Content uploaded by Robert Bailis
Author content
All content in this area was uploaded by Robert Bailis on Apr 08, 2015
Content may be subject to copyright.
1
Title: The Global Footprint of Traditional Woodfuels
1
Authors: Robert Bailis1*, Rudi Drigo2, Adrian Ghilardi3, Omar Masera4
2
Affiliations:
3
1 Yale School of Forestry and Environmental Studies
4
2 Independent Consultant
5
3 Center for Environmental Geography Research, National Autonomous University of Mexico (UNAM)
6
4 Center for Ecosystems Research, National Autonomous University of Mexico (UNAM)
7
*Correspondence to: robert.bailis@yale.edu
8
Summary
9
Over half of all wood harvested worldwide is used as fuel, supplying ~9 percent of global primary energy.
10
By depleting stocks of aboveground woody biomass, unsustainable harvesting can contribute to forest
11
degradation, deforestation, and climate change. However, past efforts to describe woodfuel sustainability
12
failed to provide credible results. We present a spatially explicit assessment of pan-tropical woodfuel
13
supply and demand, calculate the degree to which woodfuel demand exceeds regrowth, and estimate
14
GHG emissions resulting from woodfuels. We find 27-34% of the woodfuel harvested in 2009 was
15
unsustainable, with large geographic variations. Our estimates are lower than current assessments used
16
in carbon markets. Approximately 275 million people live in “hotspots” - regions where the majority of
17
demand is unsustainable - concentrated in South Asia and East Africa. Emissions from woodfuels are
18
1.0-1.2 Gt CO2e/yr (1.9-2.3% of global emissions). In 12 nations, woodfuels are responsible for the
19
majority of emissions. Successful deployment of 100 million improved stoves could reduce this by 11-17%
20
and generate over $1 billion annually. By identifying potential areas of woodfuel-driven degradation or
21
deforestation and mitigation potential, this assessment informs the ongoing discussion about REDD-
22
based approaches to climate change mitigation and global efforts to promote “Sustainable Energy for All”.
23
24
25
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
2
Traditional woodfuels, which include both firewood or charcoal used for cooking and heating, represent
1
approximately 55% of global wood harvest and 9% of primary energy supply1,2. The current extent and
2
future evolution of traditional woodfuel consumption is closely related to several key challenges to
3
sustainable development. Roughly 2.8 billion people worldwide,3 including the world’s poorest and most
4
marginalized, burn wood to satisfy their basic energy needs. Woodfuels can impact public health,4 cause
5
deforestation or forest degradation5, and contribute to climate change6-8. Climate impacts arise from two
6
pollutant flows: CO2 is emitted because a fraction of woodfuel is harvested unsustainably; methane (CH4)
7
and short-lived climate forcers (SLCFs) are emitted because of incomplete combustion, which also emits
8
health-damaging pollutants. Thus, woodfuels present society with two important links between local and
9
global impacts; incomplete combustion releases pollutants that damage health and warm the
10
atmosphere, while unsustainable harvesting drives both forest degradation and climate change.
11
12
Risks to public health are increasingly well characterized,4 while impacts on deforestation, degradation,
13
and global climate remain highly uncertain. Historically, woodfuel demand was considered a major driver
14
of land cover change9,10. However, early research failed to account for regrowth, consumers’ response to
15
scarcity, and use of trees outside forests11,12. More recent local or regional assessments find conflicting
16
results,13-17 suggesting that geography is an important determinant of woodfuel sustainability. However,
17
few systematic studies of woodfuel sustainability and GHG emissions have been conducted18. The
18
IPCC’s 4th Assessment claimed that 10% of global woodfuel is harvested unsustainably,19,20 while the 5th
19
Assessment stresses that net emissions from woodfuels are unknown17. Better understanding of the
20
contribution of woodfuels to deforestation, forest degradation, and climate change is needed to evaluate
21
the impact of the growing wave of interventions in the household energy sector and inform emerging
22
REDD (Reducing Emissions from Deforestation and Degradation) methodologies21,22.
23
24
Here we present a spatially explicit snapshot of woodfuel supply and demand (Supplementary Information
25
section 1) throughout the world’s tropical regions, where traditional woodfuel consumption is
26
concentrated. Using 2009 as a base year, we quantify the extent to which woodfuel demand exceeds
27
supply, identify specific “hotspots” where harvesting rates are likely to cause degradation or deforestation,
28
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
3
quantify the carbon emissions that result from current woodfuel exploitation, and estimate the emission
1
reductions that could be achieved from large-scale interventions23.
