a mean score of 47.861 whereas HtGs have a mean
score of 40.295. The results of t-test analysis are given in Table 4.
Table 4
Independent-samples t-tests for Pre-Con scores
t df P
Pre-Con .744 45 .462
Table 4 indicates that the mean difference of homogenous groups (HGs) (M= 47.861,
SD= 33.121) and heterogeneous groups (HtG) (M= 40.295, SD= 31.084) was not
statistically significant with respect to Pre-Con scores, t (45) = .744, p > 0.05. Hence,
one can conclude that HGs and HtGs are equal on their pre-conceptions related to
communication system concepts. Such a result means that, if a difference is observed
at the end of implementation, it can be attributed to the CPS, not the prior differences.
The effect of cooperative problem-solving strategy on HG and HtG junior electrics
and electronic students’ understanding of communication systems was measured by
CPS activities, midterm exams (MT1 and MT2), and a final test (UCST). Students
overall CPS scores and overall collective scores (final test and midterm exams
combined) constituted dependent variables, while the students’ groups (HG, HtG)
and achievement levels (high, average, low) were the independent variables. The
Multivariate analysis of variance (MANOVA) was computed to see whether the
difference was significant. The assumptions of MANOVA (sample size, normality,
outliers, multi-collinearity and singularity, and homogeneity of variance/covariance
matrices) were controlled before the analysis and no violation was observed.
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1008
Table 5
MANOVA results based on the overall CPS scores and overall collective scores
Source Wilks’ Lambda F Sig. (p)
Group Type .963 .770 .470
According to MANOVA output (see Table 5), the first research question is answered.
The results given in Table 5 indicate that HG and HtG have no statistically significant
mean difference based on the collective dependent variables of overall CPS scores
and Final scores (UCST) F (2, 45) = .770, p = .470; Wilks’ Lambda = .963. Such
numbers imply that students in both homogenous and heterogeneous groups did
not have any significant difference with respect to CPS and overall collective scores
after CPS implementation. Such results are different from the findings of Adodo
and Agbayewa (2011) which revealed that homogeneous ability-level grouping is
superior for promoting students’ learning outcomes. Also, Melser (1999) studied
cooperative learning and grouping strategies with gifted students and found that
both heterogeneous and homogeneous groups did improve reading achievement.
Similarly to the findings of Adodo and Agbayewa (2011), Melser (1999) concluded
that the heterogeneous group had an average increase of two points in the reading
post-test, while the homogeneously-grouped students had an increase of 2.64 points
on the same reading post-test. Although Melser (1999) did not conduct inferential
statistics, the findings are controversial to those obtained in the present study. The
possible reasons behind that fact may be attributed to the age level of students and/
or the course type. As given in the related literature, the majority of the studies were
conducted with primary or secondary level students, which is not the case in this study.
The answer to the following research question was investigated - the difference
between the level of understanding exhibited by homogenous low-, average- and high-
ability students and heterogeneous low-, average- and high-ability students - when
exposed to CPS implementation. For this analysis, students’ mid-term and final exam
scores were taken together as a dependent variable. A two-way Analysis of Variance
(2-way ANOVA) was performed, with Table 6 reflecting the descriptive statistics for
the analysis.
For each student, the midterm and final exam scores (overall collective score) were
taken together and their mean values are reported in Table 6. These two scores were
taken together since students answered these tests individually; that is, each student
has his/her own score. As the table indicates, the highest difference exists between the
low-level students of homogenous and heterogeneous groups. In addition, the average
students’ mean scores across the groups were relatively similar. Although one can
easily detect variability in the mean scores of within-class grouping on the students
achievement, further analysis was conducted to reveal whether such difference was
significant or not. The test of between subjects effect (Table 7) indicates which variable
had a significant impact on the students’ understanding of the communication systems
course.
1009
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
Table 6
Descriptive statistics based on students’ level and group type
Level Group Type Mean Std. Deviation N
High
Homogenous
Heterogonous
Total
38.8219
35.2607
37.1600
17.1437
17.2057
16.6496
7
8
15
Average
Homogenous
Heterogonous
Total
23.3125
24.4969
23.9893
18.2391
10.2145
13.5830
6
8
14
Low
Homogenous
Heterogonous
Total
9.2063
14.7150
12.2667
7.2251
8.3541
8.1472
8
10
18
Total
Homogenous
Heterogonous
Total
23.8227
23.5980
23.7032
19.0195
14.2629
16.4713
22
25
47
Table 7
Two-way ANOVA results based on dependent variable.
Dependent Variable df1 F Sig. (p) Eta Squared Power
Level
Group type
Level*Group type
MT+UCST 2 12.673 .000 .381 .103
MT+UCST 1 .58 .791 .001 .076
MT+UCST 2 .931 .402 .043 .118
In this way the second research question was answered (see Table 7). Table 7
illustrates that level (high, average, and low) has a significant effect on the students
achievement scores obtained from their midterm and final exam (UCST) score; F
(2, 45) = 12.673, p = .000. However, the group type (homogenous or heterogeneous)
has no effect on students achievement; F (1, 45) = .58, p = .812. These findings are
consistent with the meta-analysis study by Lou et al. (1996) which states that within-
class grouping suggests that the effects of group composition depend on the ability of
students. Similar to the findings of the current study, they revealed that heterogeneous
groups are more beneficial for low-ability students. As for our average students, the
findings are again consistent with Lou et al. (1996), who concluded that average-ability
individuals perform better in homogenous groups, as found in our study. The level of
understanding is relatively higher for low-ability learners when compared to average
and high level students. Such a result is supported by Hooper and Hannafin (1991)
who revealed that low-ability students can get more support from more capable peers.
Thus, it can obviously be claimed that learners can help each other in heterogeneous
groups (Slavin, 1989).
Interview Results
The third research question was about the students’ perceptions of cooperative
problem-solving activities. Based on a pre-determined question, ‘What are your ideas
about the CPS implementation?’ and the probes which emerged during the process,
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1010
focus group interviews were conducted. Seven groups with almost 6 students were
interviewed at different times. Themes and codes which emerged from the students’
responses are reported in this section. The findings indicate that, in general, the
students found the CPS activities interesting and very effective in increasing their
performance throughout the course. They also made comments on how to improve
cooperative problem-solving sessions and grouping strategies.
A majority of high-ability students found that cooperative learning method and
CPS activities were appropriate and promising for them. Similarly, most high-ability
students thought that CPS activities improve the learning of communication systems’
concepts along with their revision of concepts during exams. Additionally, regardless
of being grouped as homogenous or heterogeneous, high-ability students perceived
each CPS activity as a way of developing their subject matter meaningfully. For
example, student A in a homogenous group stated: “Since we discussed the subject
matter in CPS activities, I did not forget the way of solving the problem during the
exam. Similarly to the response of student A, the student B from a heterogeneous
group described his experience in this way: “During the CPS activities, I usually talked
on the subject matter and tried to solve the problem, so, in the exam it was easy for
me to remember what we had done. Although the quantitative data indicated that
homogenous high-level students have a higher mean score than heterogeneous high-
level ones, both groups perceived CPS as beneficial and satisfactory. However, the
number of homogenous high-level students benefiting from CPS activities during the
exams was higher than heterogeneous high level students utilizing CPS activities. The
meta-analysis study of Lou et al. (1996) revealed that high-ability students perform
well in both homogenous and heterogeneous groups. In this study, the students’ views
indicated that high-ability students generally prefer to be peers with students of similar
ability. Additionally, such students, specifically in homogenous groups, stated that CPS
activities improved their skills in terms of group working.
For average-ability students, there were other concerns. Some of them thought that
they were uncommunicative throughout the course and the CPS activity, with a few
students even believing that this was about sharing the roles on the given task. Some of
the average-ability students of homogenous groups stated that their individual grades
were dissatisfactory and they were not happy with them. This may be a common
problem with the nature of average-ability group work because students in such
homogenous groups are not able to benefit from high-ability students, thus they
obtain more or less the same grades compared to their individual effort. Such kind of
criticism was also made by high-ability students in the heterogonous groups. Melser
(1999) states that all ability groups show higher academic self-confidence and self-
esteem in heterogeneous teams. Contrarily, low-ability students are generally labelled
as ‘neglected’ in heterogeneous grouping.
When it comes to the low-ability students of homogenous and heterogeneous
groups, students’ ideas about CPS activities, grading, and group work are completely
1011
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
different. For example, low-ability students in heterogonous groups enjoyed the CPS
activities and stated that the activities improved their learning and achievement.
Moreover, they insist on replacing one of the midterm exam scores with CPS scores.
Hooper and Hannafin (1991) stated that low-level students can get more support
from more capable peers in heterogeneous groups. Low-ability students grouped as
heterogeneous were specifically satisfied with their grouping. Such an outcome is
explained by Brophy (2004), and Singhanayok and Hooper (1998). They state that
heterogeneous grouping provides opportunities for different ability learners to share
multiple views as well as diverse experiences.
Contrary to the ideas of students in the heterogonous groups, low-ability individuals
in homogenous groups criticized such kind of group work. What is more, they were
dissatisfied with their grades. In general, the majority of these students found this
assessment method as ‘fair’, with three of them marking it as ‘unfair’. Most of those
perceiving the assessment as unfair were low-ability students in homogenous groups.
This finding is consistent with the finding of Melser (1999), who states that low-level
students are unmotivated to learn since they feel fear for their poor performance.
In general, all students criticized the duration of the CPS activities. They stated that
the time for any activity was not sufficient to reach the entire solution. Similarly, some
of the students wanted the instructor to provide some hints related to the solutions.
Some students also wanted the instructor to give more directions during the process.
Specifically, low-ability students in heterogeneous groups demanded more CPS
activities since they thought that these activities could improve their learning and
achievement. Some students stated that they want to form their own groups before the
activity begins. This may be due to two reasons: first, some students may be anxious
regarding the performance of their group members in the cooperative problem-
solving activities, and they may try to reduce the risk by choosing partners; second,
they may feel reluctant to study with someone randomly chosen from the classroom.
Conclusions
The concern about students’ grouping is a response to the perceived need to enhance
cognitive and affective gains, and to the difficulties some foundation universities have
been experiencing in relation to the varying entrance exam scores of students. This
study indicates that homogenous or heterogeneous grouping does not have an impact
on engineering students’ understanding of communication systems tested this study
through cooperative problem-solving (CPS) activities. On the other hand, students
level (high, average, and low) is quite related to their understanding of this particular
course through CPS activities. The study contributes to the field of engineering
education by filling the gap about which grouping pattern is the most effective in
extremely heterogeneous classes. The qualitative findings shed light on the students’
preferences of heterogeneous grouping despite no significant difference between the
groups. As Chisaka and Vakalisa (2003) stated,Heterogeneous grouping has more
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1012
to offer through strategies like co-operative learning, peer coaching and small groups
discussion all of which can be explored and used to create good social relationships
among learners of different learning abilities” (p. 180).
Although the findings indicate that homogenous or heterogeneous grouping does
not have an impact on the engineering students’ understanding of communication
systems through CPS activities, this study can guide further research towards effective
group formation based on purposes. The extreme heterogeneity in engineering classes
can be converted to an advantageous situation, in which good social relationships are
created among learners of different learning abilities. As stated by Jones and Carter
(1994), high-ability students working with low-ability peers are usually more helpful
to their friends and more active in speaking. Additionally, low-ability students in
heterogeneous groups stated that they had benefited from their high-ability friends
during the CPS activity. Such a finding is justified by Saleh et al. (2007) stating that
high-ability learners tend to accept the instructor in the groups, and that this kind of
peer tutoring fosters better learning for low-ability students. Similarly, Hooper and
Hannafin (1991) revealed that low-ability learners can get more support from more
capable peers. Therefore, it can be concluded that heterogeneous grouping is relatively
more advantageous for extreme heterogeneity in the ability of students within a
class. Slavin (1989) supports this idea by stating that learners can help each other in
heterogeneous groups more than that of homogenous groups. Moreover, Barg and
Schull (1980) emphasize that giving explanations to low-ability peers by high-ability
partners results in richer knowledge constructions due to cognitive restructuring.
There should be various approaches that need to be developed towards increasing
learning effectiveness in heterogeneous classes. When students’ perceptions are
taken into consideration, it can be implied that cooperative problem-solving (CPS)
activities enriched with cooperative learning could be an instructional method to
encounter didactical issues in heterogeneous classes and improve learning effectively.
The utilization of CPS in heterogeneous classes is a relatively untouched field in
engineering education. Only a limited number of attempts without details, specifically
for the first-year students are available in the literature. The methodologies that
integrate heterogeneous group work seem to make students more satisfied when
compared to homogenous group work. In such kind of instruction, varying ability
learners will be able to share their views and experiences.
The effects of within-class ability grouping are not the same in every context and
methodology; thus, future studies need to discover how these effects come about
in order to improve student productivity and reduce inequality in communication
and grading. Different heterogeneous group formation strategies can be employed
to find the best way for enhancing the quality of learning. Although a small sample
size is considered to be a limitation for such an experimental study enriched with
qualitative data, the findings shed light on within-class grouping strategies for
extremely heterogeneous classrooms. Additionally, future work can focus on CPS
1013
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
activities designed for different courses and different engineering departments, even
different universities. The quantitative and qualitative data regarding the students’
preference of heterogeneous grouping can guide our further research to concentrate
on heterogeneous grouping strategies and more detailed qualitative data in order to
reveal what kind of patterns emerge from different groups.
Acknowledgment
This work was supported by ATILIM University under the BAP grant (ATU-
BAP-A-1213-08). We wish to express our deepest gratitude to Erol Ozcelik, PhD
and Nergiz Ercil Cagıltay, PhD, for their advice, support and insightful comments
throughout the entire project.
References
Abrami, P.C., Chambers, B., Poulsen, C., De Simone, C., d’Apollonia, S., & Howden, J. (1995).
Classroom connections: Understanding and using cooperative learning. New York: Harcourt
Brace.
Adodo, S.O., & Agbayewa, J.O. (2011). Effect of homogenous and heterogeneous ability
grouping class teaching on student’s interest, attitude and achievement in integrated
science. International Journal of Psychology and Counselling, 3(3), 48-54.
Bargh, J., & Schul, Y. (1980). On the cognitive benefits of teaching. Journal of Educational
Psychology, 72, 593–604.
http://dx.doi.org/10.1037/0022-0663.72.5.593
Bolton, M. K. (1999). The role of coaching in student teams: A “Just-in-Time” approach
to learning. Journal of Management Education, 23(3), 233-250.
http://dx.doi.
org/10.1177/105256299902300302
Brewer, W., & Mendelson, M.I. (2003). Methodology and metrics for assessing team
effectiveness. International Journal of Engineering Education, 19(6), 777-787.
Brophy, J. (2004). Motivating students to learn (2nd ed.). Boston: Massachusetts: McGraw-Hill.
Chisaka, B.C., & Vakalisa, N.C.G. (2003). Some effects of ability grouping in Harare
secondary schools: A case study. South African Journal of Education, 23(3), 176-180.
Dunn, R., Jeffrey, S.B., & Klavas, A. (1989). A survey of research on learning styles. Educational
Leadership, 50-58.
Felder, R.M., & Brent, R. (2003). Designing and teaching courses to satisfy the ABET
engineering criteria. Journal of Engineering Education, 92(1), 7-25.
http://dx.doi.
org/10.1002/j.2168-9830.2003.tb00734.x
Felder, R.M., & Brent, R. (2005). Understanding student differences. Journal of Engineering
Education, 94(1), 57-72.
http://dx.doi.org/10.1002/j.2168-9830.2005.tb00829.x
Fraenkel, J.R., &, Wallen, N.E. (2001). How to design and evaluate research in education. New
York: McGraw-Hill.
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1014
Holtham, C.W., Melville, R.R., & Sodhi, M.S. (2006). Designing student group work in
management education: Widening the palette of options. Journal of Management Education,
30(6), 809-817.
http://dx.doi.org/10.1177/1052562906287967
Hooper, S., & Hannafin, M.J. (1991). The effects of group composition on achievement,
interaction, and learning efficiency during computer-based cooperative instruction.
Educational Technology Research and Development, 39, 27–40.
http://dx.doi.org/10.1007/
BF02296436
Johnson, D.W. & Johnson, R.T. (1999). Learning together and alone: cooperative, competitive,
and individualistic learning. Boston: Allyn & Bacon.
Johnson, D.W., Johnson, R.T. & Holubec, E. (1986). Revised circle of learning: Cooperation in
the classroom. Minnesota: Interaction Book Company.
Johnson, D.W., R.T. Johnson, & Smith, K.A. (1998). Active learning: Cooperation in the college
classroom (2nd ed.). Edina, MN: Interaction Book Company.
Johnson, D. W., Johnson, R. T., & Stanne, M. B. (2000). Cooperative learning methods: A meta-
analysis. Minneapolis, MN: University of Minnesota.
Johnston, T.C. (2005). Roles and responsibilities in team projects. Journal of College Teaching
& Learning, 2(12), 59-70.
Jones, M.G., & Carter, G. (1994). Relationship between achieving-paired interactions and the
development of fifth-graders’ concepts of balance. Journal of Research in Science Teaching,
31(6), 603–620.
http://dx.doi.org/10.1002/tea.3660310604
Kulik, J.A., & Kulik. C.L.C. (1987). Effects of ability grouping on student achievement. Equity
and Excellence, 23, 22-30.
http://dx.doi.org/10.1080/1066568870230105
Lou, Y., Abrami, P.C., Spence, J.C., Poulson, C., Chambers, B. & d Apollonia, S. (1996). Within-
class grouping: A meta-analysis. Review of Educational Research, 66, 423–458.
http://dx.doi.
org/10.3102/00346543066004423
Melser, N. A., (1999). Gifted students and cooperative learning: A study of grouping
strategies, Roeper Review, 21(4), 315-315.
http://dx.doi.org/10.1080/02783199909553983
Michaelson, R. (2003). Assessing Group Work. Briefing paper for LTSN-BEST /online/.
Retrieved on April 17, 2007 from http://www.business.heacademy.ac.uk/publications/
misc/briefing/gruupwork/assessing%20group%20work%20-%20michaelson.pdf.
Millrood, R. (2002). Teaching heterogeneous classes. Journal of ELT, 56(2), 128-136.
http://
dx.doi.org/10.1093/elt/56.2.128
OSYM, (2012). Official OSYS Tables /online/. Retrieved on September 5, 2012 from http://
www.osym.gov.tr/dosya/1-60822/h/tablolar-ve-kosullart-3at3b-t4-24-9-2012.pdf
Pospisilova, R. (2008). Teaching in Heterogeneous Classes (Unpublished master’s thesis).
University of Masaryk, Brno, Czech Republic.
Saleh, M., Lazonder, A.W., & De Jong, T. (2005).
Effects of within-class ability grouping on
social interaction, achievement and motivation.
Instructional Science, 33, 105-119.
http://
dx.doi.org/10.1007/s11251-004-6405-z
Springer, L., Stanne, M.E., & Donovan, S.S. (1999). Effects of small-group learning
on undergraduates in science, mathematics, engineering, and technology:
A meta-analysis. Review of Educational Research, 69(1), 21-51.
http://dx.doi.
org/10.3102/00346543069001021
1015
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
Sharan, Y., & Sharan, S. (1992). Expanding cooperative learning through group investigation.
New York: Teachers College Press.
Singhanayok, C., & Hooper, S. (1998). The effects of cooperative learning and learner control
on student’s achievement, option selections, and attitudes. Educational Technology Research
and Development, 46(2), 17–33.
http://dx.doi.org/10.1007/BF02299787
Slavin, R.E. (1989). Cooperative learning and student achievement. In R. E. Slavin (Ed.),
School and classroom organization (pp. 129–156). Hillsdale, NJ: Erlbaum.
Slavin, R.E. (1995). Cooperative learning: Theory, research, and practice. Boston: Allyn Bacon.