2
3
Nearly all landscapes produce a measurable increment of woody biomass either as new growth or as re-
4
growth from previous disturbances. This assessment considers supply/demand balance over one year. If
5
an area is harvested for woodfuel below the annual growth rate, then woody biomass stocks are not
6
depleted and harvesting is sustainable. However, if annual harvesting exceeds incremental growth, it is
7
unsustainable, leading to a decline of woody biomass, forest degradation, and net carbon emissions. In
8
this assessment, we define the wood harvested in excess of the incremental growth rate as non-
9
renewable biomass (NRB)24.
10
Pan-tropical woodfuel supply and demand
11
We treat woodfuel demand as an exogenous factor derived from a mix of national and sub-national
12
studies supplemented by data from the Food and Agriculture Organization (FAO), International Energy
13
Agency (IEA), and United Nations (UN)1,25,26. Woodfuel demand has subsistence and commercial
14
components. Subsistence demand occurs primarily in rural areas, where people collect their own fuel
15
using simple non-motorized forms of transportation from within few hours’ of their homes. Commercial
16
demand originates in urban and some densely populated rural locations are conveyed by motorized
17
transport over much longer distances.
18
19
We develop a map of supply-demand balance by estimating harvesting pressure, first from subsistence
20
and then commercial harvesters (Figure 1a and b). Areas exploited to satisfy commercial demand form a
21
“woodshed”, which represents the region that would satisfy demand if the full MAI is utilized27 (Figure 1c
22
shows commercial woodsheds for a high-demand area of East Africa; Extended Data Fig. 5 shows the
23
entire pan-tropics).
24
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
4
Woodfuels and Land Cover Change
1
Many woodfuel-dependent regions are characterized by high rates of deforestation. Others, particularly
2
parts of China and India, have experienced recent afforestation. Though not directly linked to woodfuel
3
demand, these processes, which we define collectively as land cover change (LCC), impact woodfuel
4
supplies. Deforestation creates large volumes of non-renewable woodfuel28,29, and afforestation
5
augments renewable woodfuel supplies by adding to growing stock of “dendro-energy biomass” (DEB).
6
Neither process has been explicitly accounted for in previous woodfuel assessments. When deforestation
7
occurs in regions accessible to woodfuel users, the cleared woody biomass may be utilized as timber and
8
woodfuel. Similarly, afforestation adds DEB equivalent to the mean annual increment (MAI) of the
9
surrounding land class. However, the degree to which LCC by-products are actually used as woodfuel is
10
unknown. To accommodate this uncertainty, we explore two scenarios, described in Table 1. In Scenario
11
A, we assume LCC by-products are not used. In Scenario B, we assume they are used, yielding two NRB
12
components (NRBB1 and NRBB2): NRBB1 quantifies the use of LCC by-products; NRBB2 quantifies the use
13
of NRB among the wood harvested to meet whatever demand remains after LCC by-products are utilized.
14
In populated regions experiencing high rates of deforestation, large volumes of DEB are accessible, and
15
NRBB2 may be zero (Supplementary Information section 5).
16
17
By combining woodshed mapping of commercial demand with localized supply-demand balances, we
18
define the minimum quantity of NRB that would be required to meet existing demand (Supplementary
19
Information section 5). In this approach, we assume woodfuel consumers manage their resources
20
sustainably to the greatest extent possible so that unsustainable harvesting occurs only after the
21
sustainable supply in a given location has been fully exploited. Thus, minimum NRB indicates the degree
22
to which a given region can sustainably meet woodfuel demand under ideal management. However, ideal
23
management is unlikely. To simulate suboptimal harvesting, we assume harvesting sometimes exceeds
24
sustainable levels in some areas even if the sustainable supply in an adjacent accessible area has not
25
been fully exploited. To estimate the extent of this deviation, we use a proxy defined by the fraction of
26
each country’s forested area under formal management plans (methods). From this we derive an
27
“expected” quantity of NRB, which we also express as a fraction of the total harvest (fNRB). Both
28
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
5
minimum and expected NRB are expressed in absolute terms and as a fraction of the total harvest for a
1
given region. We report expected NRB below; minimum NRB is given in supplementary information.