Terenzini, P.T., Cabrera, A.F., Colbeck, C.L., Parente, J., & Bjorklund, S. (2001). Collaborative
learning vs. lecture/discussion: Students’ reported learning gains. Journal of Engineering
Education, 90(1), 123–130.
http://dx.doi.org/10.1002/j.2168-9830.2001.tb00579.x
Vik, G.N. (2011). Doing more to teacher teamwork than telling student to sink or swim.
Business Communication Quarterly, 62(4), 112-119.
Webb, N.M., & Palinscar, A.S. (1996). Group processes in the classroom. In D.C. Berliner
& R.C. Calfee (Eds.), Handbook of Educational Psychology (pp. 841-873). New York:
MacMillan.
Ceyhan Cigdemoglu
Department of Educational Sciences, Atılım University
Kızılcaşar District, 06836 İncek Gölbaşı, Ankara, Turkey
ceyhan.tas@gmail.com
Kamil Yavuz Kapusuz
Department of Electrical and Electronics Engineering, Atılım University
Kızılcaşar District, 06836 İncek Gölbaşı, Ankara, Turkey
kapusuz.kyavuz@gmail.com
Ali Kara
Department of Electrical and Electronics Engineering, Atılım University
Kızılcaşar District, 06836 İncek Gölbaşı, Ankara, Turkey
akara@atilim.edu.tr
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1016
Heterogenost u nastavi:
aktivnosti suradničkog rješavanja
problema u sklopu suradničkog
učenja
Sažetak
Nastavnici, bez obzira na to rade li u osnovnim školama ili na fakultetu, nailaze
na izazove koji su povezani i s povećanim brojem učenika u razredima, kao i sa
sve većom raznolikošću učenika koji imaju širok spektar sposobnosti, interesa,
potreba i ciljeva. Cilj je ovog rada ispitati učinak suradničkog učenja primjenom
aktivnosti suradničkog rješavanja problema u homogenim i heterogenim
skupinama u inženjerskom usmjerenju. Zamišljeno kao istraživanje koje uključuje
mješovite metode, ovo istraživanje koristilo se i kvantitativnim i kvalitativnim
podacima. Sudionici u istraživanju, 47 prikladno odabranih studenata inženjerskog
usmjerenja, upisali su kolegij Komunikacijski sustavi. Analiza kvantitativnih
podataka pokazala je da ne postoji značajna razlika (p=.791) u načinima na koje
studenti u homogenim i studenti u heterogenim skupinama poimaju komunikacijske
sustave. Da bi se utvrdila opažanja studenata u vezi s implementacijom, s njima
su na kraju semestra provedeni intervjui. Kvalitativni podaci koji su dobiveni tim
intervjuima upućuju na to da studenti više vole heterogene skupine nego homogene
skupine. Rezultati također upućuju na potrebu provođenja daljnjih istraživanja
koja bi se usredotočila na strategije heterogenog grupiranja i detaljnije kvalitativne
podatke da bi se utvrdilo kakvi se obrasci javljaju u interakciji studenata u različito
formiranim skupinama.
Ključne riječi: grupiranje unutar skupine; obrazovanje u području inženjerstva;
suradničko rješavanje problema; suradničko učenje
Uvod
Suradničko je učenje metoda učenja u kojoj učenici rade zajedno u manjim grupama
da bi riješili zadatak i na taj način poboljšali vlastito učenje i da bi doprinijeli boljem
učenju članova svoje skupine (Johnson i sur., 1998; Johnson, 2000). Termin „suradničko
učenje“ više je nego generički termin koji se koristi za opisivanje bilo kojeg nastavnog
pristupa u kojem učenici rade u skupinama. Taj termin očito uključuje mnogo više
1017
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
nego bilo koja nastavna tehnika koja se u razredu koristi interakcijom između učenika.
Tijekom suradnje na rješavanju zadanog zadatka pojedinci pronalaze najbolje rješenje
i rezultat ne samo za sebe nego i za članove svoje skupine. Rad u skupinama pruža
učenicima takvo okružje za učenje u kojem se postiže društvena međuovisnost i/ili
međusobna ovisnost, a kod učenika se ne stvara osjećaj da takav rad treba smatrati
pukim natjecanjem. Prijašnja su istraživanja pokazala da suradničko učenje povećava
stupanj akademskih postignuća (Johnson i sur., 1986; Slavin, 1995), motivaciju i
društveno-komunikacijske vještine (Johnson i Johnson, 1999; Johnson i sur., 2000).
Način na koji su društvene međuovisnosti strukturirane između članova skupine
određuje i vrste interakcije koje imaju utjecaj na postignuća učenika. Suradnja i
pozitivna međuovisnost između članova skupine rezultira većom interakcijom i tako
olakšava učenje i komunikacijske vještine.
Proveden je znatan broj istraživanja o suradničkom učenju. U većini tih istraživanja
naglašena je činjenica da takvo učenje pogoduje postignućima učenika više nego bilo
koji drugi pristup (Johnson i sur. 1986; Johnson i sur., 2000; Slavin, 1995; Springer i
sur., 1999). Na primjer, Springer i sur. (1999) došli su do spoznaje da je za studente na
dodiplomskim studijima najučinkovitije učenje u malim skupinama. U skladu s tim
zaključkom Felder i Brent (2003) su proširili pozitivne rezultate suradničkog učenja
i na visoko obrazovanje. Terenzini i sur. (2001) usporedili su karakteristike studenata
koji su učili putem suradničkog pristupa učenju s karakteristikama studenata koji su
učili na tradicionalan način. Došli su do zaključka da su karakteristike prve skupine
studenata sljedeće: visok stupanj akademskog postignuća, razmišljanje višeg reda,
napredne vještine kritičkog mišljenja, bolje razumijevanje pojmova, nizak stupanj
anksioznosti i stresa, pozitivniji odnosi s vršnjacima, pružanje podrške vršnjacima,
pozitivan stav prema obrađenim temama, viši stupanj samopoštovanja i veća ustrajnost
tijekom studiranja. Dakle, suradničko učenje u skupini je u pravilu vrlo učinkovit
nastavni pristup na svim razinama obrazovanja, od osnovne škole do sveučilišta.
Suradničko rješavanje problema (engl. CPS – Cooperative Problem-Solving) može
se primjenjivati u suradničkom učenju da bi se povećali učinkovitost procesa
učenja, postignuća učenika i društvena interakcija u razredu. Kao relativno novi
pojam u suradničkom učenju suradničko rješavanje problema može se smatrati
grupnim rješavanjem problema, kao i pojmom koji je prilično nov u obrazovanju u
inženjerskom usmjerenju. Postoji relativno ograničen broj istraživanja koja se bave
primjenom tog pojma, a većina njih bavi se načinom na koji se suradničko rješavanje
problema može učinkovito primijeniti u nastavi jezika (Adodo i Agbayewa, 2011;
Milrood, 2002). Kako studenti u različitim područjima (inženjerstvo ili jezici) imaju
različite stilove učenja, strategije koje su najučinkovitije u učenju vjerojatno će se
također razlikovati (Dunn, 1989). Strategija suradničkog rješavanja problema može
rezultirati različitim ishodima u inženjerskom području obrazovanja; odnosno, može
uključiti i mogućnost stvaranja platforme za bolje razumijevanje pojmova zajedno s
boljom komunikacijom između studenata i boljim vještinama mišljenja.
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1018
Kritična odluka za nastavnike jest odrediti kako podijeliti svoje učenike u ovakvoj
okolini za učenje, budući da učenici imaju različite sposobnosti, podlogu, potrebe,
interese i ciljeve (Lou i sur., 2000). Stoga je pitanje najučinkovitijeg grupiranja učenika
još potrebno istražiti u različitim područjima. U sklopu objavljenih radova Johnston
(2005), Bolton (1999), Vik (2011), Brewer i Mendelson (2003), Michaelon (2003),
Holtham, Melville i Sodhi (2006) i Maples (1988) pružaju izvanredne smjernice
za učinkovito formiranje skupina, upravljanje skupinama i strategije ocjenjivanja.
Mnoge studije slučaja također su pokazale kako se može postići učinkovit rad u
skupinama uvođenjem rezultata iz prakse zajedno s kvantitativnim mjerenjima. Iako
je najučinkovitiji način formiranja skupine u uobičajenom radu u skupini još otvoren
za raspravu, formiranje skupina koje se temelji na mješovitim sposobnostima učenja
(vještinama ili razinama) ili na istim sposobnostima učenja ipak može pozitivno
djelovati u aktivnostima suradničkog rješavanja problema u kolegijima inženjerstva.
Cilj aktivnosti suradničkog rješavanja problema jest doći do potpunog rješenja nekog
problema, a pri tome podići razinu interakcije između studenata da bi se poboljšale
njihove kognitivne ili afektivne osobine. Stoga bi se trebala provesti daljnja istraživanja
o strategijama formiranja skupina u području inženjerstva, a koja bi uključivala
aktivnosti suradničkog rješavanja problema.
Smatra se da su u razredima homogenog profila razina znanja učenika, njihove
sposobnosti učenja ili potencijalne sposobnosti učenja vrlo slične. No, s druge
strane, nehomogen ili heterogen razred (pojam koji se naziva „heterogenošću u
razredima“) jest onaj u kojem je razina studenata/učenika raznolika (različito znanje
ili predznanje, različite sposobnosti učenja, različit stupanj motivacije itd.) (Milrood,
2002; Pospisilova, 2008). Pojam heterogenosti u razredima uvelike je proučavan u
osnovnim i srednjim školama, no ne i na razini visokog obrazovanja, a pogotovo ne
u području obrazovanja inženjerskog usmjerenja. U Turskoj mnogobrojna sveučilišta
koja nude stipendije nekim svojim studentima nailaze na prilično raznolike profile
studenata unutar istih skupina. Takva situacija uzrokuje iznimnu heterogenost u
mnogim kolegijima u području inženjerstva. Susrevši se s problemom tako iznimno
heterogenih studenata u istoj skupini, istraživači moraju ispitati učinkovite strategije
formiranja skupina provođenjem aktivnosti suradničkog rješavanja problema.
Studija koja je uključila metaanalizu, a koju su proveli Lou i sur. (1996) o formiranju
skupina unutar razreda, ukazuje na to da učinak sastava skupine ovisi o sposobnostima
učenika. Heterogene skupine pogodnije su za učenike nižih sposobnosti, a učenicima
prosječnih sposobnosti bolje odgovaraju homogene skupine. Učenici visokih
sposobnosti jednako se dobro snalaze u objema skupinama. Također, učenici visokih
sposobnosti koji surađuju s vršnjacima nižih sposobnosti aktivnije sudjeluju u
razgovoru i od velike su im pomoći (Jones i Carter, 1994). Saleh i sur. (2007) smatraju
da učenici visokih sposobnosti imaju tendenciju prihvatiti ulogu nastavnika u svojoj
skupini i da takvo vršnjačko podučavanje vodi uspješnijem procesu učenja kod učenika
nižih sposobnosti, koji od svojih sposobnijih vršnjaka dobivaju veću podršku (Hooper
1019
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
i Hannafin, 1991). Dakle, učenici u heterogenim skupinama pomažu jedni drugima
(Slavin, 1989). Barg i Schull (1980) tvrde da situacija kada učenici viših sposobnosti
pružaju objašnjenja svojim vršnjacima nižih sposobnosti rezultira stvaranjem bogatijih
konstrukata zbog kognitivnog restrukturiranja. Ti procesi omogućavaju učenicima
da uoče i isprave pogrešne pretpostavke i rupe u znanju (Webb i Palinscar, 1996).
Heterogeno grupiranje također pruža mogućnosti učenicima različitih sposobnosti
da podijele višestruka gledišta i raznolika iskustva (Brophy, 2004; Singhanayok i
Hooper, 1998).
Prijateljstvo također ima važnu ulogu u interakcijama unutar skupine. Kada se
skupina sastoji od prijatelja, učenici imaju veću motivaciju da završe zadatak i pokažu
veći stupanj odgovornosti za svoje učenje (Abrami i sur. 1995). Učenici u kohezivnim
skupinama više su skloni pomoći ostalima tijekom aktivnosti učenja (Sharan i Sharan,
1992). Članovi homogene skupine također uče sličnim tempom (Kulik i Kulik, 1987).
Kako je već spomenuto, u obrazovanju u inženjerskom usmjerenju postoji ograničen
broj studija koji uključuju formiranje i homogenih i heterogenih skupina. Suradničko
rješavanje problema može se koristiti u iznimno heterogenim skupinama da bi se
povećala učinkovitost procesa učenja i da bi se podigao stupanj akademskih postignuća
studenata u nekom kolegiju. Stoga istraživanje koje je opisano u ovom radu ima namjeru
doprinijeti literaturi tako što će pokazati učinkovitost suradničkog rješavanja problema
u načinu na koji studenti u homogenim i heterogenim skupinama razumijevaju
pojmove. Ova studija posebno ima za cilj odgovoriti na sljedeća pitanja istraživanja:
(1) Koji je učinak aktivnosti suradničkog rješavanja problema u suradničkom učenju
na način na koji homogene i heterogene skupine studenata na trećoj godini studija
elektroinženjerstva i elektronike razumijevaju komunikacijske sustave?; (2) Postoji li
razlika između načina na koji studenti nižih postignuća, prosječnih postignuća i visokih
postignuća u homogenim i heterogenim skupinama shvaćaju pojmove kada su izloženi
primjeni aktivnosti suradničkog rješavanja problema?; (3) Kako studenti doživljavaju
aktivnosti suradničkog rješavanja problema i cijeli taj proces?
Metode i postupak
Dizajn
Fraenkel i Wallen (2000) opisali su eksperimentalno istraživanje, u usporedbi s
drugim vrstama istraživanja, kao najbolji način stvaranja uzročno-posljedičnih veza
među varijablama. U skladu sa svrhom ove studije upotrijebljena je mješovita metoda.
Za kvantitativni dio korištena je metodologija eksperimentalnog istraživanja, a za
prikupljanje kvalitativnih podataka metoda intervjua. Da bi se mogao usporediti
učinak provođenja suradničkog rješavanja problema na način na koji studenti u
homogenoj i studenti u heterogenoj skupini razumiju komunikacijske sustave,
studenti su namjerno svrstani u skupine. Na temelju njihova stupnja postignuća
(visok, prosječan i nizak), studenti su nasumično odabrani i svrstani u homogene ili
heterogene skupine. Plan istraživanja studije prikazan je u Tablici 1.
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1020
Tablica 1.
Eksperimentalni dizajn
Skupine Pred-test Implementacija Post-test
Homogena Predznanje Suradničko rješavanje
problema
Test razumijevanja
komunikacijskih sustava
Heterogena Predznanje Suradničko rješavanje
problema
Test razumijevanja
komunikacijskih sustava
Homogene i heterogene skupine pisale su isti test predznanja koje čini osnovu
razumijevanja pojmova iz područja komunikacijskih sustava. Studenti su test pisali
prije faze implementacije suradničkog rješavanja problema. Kako se može vidjeti u
Tablici 1, i studenti iz homogenih (HG) i studenti iz heterogenih skupina (HtG) bili
su izloženi suradničkom učenju putem aktivnosti suradničkog rješavanja problema.
Aktivnosti su trajale otprilike sat vremena. Tijekom semestra studenti su pisali
dva različita kolokvija, a na kraju semestra pisali su završni ispit koji je sastavljen s
namjerom utvrđivanja njihova stupnja razumijevanja komunikacijskih sustava. Na
kraju semestra provodili su se intervjui u fokusnoj skupini da bi se utvrdila opažanja
studenata o aktivnostima i procesu suradničkog rješavanja problema.
Uzorak
Studenti koji su sudjelovali u ovom istraživanju upisali su kolegij iz komunikacijskih
sustava, temeljni kolegij za studente treće godine elektroinženjerstva i elektronike
na privatnom sveučilištu. Sudjelovalo je 47 studenata, od kojih je 9 bilo ženskog, a
38 muškog spola. Raspon starosti studenata bio je 20-25 godina. Uzorak je pogodno
izabran jer je jedan od istraživača predavao taj kolegij, a aktivnosti suradničkog
rješavanja problema bile su pilotirane u kolegiju Komunikacijski sustavi tijekom
prethodnog semestra. Na temelju cilja da se utvrde opažanja studenata o implementaciji,
svi su studenti bili intervjuirani kao fokusne skupine na kraju semestra. U svakoj je
fokusnoj skupini bilo gotovo 6 studenata s različitim razinama sposobnosti (visokom,
prosječnom i niskom).
Procedura
Heterogenost u skupinama; formiranje skupina
Studenti su pisali standardizirani test za upis na fakultet u Turskoj, a testiranje
provodi Centar za odabir i svrstavanje studenata (engl. Student Selection and Placement
Center - ÖSYM). U turskom obrazovnom sustavu polaganje tog ispita je jedini način
upisa na fakultet.
Gotovo 1.700.000 srednjoškolaca svake godine piše taj ispit, koji ima strukturu
testa višestrukog izbora, a u svakom pitanju ponuđeno je 5 odgovora. Studenti biraju
sveučilišta (državna ili privatna) putem centraliziranog sustava svrstavanja studenata
koji se sastoji od dvije faze: jedinstvenog prijemnog ispita na fakultet i svrstavanja
studenata. Studenti ispunjavaju obrazac u kojem biraju sveučilišta i odsjeke na kojima
1021
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
bi voljeli studirati, prema svom rezultatu na prijemnom ispitu. Privatna sveučilišta u
Turskoj su neprofitne organizacije koje daju djelomične ili pune stipendije studentima
koji imaju najbolje rezultate od svih studenata koji su odabrali isti odsjek. Kao rezultat
toga, u tipičnoj skupini inženjerskog usmjerenja na većini privatnih sveučilišta mogu
se naći studenti bez stipendije, studenti s djelomičnom i studenti s punom stipendijom.
U Tablici 2 prikazani su najbolji i najslabiji rezultati s prijemnog ispita (preuzeti
iz nacionalne ljestvice za popularan inženjerski odsjek) za privatno sveučilište i
za tri državna sveučilišta, unutar jedne tipične skupine. Razlika između najboljeg
i najslabijeg rezultata iznosi više od 233 boda za privatno sveučilište, a za državna
sveučilišta prikazana u tablici ta razlika iznosi gotovo 60 bodova. Normalno je da takva
iznimno velika razlika u rezultatima dovodi do heterogenih skupina na privatnim
sveučilištima, implicirajući da one mogu biti znatno drugačije od onih na državnim
sveučilištima, te kao posljedica toga trebaju se primijeniti različiti nastavni pristupi i
metode da bi se s njima uspješno radilo. Osnovni je cilj ovog istraživanja rasvijetliti
vrste formiranja skupina od kojih će studenti imati najviše koristi.
Tablica 2.
Usporedba rezultata prijemnih ispita na privatnim i državnim sveučilištima
Tip sveučilišta Kategorija (stupanj) Najslabiji rezultat Najbolji rezultat Razlika
Privatno
sveučilište
Puna stipendija (L1) 430.1 450.8
212.6/208.3
(L4-L1)
Djelomična stipendija (50%) (L2) 333.6 379.7
Djelomična stipendija (25%) (L3) 250.4 318.4
Bez stipendije (L4) 217.5 242.5
Državno Sveučilište A 403.4 445.3 41.9
Državno Sveučilište B 408.1 468.4 60.3
Državno Sveučilište C 382.3 425.8 43.5
Tablica 2 pokazuje kategorizaciju na privatnim i državnim sveučilištima s najslabijim
i najboljim rezultatima na prijemnom ispitu, i razliku između njih. Ovi podaci prikazani
u Tablici 2 preuzeti su iz službenih dokumenata Centra za odabir i svrstavanje studenata
(ÖSYM, 2012), a bodovi su prikazani za istu disciplinu inženjerskog smjera. Kako je
prikazano u Tablici 2, razlika između najboljeg i najlošijeg rezultata na privatnom
sveučilištu je 212.6, a razlika za 60 državnih sveučilišta gotovo 60.