2
Woodfuel sustainability
3
Woodfuel demand in 2009 was ~1.36 Gt. If by-products of LCC were not utilized (Scenario A), pan-
4
tropical expected fNRBA was 27-30% (367-413 Mton). If by-products of LCC were utilized (Scenario B),
5
we estimate they contributed 8.3% (113 Mton) of pan-tropical woodfuel supply (fNRBB1). We also find 22-
6
25% (296-340 Mt) of the remaining demand was harvested unsustainably (fNRBB2). Adding fNRBB1 and
7
fNRBB2, the total fraction of NRB using LCC by-products is 30-34%. The uncertainty results from
8
uncertain productivity and contribution of plantations (Supplementary Information section 6). This is
9
largest in Asia, where forest plantations may be a substantial source of supply, and smallest in sub-
10
Saharan Africa, which has few plantations30. Figure 2 shows a global map of fNRBB2 (maps of fNRBA and
11
fNRBB1+B2 are shown in Extended Data Fig. 7).
12
13
We define woodfuel “hotspots” as regions in which expected fNRB exceeds 50%, i.e. regions in which the
14
majority of harvested woodfuel is unsustainable. Hotspots encompass ~4% of pan-tropical areas and are
15
inhabited by 6% of the pan-tropical population. The largest hotpot incorporates a swath of East Africa
16
extending from Eritrea through western Ethiopia, Kenya, Uganda, Rwanda and Burundi. Expected fNRBB2
17
exceeds 50% in 43 sub-national units throughout his region, encompassing 26% of the region’s
18
population. Additional hotspots also occur in Western and Southern Africa, but these do not cover large
19
contiguous areas (Figure 2). Notably, much of sub-Saharan Africa is characterized by fNRBB2 below 20%
20
including provinces of Angola, Cameroon, Central African Republic, Congo, DR Congo, Mali,
21
Mozambique, Nigeria, South Africa, Tanzania, Zambia, and Zimbabwe: home to 55% sub-Saharan
22
Africa’s population.
23
24
In Asia, hotspots occur in parts of Pakistan, Nepal, Bhutan, Indonesia and Bangladesh. Expected fNRBB2
25
in Pakistan is 79%, the highest national value in the entire sample. In two Pakistani divisions, fNRBB2
26
exceeds 90%. Notably, Asia’s woodfuel hotspots are distinct from areas of high deforestation. For
27
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
6
example, deforestation rates in Indonesia, Malaysia, Cambodia and Laos are among the world’s
1
highest31, largely as a result of agricultural expansion16. In contrast, China and India, the largest woodfuel
2
consuming nations, both experienced net afforestation in recent years30. At a national level fNRBB2 is 10-
3
22% in China and 23-24% in India. The wide range observed in China is a result of uncertainty in the
4
productivity of plantation forestry, a potentially large source of China’s woodfuel supply (Extended Data
5
Fig. 6).
6
7
Latin America hosts the lowest traditional woodfuel consumption; Haiti is the only nation in which
8
expected fNRBB2 exceeds 50%. Still, fNRBB2 exceeds 30% in many sub-national units including most of
9
Dominican Republic and parts of Bolivia, Colombia, Ecuador, El Salvador, Mexico, Paraguay, Peru, and
10
Venezuela. As in Asia, high rates of deforestation are due primarily to agricultural expansion16. By-
11
products of LCC in many parts of Belize, Brazil, Ecuador, Honduras, Mexico, Nicaragua, Panama, Peru,
12
and Venezuela, are sufficient to meet most or all woodfuel demand (Extended Data Fig. 6).
13
14
Worldwide, over 275 million people live in woodfuel hotspots: nearly 60% in Asia, 34% in Africa, and the
15
remaining 6% in Latin America. Figure 3 shows the regional distribution of population by fNRBB2 decile.
16
GHG emissions
17
Climate impacts arise from emissions of well-mixed greenhouse gases (GHGs), which include CO2 and
18
CH4, and short-lived climate forcers (SLCFs), which include black and organic carbon (BC and OC)
19
aerosols, CO, and volatile organic compounds (VOCs). Emissions of well-mixed GHGs and SLCFs as a
20
result of unsustainable harvesting and incomplete combustion from traditional woodfuels (methods) were
21
1.0-1.2 Gt CO2e in 2009: 1.9-2.3% of global emissions and 3.5-4.3% of emissions in the pan-tropical
22
region32. National emissions vary widely (Extended Data Table 2). India and China have the largest
23
populations of traditional woodfuel users and highest overall emissions, but relatively low per capita
24
emissions. In contrast, Kenya, Ethiopia and Uganda, which constitute part of the East African hotspot,
25
rank among the highest emitters in absolute and per capita terms.