Da bi se odredilo koja je grupa najpogodnija za studente koji su upisali kolegij
Komunikacijski sustavi, formirane su homogene i heterogene skupine. Pri njihovu
formiranju korišteni su rezultati prijemnih ispita na sveučilište koje su studenti
ostvarili, njihova prosječna ocjena i rezultati predtesta (test koji je izrađen s ciljem
utvrđivanja prethodnog znanja studenata koje je potrebno da bi se na njega
nadograđivali novi pojmovi iz područja komunikacijskih sustava). Na temelju tih
triju vrijednosti svaki je student imao svoj opći rezultat, a rezultati svih studenata
poredani su od najboljih do najslabijih. Studenti su podijeljeni u tri skupine: skupina
studenata s visokim postignućima, skupina studenata prosječnih postignuća i skupina
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1022
studenata s niskim postignućima. Tijekom implementacije cijela skupina studenata
podijeljena je na dvije skupine: homogenu i heterogenu. Homogena skupina sastojala
se od članova iste razine postignuća, a heterogena se skupina sastojala od članova
različitih razina postignuća. Predavanja su održavana pod jednakim uvjetima (isti
predavač, ista učionica i isti nastavni materijali), osim što su skupine bile drugačije
sastavljene. Svaki heterogeni tim sastojao se od tri člana – jednog s visokom razinom
postignuća, jednog s prosječnom razinom postignuća i jednog s niskom razinom
postignuća. Homogeni timovi sastojali su se od tri člana s istom razinom postignuća.
Implementacija je započela nakon formiranja timova. Svaki je tim bio uključen u
aktivnosti suradničkog rješavanja problema. Tijekom semestra studenti su pisali dva
kolokvija i završni test na kraju semestra.
Aktivnosti suradničkog rješavanja problema
Aktivnosti suradničkog rješavanja problema uvedene su kao nova metoda učenja
u kolegiju u proljetnom semestru akademske godine 2013. Ukupno je korišteno 8
aktivnosti suradničkog rješavanja problema koje su pokrivale sve teme obrađene u
sklopu kolegija tijekom semestra. Aktivnosti su pripremljene prema ciljevima kolegija
i tijekom punog sata nastave. Nastavnik je obogatio nastavu propitivanjem i raspravom
među studentima kao dio suradničkog učenja. Nakon završetka predavanja nastavnik
je svakoj grupi zadao aktivnost koja je podrazumijevala suradničko rješavanje
problema. Studenti su smjeli koristiti popise formula, kao i bilo koje druge nastavne
materijale. Nije bilo dopušteno formiranje skupina unutar skupine. Prikaz 1 prikazuje
primjer aktivnosti suradničkog rješavanja problema koja se koristila u implementaciji.
Slika 1.
Svaka aktivnost suradničkog rješavanja problema vodi barem jednom od obrazovnih
ishoda (ciljeva) kolegija, pa se uglavnom koristi da bi se kod studenata poboljšale
vještine učenja i rješavanja problema u usvajanju pojmova iz područja komunikacijskih
sustava. Posebno se očekivalo da će od implementacije takvih aktivnosti više koristi
imati studenti s teškoćama u učenju i rješavanju problemskih zadataka. Svaka aktivnost
suradničkog rješavanja problema trajala je gotovo puni sat, ovisno o sadržaju problema
i važnosti teme. Studenti su zajednički rješavali problem u zadanom vremenu, a
ocijenjeno je svako suradnički postignuto rješenje. Svaki član skupine dobio je jednaku
ocjenu za istu aktivnost suradničkog rješavanja problema.
Instrumenti
Izrađen je test predznanja iz komunikacijskih sustava (Pre-Con) kojim se trebalo
utvrditi predznanje studenata koje je potrebno za razumijevanje komunikacijskih
sustava. Test se sastojao od 14 pitanja, a sva su bila otvorenog tipa. Test je pilotiran na
studentima koji su već završili kolegij. Cronbach alfa koeficijent pouzdanosti rezultata
testa bio je .84, što znači da je test pouzdan. Tijekom semestra studenti su pisali dva
različita kolokvija (MT1 i MT2) koji su uključivali teme zastupljene u aktivnostima
1023
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
suradničkog rješavanja problema. Rezultati ostvareni na tim kolokvijima predstavljali
su pojedinačan uspjeh svakog studenta. Test razumijevanja komunikacijskih sustava
(UCST) izrađen je na temelju ciljeva kolegija. Sastojao se od 5 pitanja otvorenog
tipa i pilotiran je na studentima koji su već završili kolegij. Cronbach alfa koeficijent
pouzdanosti rezultata testa bio je .88, a test je proveden na svakom studentu
pojedinačno na kraju semestra.
Prikupljanje i analiza podataka
Istraživanje je dalo neke kvantitativne podatke da bi se utvrdio učinak implementacije
u homogenoj i heterogenoj skupini. Podaci dobiveni iz rezultata testa koje su studenti
ostvarili i demografske osobine studenata uneseni su u program za prediktivnu
analizu (PASW) Statistics 18. Za svakog je studenta izračunat opći rezultat na temelju
ocjena iz kolokvija (MT1 i MT2) i ocjene ostvarene na završnom ispitu. Taj rezultat
i opća ocjena iz suradničkog rješavanja problema služili su kao zavisne varijable
istraživanja. Prije implementacije korišteni su rezultati koje su studenti ostvarili
na testu predznanja, da bi se usporedile homogene i heterogene skupine. Ako je na
početku postojala razlika, ona je poslužila kao kovarijanca za daljnju analizu. Vrsta
skupine (homogena/heterogena) i razina postignuća studenata (visoka/prosječna/
niska) bile su dvije nezavisne varijable u analizi.
Da bi se utvrdilo što studenti misle o aktivnostima suradničkog rješavanja problema,
proveden je niz intervjua s više od 40 studenata (intervjui u fokusnoj skupini) na kraju
implementacije. Istraživači su vodili intervjue, a svaki je trajao otprilike 20 minuta.
Pitanje koje se koristilo u intervjuu bilo je strukturirano. Međutim, istraživači su često
pojašnjavali i usmjeravali dodatna pitanja da bi se razjasnile nejasne izjave ili odgovori.
Rezultati i rasprava
Statistička analiza i rezultati pred-testa
Prije obrade rezultata korišten je nezavisni uzorak t-testa da bi se utvrdilo postoji
li statistički značajna srednja razlika između studenata u homogenoj i studenata
u heterogenoj skupini s obzirom na njihove rezultate iz testa predznanja. Tada su
provedene statističke analize na stupnju od .05 statističke značajnosti, a provedene
su korištenjem SPSS 18 programa. Deskriptivni statistički podaci utemeljeni na
rezultatima predtesta prikazani su u Tablici 3.
Tablica 3.
Kako se može vidjeti u Tablici 3, homogena skupina ima srednji rezultat od 47,861,
a heterogena skupina ima srednji rezultat čija je vrijednost 40,295. Rezultati analize
t-testa prikazani su u Tablici 4.
Tablica 4.
Tablica 4 pokazuje da srednja razlika homogenih skupina (HGs) (M= 47,861, SD=
33,121) i heterogenih skupna (HtG) (M= 40,295, SD= 31,084) nije bila statistički
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1024
značajna s obzirom na rezultate pred-testa, t (45) = .744, p > 0.05. Tako se može
zaključiti da su homogene i heterogene skupine jednake što se tiče njihova predznanja
o pojmovima komunikacijskih sustava. Takav rezultat znači da se, ako se na kraju
implementacije primijeti razlika, ona može pripisati suradničkom rješavanju problema,
a ne prije utvrđenim razlikama.
Učinak strategije suradničkog rješavanja problema na način na koji studenti treće
godine elektroinženjerstva i elektronike u homogenim i heterogenim skupinama
razumijevaju komunikacijske sustave bio je mjeren aktivnostima suradničkog
rješavanja problema, kolokvijima (MT1 i MT2) i završnim testom (UCST). Opći
rezultati suradničkog rješavanja problema za svakog studenta pojedinačno, kao i
opći skupni rezultati (kombinirani rezultati završnog testa i kolokvija) sačinjavali su
zavisne varijable, a skupine studenata (homogena i heterogena) i razina postignuća
(visoka, prosječna, niska) bile su nezavisne varijable. Multivarijatna analiza varijance
(MANOVA) bila je izračunata da bi se utvrdilo je li razlika značajna. Prije provođenja
analize bile su provjerene sastavnice MANOVE (veličina uzorka, normalnost, netipične
vrijednosti, višestruka kolinearnost i singularnost, te homogenost matrice varijance/
kovarijance), te nisu primijećena nikakva odstupanja.
Tablica 5.
Prema rezultatu MANOVA-e (vidi Tablicu 5), odgovoreno je na prvo pitanje
istraživanja. Rezultati dani u Tablici 5 pokazuju da nema statistički značajne srednje
vrijednosti između homogenih i heterogenih skupina na temelju kolektivnih zavisnih
varijabli općeg rezultata u suradničkom rješavanju problema i rezultata na završnom
ispitu (UCTS) F (2, 45) = .770, p = .470; Wilksova lambda = .963. Takvi brojevi
impliciraju da studenti u obje skupine, i u homogenoj i u heterogenoj, nisu pokazali
značajnu razliku s obzirom na suradničko rješavanje problema i opće kolektivne
rezultate nakon implementacije suradničkog rješavanja problema. Takvi se rezultati
razlikuju od onih do kojih su došli Adodo i Agbayewa (2011), a koji su pokazali da
je homogeno grupiranje studenata prema njihovim sposobnostima pogodnije za
postizanje obrazovnih ciljeva. Melser (1999) je također proučavala suradničko učenje
i strategije grupiranja kod nadarenih učenika, te je zaključila da je i heterogena i
homogena skupina pokazala napredak u čitalačkim postignućima. Slično rezultatima
do kojih su došli Adodo i Agbayewa (2011), Melser (1999) je zaključila da je heterogena
skupina imala prosječan porast od dva boda u posttestu čitanja, a učenici koji su bili
grupirani kao homogena skupina imali su porast od 2,64 boda na istom posttestu
čitanja. Iako Melser (1999) nije provela inferencijalnu statistiku, rezultati su suprotni
ovom istraživanju. Mogući razlozi za tu činjenicu mogu se pripisati dobi studenata i/
ili vrsti kolegija/usmjerenja. Kako je navedeno u srodnoj literaturi, većina istraživanja
provedena je na uzorku učenika osnovnih ili srednjih škola, što nije slučaj u ovom
istraživanju.
Ispitan je odgovor na sljedeće pitanje postavljeno u istraživanju – razlika između
razine razumijevanja koju su pokazali studenti niskih, prosječnih i visokih sposobnosti
1025
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
unutar homogene skupine i razine razumijevanja koju su pokazali studenti niskih,
prosječnih i visokih sposobnosti unutar heterogene skupine kada su bili izloženi
implementaciji aktivnosti suradničkog rješavanja problema. Za ovu su analizu
zajedno kao zavisna varijabla uzeti rezultati koje su studenti ostvarili na kolokvijima
i završnom ispitu. Provedena je dvosmjerna analiza varijance (2-way ANOVA), a
Tablica 6 pokazuje deskriptivnu statistiku analize.
Tablica 6.
Za svakog studenta uzeti su zajedno rezultati koje je ostvario na kolokviju i na
završnom ispitu (opći skupni rezultat), a njihova je srednja vrijednost prikazana u
Tablici 6. Ta dva rezultata uzeta su zajedno budući da je svaki student samostalno
rješavao testove, tj. svaki student ostvario je svoj vlastiti rezultat. Kako pokazuje tablica,
najveća razlika postoji između studenata niske razine sposobnosti u homogenoj i u
heterogenoj skupini. K tomu, prosječne srednje vrijednosti u skupinama bile su
relativno slične. Iako se lako može primijetiti varijabilnost u srednjim vrijednostima
postignuća studenata u skupinama unutar skupine, provedena je daljnja analiza
da bi se utvrdilo je li takva razlika značajna ili nije. Tablica 7, test učinka među
ispitanicima, pokazuje koja je varijabla imala značajan utjecaj na razumijevanje
kolegija Komunikacijski sustavi.
Tablica 7.
Na taj je način dan odgovor na drugo pitanje postavljeno u istraživanju (pogledati
Tablicu 7). Tablica 7 pokazuje da razina (visoka, prosječna i niska) ima značajan utjecaj
na rezultate koje su studenti ostvarili na kolokvijima i završnom ispitu (UCST); F
(2, 45) = 12,673, p = .000. Međutim, vrsta skupine (homogena ili heterogena) nema
utjecaj na postignuća studenata; F (1, 45) = .58, p = .812. Ti rezultati su u skladu s
metaanalizom koju su proveli Lou i sur. (1996), a u kojoj se tvrdi da grupiranje unutar
skupine upućuje na to da učinak sastava skupine ovisi o sposobnostima studenata.
Slično rezultatima ovog istraživanja, i oni su pokazali da su heterogene skupine
pogodnije za studente niskih sposobnosti. Što se tiče prosječnih studenata, rezultati su
ponovno u skladu s onima Loua i sur. (1996), koji su zaključili da pojedinci prosječnih
sposobnosti bolje rade u homogenim skupinama, kao što smo i mi zaključili. Razina
razumijevanja je relativno viša kod učenika nižih sposobnosti u usporedbi sa
studentima prosječnih i visokih sposobnosti. Takav rezultat podržavaju i Hooper i
Hannafin (1991), koji su ustanovili da učenici niskih sposobnosti općenito dobivaju
više podrške od svojih sposobnijih vršnjaka. Stoga se očito može tvrditi da učenici
mogu pomoći jedni drugima u heterogenim skupinama (Slavin, 1989).
Rezultati intervjua
Treće pitanje postavljeno u istraživanju bilo je o opažanjima studenata vezanim
uz aktivnosti suradničkog rješavanja problema. Na temelju prije određenog pitanja,
Kakvo je vaše mišljenje o implementaciji suradničkog rješavanja problema?, te pitanja
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1026
koja su se kasnije pojavila tijekom tog procesa, provedeni su intervjui s fokusnom
skupinom. 7 skupina s otprilike 6 studenata intervjuirano je u različitom vremenu. U
ovom dijelu navode se teme i kodovi koji su se pojavili u odgovorima koje su studenti
dali. Rezultati upućuju na to da su studenti općenito doživjeli aktivnosti suradničkog
rješavanja problema kao zanimljive i učinkovite, te da su im pomogle poboljšati razinu
svoje uspješnosti tijekom trajanja kolegija. Također su komentirali načine na koje
bi se nastava koja uključuje suradničko rješavanje problema mogla poboljšati, kao i
strategije formiranja skupina.
Većina studenata s visokim sposobnostima smatrala je da je metoda suradničkog
učenja s aktivnostima suradničkog rješavanja problema za njih bila prikladna
i obećavajuća. Slično tomu, većina studenata visokih sposobnosti smatrala je
da aktivnosti suradničkog rješavanja problema pospješuju usvajanje pojmova
komunikacijskih sustava, zajedno s ponavljanjem tih pojmova tijekom ispita. K
tomu, bez obzira jesu li bili svrstani u homogenu ili heterogenu skupinu, studenti s
visokim sposobnostima smatrali su svaku aktivnost suradničkog rješavanja problema
smislenim načinom razvoja svojeg znanja o određenoj temi. Na primjer, student A u
homogenoj skupini izjavio je: „Budući da smo o toj temi raspravljali tijekom aktivnosti
suradničkog rješavanja problema, nisam zaboravio način rješavanja problema za
vrijeme ispita.“ Slično mišljenju studenta A, student B iz heterogene skupine opisao
je svoje iskustvo ovako: „Tijekom aktivnosti suradničkog rješavanja problema obično
sam razgovarao o temi i pokušavao riješiti problem, pa mi je na ispitu bilo lako sjetiti
se što smo radili.“ Iako kvantitativni podaci pokazuju da studenti visokih sposobnosti
iz homogene skupine imaju veći srednji rezultat nego studenti visokih sposobnosti
iz heterogene skupine, obje su grupe doživjele suradničko rješavanje problema kao
korisno i zadovoljavajuće. Međutim, broj studenata visokih sposobnosti iz homogene
skupine koji su imali koristi od aktivnosti suradničkog rješavanja problema dok su
pisali ispit bio je veći od broja studenata visokih sposobnosti iz heterogene skupine koji
su koristili aktivnosti suradničkog učenja. Metaanaliza koju su proveli Lou i sur. (1996)
pokazala je da studenti visokih sposobnosti imaju dobre rezultate i u homogenim
i u heterogenim skupinama. U ovom su istraživanju stajališta studenata pokazala
da studenti s visokim sposobnostima općenito više vole biti u skupini sa sličnim
studentima. K tomu, takvi su studenti posebno u homogenim skupinama izjavili da su
aktivnosti suradničkog rješavanja problema poboljšali njihove vještine rada u skupini.
Što se tiče studenata prosječnih sposobnosti, tu su se javili neki drugi problemi.
Neki od njih su smatrali da nisu bili dovoljno komunikativni tijekom nastave i
aktivnosti suradničkog rješavanja problema, a nekoliko je studenata čak vjerovalo da
se radi o podjeli uloga u rješavanju određenog zadatka. Neki od studenata prosječnih
sposobnosti u homogenim skupinama rekli su da su njihove pojedinačne ocjene
bile nezadovoljavajuće i da nisu bili sretni zbog toga. To bi mogao biti čest problem
povezan s prirodom rada u skupini, jer studenti u homogenim skupinama ne mogu
1027
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
imati koristi od studenata s visokim sposobnostima koji bi im mogli pomoći da dobiju
manje ili više slične ocjene. Takvu vrstu kritike također su spomenuli studenti visokih
sposobnosti u heterogenim skupinama. Melser (1999) navodi da skupine koje uključuju
učenike svih sposobnosti pokazuju veće akademsko samopouzdanje i samopoštovanje
u heterogenim timovima. Nasuprot tome, učenici s nižim sposobnostima općenito se
osjećaju „zanemarenima“ u heterogenim skupinama.
Kada se govori o studentima nižih sposobnosti u homogenim i heterogenim
skupinama, stavovi studenata o aktivnostima suradničkog rješavanja problema,
ocjenjivanju i radu u skupini potpuno su drugačiji. Na primjer, studenti s nižim
sposobnostima u heterogenim skupinama uživali su sudjelovati u aktivnostima
suradničkog rješavanja problema i izjavili su da su te aktivnosti poboljšale njihovo
učenje i postignuća. Štoviše, oni zahtijevaju da se jedna od ocjena kolokvija zamijeni
ocjenom iz aktivnosti suradničkog rješavanja problema. Hooper i Hannafin (1991) su
naveli da studenti s nižim sposobnostima u heterogenim skupinama mogu dobiti veću
podršku od svojih sposobnijih vršnjaka. Studenti nižih sposobnosti koji su grupirani
kao heterogena skupina bili su izričito zadovoljni svojim načinom svrstavanja u
skupinu. Takav su rezultat objasnili Brophy (2004) i Singhanayok i Hooper (1998).
Oni navode da formiranje heterogenih skupina pruža mogućnosti učenicima različitih
sposobnosti da podijele višestruka gledišta i raznolika iskustva.
Suprotno gledištima studenata u heterogenim skupinama, pojedinci s nižim
sposobnostima u homogenim skupinama kritizirali su takav način rada u skupini.
Štoviše, oni su bili nezadovoljni svojim ocjenama. Općenito gledajući, većina tih
studenata smatrala je da je takva metoda ocjenjivanja „pravedna“, a samo je troje
studenata smatralo da je „nepravedna“. Većina onih koji smatraju da je ocjenjivanje
bilo nepravedno bili su studenti s nižim sposobnostima svrstani u homogene skupine.
Rezultati su u skladu s rezultatima do kojih je došla Melser (1999), koja navodi da su
studenti s nižim sposobnostima nemotivirani za učenje jer osjećaju strah zbog svojeg
lošeg rada.