26
27
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
7
There is geographic variation in the mix of pollutants emitted by traditional woodfuels because of
1
variations in fNRB and in the extent of charcoal use, which has different emission characteristics than
2
fuelwood (methods). Globally, after accounting for uptake by the fraction of woody biomass that is
3
sustainably harvested, CO2 contributes 34-45% of total climate forcing. BC has a similar impact,
4
contributing 35-42%, and CH4, CO, and VOCs account for the remaining 31-37%. This variation has
5
policy implications; currently, carbon markets value reductions of CO2, CH4, and N2O, but do not value BC
6
abatement, which favors interventions in regions with high fNRB.
7
Mitigation potential of efficient cookstoves
8
Interventions in household energy have been implemented for decades with multiple objectives33:
9
including forest conservation; health improvements; and climate change mitigation, as well as poverty
10
alleviation and economic development. The Global Alliance for Clean Cookstoves (GACC), the largest
11
stove program to date, proposes to deploy 100 million improved stoves by 202023. With large spatial
12
variation in fNRB, impacts of interventions vary with geographic patterns of stove uptake. We examine
13
this variation with four intervention scenarios (methods; Supplementary Information section 7).
14
15
We assume 100 million state-of-the-art improved cookstoves are successfully disseminated according to
16
different programmatic priorities. The resulting emission reductions range from 98-161 MtCO2e/yr. The
17
largest reductions result from targeting the highest per capita woodfuel consumers. This is followed by
18
reductions achieved by targeting consumers in regions with the highest rates of NRB, though
19
uncertainties in emission reductions from individual stoves make the difference insignificant. The smallest
20
reductions result from dissemination in the most business-friendly countries. The emission reductions
21
achieved by prioritizing health improvements falls between these extremes (Figure 4).
22
Discussion and implications
23
Taken together, unsustainable harvesting and incomplete combustion contributed 1.9-2.3% of global
24
emissions of well-mixed GHGs and SLCFs in 2009. Globally, emissions were split evenly between CO2,
25
BC, and other SLCFs. In 12 nations, emissions from woodfuels were 50% or more of the country’s total
26
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
8
emissions, demonstrating the dominant role that traditional woodfuels have in places with few industrial
1
emissions (Extended Data Table 2).
2
3
Our estimates of fNRB are considerably lower than estimates utilized by woodfuel projects in the carbon
4
market. Project revenues depend directly on fNRB. A review of 191 carbon projects in 39 countries
5
reveals a median fNRB of 90% with minimal regional variation (Supplementary Information section 6). We
6
identified only four countries in which sub-national fNRB exceeds 80% as a result of woodfuel demand.
7
Just 8% of existing projects fall within these areas. Thus, project developers are very likely overstating the
8
emission reduction potential of improved stoves.
9
10
Household energy forms a major component of the United Nations’ promotion of “Sustainable Energy for
11
All”34. However, costs are a major barrier to implementing sustainable household energy solutions.
12
Despite finding lower fRNB values than market actors assume, with our results, 100 million state-of-the-
13
art cookstoves could reduce traditional woodfuel emissions by 98-161 MtCO2e yr-1. At $11/tCO2e, the
14
average price of offsets from stove projects in 201235, these reductions would be valued at $1.1-1.8 billion
15
if BC can be integrated into carbon markets. This far exceeds current investments in household energy in
16
the Global South, which do not garner the same level of finance as other major health impacts like
17
malaria, tuberculosis, and HIV. In addition, we find policy objectives are important determinants of
18
emission reductions, introducing variation of 60%. Countries with high per capita woodfuel use or high
19
NRB rates yield the largest emissions reductions. However, neither group overlaps completely with
20
countries experiencing the highest disease burden from woodsmoke exposure (Figure 5). Thus, improved
21
stove dissemination among populations suffering from the largest disease burden results in fewer
22
emission reductions than dissemination in regions with high rates of woodfuel consumption or
23
unsustainable harvesting. However, we identified a small group of countries that rank poorly in all
24
categories (red text in Figure 5). Others rank poorly in two out of three categories (blue text in Figure 5).
25
These countries deserve clear prioritization. The sub-national dataset generated by this research can be
26
used to more accurately identify high-priority areas and pinpoint locations where interventions would have
27
the greatest impact. Moreover, by identifying areas where woodfuel-driven degradation or deforestation is
28
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
9
likely to occur, our assessment fills a critical gap in knowledge about the extent to which woodfuel
1
demand may contribute deforestation or forest degradation and informs emerging REDD-based
2
approaches to climate change mitigation.
3
4
References
5
1 FAOSTAT. Forestry production and trade, <http://faostat3.fao.org/faostat-
6
gateway/go/to/download/F/*/E> (2013).
7
2 Renewable Energy Policy Network for the 21st century (REN21). Renewables Global Status
8
Report: 2013 Update. Report No., 177 (REN21 Secretariat, Paris, 2013).
9
3 Bonjour, S. et al. Solid fuel use for household cooking: country and regional estimates for 1980-
10
2010. Environmental Health Perspectives 121, doi:10.1289/ehp.1205987 (2013).
11
4 Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67
12
risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global
13
Burden of Disease Study 2010. The Lancet 380, 2224-2260, doi:http://dx.doi.org/10.1016/S0140-
14
6736(12)61766-8 (2012).
15
5 Rudel, T. K. The national determinants of deforestation in sub-Saharan Africa. Philosophical
16
Transactions of the Royal Society B: Biological Sciences 368, doi:10.1098/rstb.2012.0405 (2013).
17
6 Bailis, R., Ezzati, M. & Kammen, D. M. Mortality and Greenhouse Gas Impacts of Biomass and
18
Petroleum Energy Futures in Africa. Science 308, 98-103 (2005).
19
7 Bond, T. C. et al. Bounding the role of black carbon in the climate system: A scientific
20
assessment. Journal of Geophysical Research: Atmospheres 118, 5380–5552,
21
doi:10.1002/jgrd.50171 (2013).
22
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
10
8 Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon.
1
Nature Geosci 1, 221-227 (2008).
2
9 Eckholm, E. The other energy crisis: Firewood. Report No., 22 (Worldwatch, Washington DC,
3
1975).
4
10 Eckholm, E. Fuelwood: The energy crisis that won't go away. (Earthscan, 1984).
5
11 Leach, G. & Mearns, R. Beyond the Woodfuel Crisis: people, land, and trees in Africa.
6
(Earthscan, 1988).
7
12 Arnold, J. M. & Dewees, P. A. Farms, trees and farmers: responses to agricultural intensification.
8
(Earthscan, 1997).
9
13 Hansfort, S. & Mertz, O. Challenging the Woodfuel Crisis in West African Woodlands. Human
10
Ecology 39, 583-595, doi:10.1007/s10745-011-9417-8 (2011).
11
14 Singh, G., Rawat, G. S. & Verma, D. Comparative study of fuelwood consumption by villagers
12
and seasonal “Dhaba owners” in the tourist affected regions of Garhwal Himalaya, India. Energy
13
Policy 38, 1895-1899, doi:http://dx.doi.org/10.1016/j.enpol.2009.11.069 (2010).
14
15 Mayaux, P. et al. State and evolution of the African rainforests between 1990 and 2010.
15
Philosophical Transactions of the Royal Society B: Biological Sciences 368,
16
doi:10.1098/rstb.2012.0300 (2013).
17
16 Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing
18
countries. Environmental Research Letters 7, 044009 (2012).
19
17 Smith, P. et al. in Working Group III – Mitigation of Climate Change (eds Ottmar Edenhofer,
20
Ramon Pichs-Madruga, & Youba Sokona) 179 (IPCC, 2014).
21
18 Drigo, R. "WISDOM Case Studies", <http://www.wisdomprojects.net/global/cs.asp> (2014).
22
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
11
19 IEA. Statistics & Balances, <http://www.iea.org/stats/index.asp> (2012).
1
20 IPCC. Climate Change 2007: Mitigation Contribution of Working Group III to the Fourth
2
Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson,
3
P.R. Bosch, R. Dave, L.A. Meyer (eds.)]. (Cambridge University Press, 2007).
4
21 GACC. Alliance Mission and Goals, <http://www.cleancookstoves.org/the-alliance/> (2014).
5
22 Angelsen, A. et al. Realising REDD+: national strategy and policy options. (Center for
6
International Forestry Research (CIFOR), 2009).
7
23 Subramanian, M. Global health: Deadly dinners. Nature 509, 548-551 (2014).
8
24 Johnson, M., Edwards, R. & Masera, O. Improved stove programs need robust methods to
9
estimate carbon offsets. Clim. Change 102, 641-649, doi:10.1007/s10584-010-9802-0 (2010).