Općenito govoreći, svi su studenti kritizirali trajanje aktivnosti suradničkog
rješavanja problema. Izjavili su da vrijeme određeno za bilo koju aktivnost nije
bilo dovoljno da bi se došlo do konačnog i potpunog rješenja. Slično tome, neki od
studenata željeli su da im nastavnik pruži neke smjernice vezane uz rješenje. Neki su
studenti također željeli da im nastavnik daje više uputa tijekom postupka rješavanja
problema. Studenti s nižim sposobnostima u heterogenim skupinama izričito su
zahtijevali više aktivnosti suradničkog rješavanja problema jer su smatrali da bi te
aktivnosti mogle pospješiti njihovo učenje i postignuća. Neki su studenti izjavili da žele
sami formirati svoje vlastite skupine prije početka aktivnosti. Za to mogu postojati dva
razloga: prvo, neki studenti mogu osjećati tjeskobu zbog rada članova svoje skupine pri
odgovaranju na pitanje koje se u aktivnosti postavlja, te tako mogu smanjiti opasnost
od toga ako sami biraju članove svoje skupine; drugo, mogu osjećati otpor prema
učenju s nekim tko je nasumično odabran da s njima radi u skupini.
Cigdemoglu, Yavuz Kapusuz and Kara: Heterogeneity in Classes: Cooperative Problem-Solving ...
1028
Zaključci
Briga oko grupiranja studenata jest svojevrstan odgovor na potrebu koju oni
osjećaju za većom kognitivnom i afektivnom koristi, zatim na poteškoće s kojima
se neka privatna sveučilišta susreću u vezi s raznolikim uspjehom studenata na
prijemnom ispitu. Ova studija upućuje na to da homogeno ili heterogeno grupiranje
studenata ne utječe na način na koji studenti inženjerstva shvaćaju komunikacijske
sustave primjenom aktivnosti suradničkog rješavanja problema. S druge strane, razina
studenata (visoka, prosječna i niska) je uvelike povezana s njihovim razumijevanjem
ovog određenog kolegija kroz aktivnosti suradničkog rješavanja problema. Ova studija
daje doprinos obrazovanju u području inženjerstva tako što popunjava prazninu o
tome koja je strategija grupiranja najučinkovitija u iznimno heterogenim velikim
skupinama studenata. Kvalitativni rezultati bacaju svjetlo na ono što studenti preferiraju
pri heterogenom grupiranju, usprkos tome što ne postoje razlike među skupinama.
Kako su Chisaka i Vakalisa (2003) naveli, „Heterogeno grupiranje može učenicima
ponuditi više toga kroz strategije poput suradničkog učenja, vršnjačkog pomaganja i
diskusije unutar manjih grupa, a sve te strategije se mogu istražiti i koristiti da bi se
stvorili dobri društveni odnosi među učenicima s različitim sposobnostima učenja“
(p. 180).
Iako rezultati upućuju na činjenicu da homogeno ili heterogeno grupiranje ne
utječe na način na koji studenti inženjerstva razumijevaju komunikacijske sustave
kroz aktivnosti suradničkog rješavanja problema, ova studija može usmjeriti buduća
istraživanja prema učinkovitom formiranju skupina temeljenom na potrebama.
Iznimna heterogenost u inženjerskim smjerovima može se preokrenuti u prednost
u kojoj se stvaraju dobri društveni odnosi među studentima različitih sposobnosti
učenja. Kako su naveli Jones i Carter (1994), studenti s visokim sposobnostima koji
rade sa svojim vršnjacima nižih sposobnosti obično su od velike pomoći svojim
prijateljima i aktivniji su u govornim aktivnostima. K tomu, studenti nižih sposobnosti
u heterogenim skupinama rekli su da su imali koristi od svojih prijatelja s višim
sposobnostima tijekom aktivnosti suradničkog rješavanja problema. Takve su rezultate
podržali Saleh i sur. (2007) rekavši kako studenti viših sposobnosti imaju tendenciju
preuzeti ulogu nastavnika u skupini i da takva vrsta vršnjačkog poučavanja pomaže
boljem učenju studenata s nižim sposobnostima. Slično tomu, Hooper i Hannafin
(1991) su saznali da studenti s nižim sposobnostima mogu dobiti veću potporu od
svojih sposobnijih vršnjaka. Stoga se može zaključiti da je heterogeno grupiranje
pogodnije za iznimnu heterogenost u sposobnostima studenata unutar velike skupine.
Slavin (1989) podržava to mišljenje navodeći da učenici u heterogenim skupinama
mogu jedni drugima pomoći više nego u homogenim skupinama. Štoviše, Barg i Schull
(1980) su naglasili da situacija u kojoj učenici viših sposobnosti objašnjavaju gradivo
svojim vršnjacima nižih sposobnosti rezultira bogatijim stvaranjem konstrukata zbog
kognitivnog restrukturiranja.
1029
Croatian Journal of Education,
Vol.16; No.4/2014
, pages:
999-1029
Trebali bi postojati različiti pristupi koje bi trebalo razviti na način da povećavaju
učinkovitost učenja u heterogenim razredima ili velikim skupinama. Kada se uzmu
u obzir opažanja studenata, može se zaključiti da aktivnosti suradničkog rješavanja
problema obogaćene suradničkim učenjem mogu biti nastavna metoda kojom bi
se riješili didaktički problemi u heterogenim razredima i kojom bi se učinkovito
pospješilo učenje. Primjena suradničkog rješavanja problema u velikim heterogenim
skupinama je relativno neistraženo područje u obrazovanju inženjerskog smjera.
U literaturi se može pronaći samo malen broj pokušaja da se to učini, bez detalja,
i odnose se specifično na studente prve godine. Metodika koja obuhvaća rad u
heterogenim skupinama čini studente zadovoljnijima u usporedbi s radom u
homogenim skupinama. U takvoj vrsti nastave učenici s različitim sposobnostima
mogu podijeliti svoja gledišta i iskustva.
Utjecaj grupiranja prema sposobnostima unutar skupine nije jednak u svakom
kontekstu i metodici. Stoga bi buduće studije trebale otkriti kako bi se taj utjecaj mogao
poboljšati da bi se povećala produktivnost studenata i da bi se smanjila nejednakost
u komunikaciji i ocjenjivanju. Da bi se pronašao najbolji način poboljšanja kvalitete
učenja, mogle bi se koristiti različite strategije formiranja heterogenih skupina. Iako
se smatra da je mala veličina uzorka ograničavajuća u takvoj eksperimentalnoj studiji
obogaćenoj kvalitativnim podacima, rezultati bacaju svjetlo na strategije grupiranja
studenata unutar velike skupine kod iznimno heterogenih razreda/skupina studenata.
K tomu, buduća istraživanja mogu se usredotočiti na aktivnosti suradničkog rješavanja
problema koje su izrađene za različite kolegije i različite odsjeke inženjerstva, pa čak i
za različita sveučilišta. Kvantitativni i kvalitativni podaci o sklonostima studenata pri
heterogenom grupiranju mogli bi usmjeriti naša buduća istraživanja da se usredotoče
na strategije formiranja heterogenih skupina i detaljnije kvalitativne podatke, da bi se
moglo saznati kakvi se obrasci pojavljuju u različitim skupinama.
Zahvala
Ovaj rad je podržalo ATILIM Sveučilište uz BAP financijsku potporu (ATU-
BAP-A-1213-08). Željeli bismo izraziti našu najdublju zahvalnost dr. Erolu Ozceliku
i dr. Nergizi Ercil Cagiltay za njihove savjete, podršku i konstruktivne komentare
tijekom cijelog projekta.
... Measuring the effectiveness of new education methods is also an important aspect that must be taken into account. It was reported by several studies that teaching with the help of some student-centered methods such as remote teaching practices, group-based problem-solving, and project-based learning is much more effective than employing classical teaching methods (Cigdemoglu et al., 2014). ...
Article
Full-text available
This study presents an improved hybrid-flipped classroom (hybrid-FC) education method based on technology-enhanced learning (TEL) along with diluted classes for a course on probability and random processes in engineering. The proposed system was implemented with the participation of two student groups who alternated weekly between attending face-to-face activities and fully online classes as a sanitary measure during the pandemic. The education model was combined with the flipped classroom (FC) approach in order to improve the quality of learning and address the negative effects of remote education. Before the lessons, the students studied the course material, filled a question form, and then took a low-stake online quiz. Then, the students attended a session where the questions reported in the forms were discussed, and they took an online problemsolving session followed by an individual quiz. Class sessions were available to both online and face-to-face students, as well as in the form of video recordings for anyone who missed lessons. Qualitatively and quantitatively, the proposed education method proved to be more effective and comprehensive than conventional online methodologies. The students' performances were evaluated via quizzes and exams measuring the achievement of the course learning outcomes (CLOs). Weekly pre/post-tests were applied to examine the students' progress in each topic. Midterm and final exams were planned to measure the level of success for all course topics. Additionally, the students' perception was assessed with questionnaires and face-to-face interviews. A performance assessment showed an apparent increase in the success rate, and the students' perception was found to be positive.
... Alongside cooperative learning, the literature up to now has gathered a great number of research findings in favour of cooperative learning. According to some authors (Cigdemoglu et al., 2014;Miščević-Kadijević, 2009), we can apply cooperative learning equally well in homogenous and heterogeneous student grouping, under the condition that the basic settings it is grounded upon are respected (positive co-dependency of students in a group; encouraging face to face student interaction; individual responsibility; learning and continuous refinement of social skills; group processing). Some research confirm that cooperative or co-cooperative learning ensures a more successful knowledge acquirement and positively influences student achievement (Abrami et al., 1995;Cota-Bekavac, 2002;Davidson, 1990; D.W. Johnson & R.T. Johnson, 1994;Hansman et al., 1999;Harskamp & Ding, 2006;Slavin, Madrid et al. 2007;Slavin, 1990;Zakaria et al., 2010), heightens motivation and perseverance of students in learning (Slavin, 1995(Slavin, , 1999, as well as influences positive relations between students and school subjects, e.g. ...