10
25 International Energy Agency. IEA World Energy Statistics and Balances, <http://www.oecd-
11
ilibrary.org/statistics> (2013).
12
26 UN Statistics Division. Energy Statistics Database, <http://data.un.org/Explorer.aspx> (2013).
13
27 Drigo, R. & Salbitano, F. WISDOM for cities: Analysis of wood energy and urbanization using
14
WISDOM methodology. Report No., (FAO Forestry department report, Rome, 2008).
15
28 Bailis, R. Modeling climate change mitigation from alternative methods of charcoal production in
16
Kenya. Biomass and Bioenergy 33, 1491-1502, doi:DOI: 10.1016/j.biombioe.2009.07.001 (2009).
17
29 Mwampamba, T. H., Ghilardi, A., Sander, K. & Chaix, K. J. Dispelling common misconceptions to
18
improve attitudes and policy outlook on charcoal in developing countries. Energy for Sustainable
19
Development 17, 75-85, doi:http://dx.doi.org/10.1016/j.esd.2013.01.001 (2013).
20
30 FAO. Global Forest Resources Assessment 2010. (UNFAO, 2010).
21
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
12
31 Hansen, M. C. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science
1
342, 850-853, doi:10.1126/science.1244693 (2013).
2
32 JRC. EDGAR Database, <http://edgar.jrc.ec.europa.eu/overview.php?v=GHGts1990-2010 and
3
http://edgar.jrc.ec.europa.eu/unep/index.php> (2014).
4
33 Simon, G. L., Bailis, R., Baumgartner, J., Hyman, J. & Laurent, A. Current debates and future
5
research needs in the clean cookstove sector. Energy for Sustainable Development 20, 49-57,
6
doi:http://dx.doi.org/10.1016/j.esd.2014.02.006 (2014).
7
34 Bazilian, M., Cordes, L., Nussbaumer, P. & Yager, A. Partnerships for access to modern cooking
8
fuels and technologies. Current Opinion in Environmental Sustainability 3, 254-259,
9
doi:http://dx.doi.org/10.1016/j.cosust.2011.05.004 (2011).
10
35 Peters-Stanley, M., Yin, D., Castillo, S., Gonzalez, G. & Goldstein, A. Maneuvering the Mosaic:
11
State of the Voluntary Carbon Markets 2013. Report No., 105 (Ecosystem Marketplace and
12
Bloomberg New Energy Finance, Washington, DC, 2013).
13
36 Masera, O., Ghilardi, A., Drigo, R. & Trossero, M. A. WISDOM: A GIS-based supply demand
14
mapping tool for woodfuel management. Biomass and Bioenergy 30, 618-637 (2006).
15
37 Wheeler, D., Kraft, R. & Hammer, D. Forest Clearing in the Pantropics: December 2005-August
16
2011. Report No., (Washington DC, 2011).
17
38 Jetter, J. et al. Pollutant Emissions and Energy Efficiency under Controlled Conditions for
18
Household Biomass Cookstoves and Implications for Metrics Useful in Setting International Test
19
Standards. Environmental Science & Technology 46, 10827-10834, doi:10.1021/es301693f
20
(2012).
21
39 ESA. European Space Agency GlobCover Portal, <http://due.esrin.esa.int/globcover/> (2011).
22
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
13
40 FAO. Global Ecological Zones, <http://www.fao.org/geonetwork/srv/en/metadata.show?id=1255>
1
(2011).
2
41 Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by
3
carbon-density maps. Nature Climate Change 2, 182-185 (2012).
4
42 Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three
5
continents. Proceedings of the National Academy of Sciences 108, 9899-9904,
6
doi:10.1073/pnas.1019576108 (2011).
7
43 Duku, M. H., Gu, S. & Hagan, E. B. A comprehensive review of biomass resources and biofuels
8
potential in Ghana. Renewable and Sustainable Energy Reviews 15, 404-415,
9
doi:http://dx.doi.org/10.1016/j.rser.2010.09.033 (2011).
10
44 Ajoku, K. in Bioenergy for Sustainable Development in Africa (eds Rainer Janssen & Dominik
11
Rutz) Ch. 12, 131-146 (Springer Netherlands, 2012).
12
45 Carlson, K. M. et al. Committed carbon emissions, deforestation, and community land conversion
13
from oil palm plantation expansion in West Kalimantan, Indonesia. Proceedings of the National
14
Academy of Sciences 109, 7559-7564, doi:10.1073/pnas.1200452109 (2012).
15
46 Gatti, L. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric
16
measurements. Nature 506, 76-80 (2014).
17
47 An, L., Linderman, M., Qi, J., Shortridge, A. & Liu, J. Exploring complexity in a human–
18
environment system: an agent-based spatial model for multidisciplinary and multiscale
19
integration. Annals of the Association of American Geographers 95, 54-79 (2005).
20
48 Bhatt, B. P. & Sachan, M. S. Firewood consumption along an altitudinal gradient in mountain
21
villages of India. Biomass and Bioenergy 27, 69-75,
22
doi:http://dx.doi.org/10.1016/j.biombioe.2003.10.004 (2004).
23
24
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
14
1
Supplementary Information: is available in the online version of the paper.
2
Acknowledgements: This research was funded by the Global Alliance for Clean Cookstoves (GACC)
3
through a grant administered by the UN Foundation.
4
Author Contributions: RD, RB, AG and OM designed the study; RD conducted the pan-tropical
5
WISDOM analysis and constructed the NRB model; RB calculated GHG emissions and emission
6
reductions; RD, RB, AG and OM wrote the paper.
7
Author Information: The authors declare no conflicts of interest.
8
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
15
Tables
1
Table 1: Different assumptions considering the use of LCC by-products
2
Assumption
Comment
A
LCC by-products generated in accessible regions
are not utilized for woodfuel. Woodfuels are
harvested entirely from other sources. NRBA is
calculated as the quantity of non-renewable
biomass from sources unrelated to LCC.
NRBA is applicable where LCC by-products
are inaccessible to smallholders despite
being physically proximate. This might be the
case if large-scale farming or timber
extraction drives LCC on private land that
smallholders cannot enter.
B
LCC by-products generated in accessible regions
are utilized as woodfuel. Two quantities are
calculated:
NRBB1 refers to the amount of LCC by-products used
to meet woodfuel demand in a given region. By-
products of deforestation are always considered non-
renewable and by-products of afforestation are
considered renewable.
NRBB2 refers to the amount of woodfuel from other
sources required to meet demand after LCC by-
products are exhausted. LCC by-products may
meet 100% of demand so that NRBB2 = 0
The sum of NRBB1 and NRBB2 indicates the
total quantity of unsustainable woodfuel
consumption that occurs when woodfuel
users have access to LCC by-products.
These values are applicable in regions
where LCC is driven by smallholder
agriculture or regions hosting intense
commercial woodfuel extraction. Woodfuel
users may be the primary agents of LCC.
Household energy interventions can mitigate
NRBB2, but it is unclear how they would
affect NRBB1.
3
Figure Legends
4
Figure 1: Pixel-level supply-demand balance (top left), local balance (top right), and commercial
5
woodsheds (bottom right).
6
7
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
16
Figure 2: Pan-tropical expected fNRBB2 (box shows the region illustrated in Figure 1)
1
2
Figure 3: Distribution of regional population by expected fNRBB2 decile
3
4
Figure 4: Annual emissions and emission reductions resulting from fulfilling GACC’s objective of
5
100 million stoves disseminated via interventions with different priorities (bars indicate GHG
6
emissions/uptake, data points show net emissions, error bars indicate standard deviations, and
7
numbers indicate annual reductions achieved by shifting from baseline to intervention).
8
9
Figure 5: Countries with highest per capita woodfuel demand, highest expected fNRBB2, and
10
highest rate of DALYs attributable to HAP exposure
11
12
13
14
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
17
Methods
1
We use the WISDOM model36 (Supplementary Information section 1) to characterize sustainability and
2
net carbon emissions of traditional woodfuels in 90 developing countries located primarily in tropical
3
regions, using 2009 as a base year. Woodfuel demand was derived from national and sub-national
4
studies (Supplementary Information section 1) supplemented by data from the Food and Agriculture
5
Organization (FAO), International Energy Agency (IEA), and United Nations (UN)1,25,26. From these data,
6
we constructed a map of traditional woodfuel demand separated by subsistence and commercial
7
components (c). Subsistence demand occurs in rural areas, where people use woodfuels they collect
8
themselves or purchase locally. This wood is harvested within few hours’ walking distance. Commercial
9
demand originates in urban and some densely populated rural locations and is carried using motorized
10
transport over longer distances (Supplementary Information section 1).