Article
Full-text available
Increasing the efficacy of maths teaching is equally challenging for both teachers and researchers. The approved educational strategy and applied forms and methods of work significantly influence the success in learning of primary school children. In the course of cooperative learning, students are more exhilarated and more eager to participate in solving exercises. The structure of such a school lesson differs from the traditional lesson. More prominent roles are given to student independence, their cooperation, communication and problem solving, and in that students become more creative and resourceful. The goal of this research was to examine the students' standpoints about the application and significance of cooperative learning in maths classes in lower primary school grades. The research was implemented among primary school students, in four primary schools in Subotica in the Republic of Serbia, in the second term of 2016/2017 school year. The sample included 168 students (N=168). Studies and research results have shown that students express a positive opinion about the strategy of cooperative learning and that it has a positive effect on cooperative ability in team work, on the development of communicative abilities and, finally, an individual effect. The obtained results are encouraging for the educational practice; they contribute to confirming the assumption of cooperative learning and consequential development of various competences in mathematical instruction are possible with students of lower primary school grades.
Book
The creation of this publication has been co-funded by the Erasmus+ grant program of the European Union under project no. 2021-1-SK01- KA220-SCH-000034395. This publication reflects the views only of the author. Neither the European Commission nor the project’s national funding agency are responsible for the content or liable for any losses or damage resulting of the use of this publication.
Article
Full-text available
The methods used in engineering education have gained diversity in parallel with rapidly evolving technology. New technological methods along with the traditional methods have been adopted for undergraduate education. Today, Simulink‐based educational materials are used in many fields in engineering education. However, in the literature, the contribution of such educational materials to the learning process has not been measured thoroughly. This study presents a comprehensive measurement method to improve the created course material and show the effectiveness of developed course material in students' success. First, educational material was developed for an undergraduate electrical engineering course: communication systems. A feedback group made up of diverse student learners was employed extensively in the material development phase. Next, the impact of the developed material on the success of the students was examined using both qualitative and quantitative measurement tools including questionnaires, one‐to‐one interviews, and class and university level anonymous surveys. This also included students’ performance regarding laboratory quizzes and achievement of course learning outcomes. Overall, the measurement results show that the course material increased students' success in the course. Moreover, students' general perception of the course material was positive.
Article
Full-text available
The current study aims to report the effects of cooperative learning method on students`studentsàcademic performance in the subject of Science and to identify the challenges if any while implementing cooperative learning in Pakistani classroom. The Researchers adopted quantitative approach and Quasi-experimental research design was employed. Experiment was conducted in a government girls' elementary school and lasted for 13 weeks. Experimental group received treatment and was taught with cooperative learning whereas control group left untreated and was taught with traditional lecture method. The findings of the research study suggested that use of cooperative learning significantly affected students`students`test scores in the subject of science. Data analysis revealed that students of experimental group performed significantly better than control group in posttest. During experiment few challenges were observed such as teachers`teachers`belief, classroom furniture, lack of learning resources etc. Study strongly recommends the use of cooperative learning in classrooms to increase students`studentsàcademic performance and orientation of innovative teaching methods in pre-service and in-service teachers training programs.
Article
Full-text available
The current study aims to report the effects of cooperative learning method on students`studentsàcademic performance in the subject of Science and to identify the challenges if any while implementing cooperative learning in Pakistani classroom. The Researchers adopted quantitative approach and Quasi-experimental research design was employed. Experiment was conducted in a government girls' elementary school and lasted for 13 weeks. Experimental group received treatment and was taught with cooperative learning whereas control group left untreated and was taught with traditional lecture method. The findings of the research study suggested that use of cooperative learning significantly affected students`students`test scores in the subject of science. Data analysis revealed that students of experimental group performed significantly better than control group in posttest. During experiment few challenges were observed such as teachers`teachers`belief, classroom furniture, lack of learning resources etc. Study strongly recommends the use of cooperative learning in classrooms to increase students`studentsàcademic performance and orientation of innovative teaching methods in pre-service and in-service teachers training programs.
Article
Full-text available
The current study aims to report the effects of cooperative learning method on students`studentsàcademic performance in the subject of Science and to identify the challenges if any while implementing cooperative learning in Pakistani classroom. The Researchers adopted quantitative approach and Quasi-experimental research design was employed. Experiment was conducted in a government girls' elementary school and lasted for 13 weeks. Experimental group received treatment and was taught with cooperative learning whereas control group left untreated and was taught with traditional lecture method. The findings of the research study suggested that use of cooperative learning significantly affected students`students`test scores in the subject of science. Data analysis revealed that students of experimental group performed significantly better than control group in post-test. During experiment few challenges were observed such as teachers` teachers` belief, classroom furniture, lack of learning resources etc. Study strongly recommends the use of cooperative learning in classrooms to increase students`studentsàcademic performance and orientation of innovative teaching methods in pre-service and in-service teachers training programs.
Article
Full-text available
Students have different levels of motivation, different attitudes about teaching and learning, and different responses to specific classroom environments and instructional practices. The more thoroughly instructors understand the differences, the better chance they have of meeting the diverse learning needs of all of their students. Three categories of diversity that have been shown to have important implications for teaching and learning are differences in students' learning styles (characteristic ways of taking in and processing information), approaches to learning (surface, deep, and strategic), and intellectual development levels (attitudes about the nature of knowledge and how it should be acquired and evaluated). This article reviews models that have been developed for each of these categories, outlines their pedagogical implications, and suggests areas for further study.
Article
Full-text available
The authors describe innovation in practice through the unusual deployment of teams in a master’s in management core course. Two parallel uses of teams were made, both drawing on the jigsaw team method, in one case with the team supporting individual work. The experiences support the idea of widening the palette of types of groupwork used in management education, as well as the need for this to be addressed by faculty teams and individual academics.
Article
Full-text available
and be involved in the accreditation process on a continuing basis, not just in the months preceding each visit. Understanding the engineering criteria is no trivial goal, however; the jargon they contain (objectives, outcomes, outcome indicators, performance targets, etc. ) is dense and confusing, and universally agreed-upon operational definitions of the terms do not yet exist. Moreover, while much has been written in the past few years about the assessment of program outcomes (more specifically, of Outcomes 3a-3k), relatively little attention has been paid so far to the central role of the individual faculty member in attaining those outcomes. The primary purpose of this paper is to examine that role. Since the new ABET accreditation system was first introduced to American engineering education in the middle 1990s as Engineering Criteria 2000, most discussion in the literature has focused on how to assess Outcomes 3a-3k and relatively little has concerned how to equip students with the skills and attitudes specified in those outcomes. This paper seeks to fill this gap. Its goals are to (1) overview the accreditation process and clarify the confusing array of terms associated with it (objectives, outcomes, outcome indicators, etc. ); (2) provide guidance on the formulation of course learning objectives and assessment methods that address Outcomes 3a-3k; (3) identify and describe instructional techniques that should effectively prepare students to achieve those outcomes by the time they graduate; and (4) propose a strategy for integrating program-level and course-level activities when designing an instructional program to meet the requirements of the ABET engineering criteria.
Article
This paper describes a new systematic methodology and measurements for assessing the effectiveness of engineering/business student teams. This new methodology is unique because it predicts team effectiveness. Our approach replaces the traditional methods of indirect surveying and interviewing with direct surveys and systematic exercises designed to measure team effectiveness. Effectiveness was defined and evaluated using three outcomes: creativity, collaboration and productivity. These three outcomes were measured using applied psychology metrics. By quantifying creativity, collaboration and productivity, this new assessment methodology provided a more objective way of measuring effectiveness. The outcomes were equally weighted to calculate an effectiveness rating. The teams that were faculty-selected and properly coached were confirmed to be at least twice as effective as those that were student-selected and received little coaching.
Article
Written specifically for teachers, this book offers a wealth of research-based principles for motivating students to learn. Its focus on motivational principles rather than motivation theorists or theories leads naturally into discussion of specific classroom strategies. Throughout the book these principles and strategies are tied to the realities of contemporary schools (e.g., curriculum goals) and classrooms (e.g., student differences, classroom dynamics). The author employs an eclectic approach to motivation that shows how to effectively integrate the use of extrinsic and intrinsic strategies. Guidelines are provided for adapting motivational principles to group and individual differences and for doing 'repair work' with students who have become discouraged or disaffected learners. © 1997 Th e McGraw-Hill Companies, Inc. © 2004 Lawrence Erlbaum Associates, Inc.
Article
What roles assure that a student learns from a team project? This paper discusses student roles of (1) ready learner, (2) coachee, (3) contributor, (4) team member, and (5) academic scholar. Students can gain real world experience from a team project with a practitioner "client." But team projects can be flawed with ambiguous activities and free-riding students. A shift from the role of passive student to the active roles discussed in this paper can improve the team project learning experience. This paper also presents a model that apportions responsibilities to the teacher, students, and clients for team project tasks. Clear responsibilities can prepare students for their active roles in a team project. A well-defined project process can minimize the ambiguity inherent in real-world projects, and help the teacher maintain his or her course workload at a manageable level. The project steps are (1) set learning goals, (2) engage a client, (3) set project objectives, (4) implementation, (5) report results, and (6) assess performance.
Book
How to Design and Evaluate Research in Education provides a comprehensive introduction to educational research. The text covers the most widely used research methodologies and discusses each step in the research process in detail. Step-by-step analysis of real research studies provides students with practical examples of how to prepare their work and read that of others. End-of-chapter problem sheets, comprehensive coverage of data analysis, and information on how to prepare research proposals and reports make it appropriate both for courses that focus on doing research and for those that stress how to read and understand research. The authors' writing is simple and direct and the presentations are enhanced with clarifying examples, summarizing charts, tables and diagrams, numerous illustrations of key concepts and ideas, and a friendly two-color design.
Article
This article focuses on methods to improve student satisfaction and learning in team projects. The article describes in detail three sequential modules that the instructor can present in class to improve student team performance and learning: (a) starting student teams off on the right foot, (b) helping teams manage diversity and conflict, and (c) helping students learn from their teamwork experience. The article also highlights the role of the teacher as a learning coach during the teambuilding process, tying specific classroom behaviors to each of the three instructional modules. The discussion is supported by survey results on student teams involving 76 business school faculty and 199 undergraduate students. The article concludes that student team projects constitute a valuable peer-centered learning experience only when instructors are active coaches, giving just-in-time feedback and providing focused and concrete guidance at strategic intervals during the semester.