11
12
Woodfuel supply is defined by the productivity of woody biomass, which we model as a function of
13
aboveground biomass (AGB) stock. We use recent maps of land cover and ecological zones 39,40 to
14
define a broad system of land units, including cropland and crop mosaic, which are often neglected in
15
assessments of woodfuel supply. Each land unit is assigned an AGB stock using three types of sources
16
1) AGB distribution maps, 2) geo-referenced field plots, and 3) forest inventories from known locations for
17
specific forest types (Supplementary Information section 1). AGB distribution was derived from two
18
recently released datasets41,42. To accommodate disagreements in the two datasets, we gathered data
19
from hundreds of geo-referenced field plots and forest inventories. We subtract woody components not
20
typically used for woodfuels (twigs, leaves, and stumps), to build a map of “Dendro-energy” biomass
21
(DEB) stock (Extended Data Fig. 2). We then estimate woodfuel supply as the “mean annual increment”
22
(MAI) of DEB, which we model via a functional relationship between ~2,800 spatially explicit field
23
observations of MAI and corresponding AGB (Supplementary Information section 2).
24
25
We then make adjustments for potential supply from plantations43,44 (Supplementary Information section
26
3) and accessibility. Accessibility has both legal and physical determinants. Legal accessibility is based
27
on IUCN categorization of “Protected Areas” (Supplementary Information section 3). Physical accessibility
28
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
18
is a function of the effort required to access woody biomass from a consumption site. We use an inverse
1
functions of friction in geographic space for subsistence and commercial demand (Supplementary
2
Information section 3) and map the spatial distribution of accessible DEB (Extended Data Fig. 3 and
3
Table 1).
4
5
Land cover change is accommodated by estimating the amount of DEB produced by deforestation and
6
afforestation processes based on data from FAO1 which we distribution spatially using data from Forest
7
Monitoring for Action (FORMA)37. Biomass from large-scale deforestation in remote areas of the Amazon
8
or Indonesian rain forests is often burned on site45,46. Only LCC occurring in areas that are accessible (as
9
defined above) contribute to NRB. The actual quantity of LCC by-products used as fuel is unknown. Even
10
in accessible areas, some materials may be burned in situ or left to decay. To accommodate this
11
uncertainty, we explore two variants of LCC by-product utilization (Table 1, Extended data Fig. 5).
12
13
We combine the commercial and subsistence supply-demand maps to define the minimum quantity of
14
NRB that would be required to meet existing demand (Supplementary Information section 4). This
15
assumes unsustainable harvesting occurs only after the sustainable supply in a given location has been
16
fully exploited. However, ideal management is unlikely. To simulate more realistic harvesting, we assume
17
harvesting exceeds sustainable levels in some areas even if the sustainable supply in an adjacent area
18
has not been fully exploited. To estimate the extent of this deviation, we use a proxy defined by the
19
fraction of each country’s forested area under formal management plans30 (Supplementary Information
20
section 5).
21
22
We then define local balance assuming subsistence users do not travel more than a few kilometers to
23
access woodfuels (Supplementary Information section 4)47,48 (Figure 1a and Extended Data Fig. 4). Then
24
we assess the commercial supply-demand balance in urban centers and rural regions with large deficits
25
by defining a “woodshed”, which represents the region that a commercial demand center needs to exploit
26
in order to satisfy demand assuming that the full MAI is utilized27. We assume a threshold of 12-hour one-
27
way travel. When several consumption sites are considered simultaneously, the woodshed is determined
28
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
19
by the aggregate demand from all sites (Supplementary Information section 4, Figure 1b, and Extended
1
Data Fig. 5).
2
3
Annual GHG emissions from traditional woodfuels are estimated by accounting for two flows of GHGs.
4
The first flow consists of combustion emissions including well-mixed GHGs (CO2, CH4, and N2O) and
5
SLCFs (BC, OC, CO, and VOCs). The second flow consists of CO2 sequestered by the renewable
6
fraction of harvested woodfuel. We utilize 100-yr global warming potentials (GWPs) to estimate climate
7
impacts and we derive emissions from published analyses of woodfuel combustion and charcoal
8
pyrolysis38. Sequestered CO2 comes from results of this study (Supplementary Information section 4).
9
10
To investigate the implications of GACC’s 100 million stove objective, we define scenarios representing
11
broad goals of cookstove dissemination: climate change mitigation, decreasing dependence on NRB;
12
reducing exposure to HAP and economic development. We examine the outcome of focusing specifically
13
on these objectives by targeting stove dissemination at the locations that rank among the highest in one
14
of four categories described in Supplementary Information section 6.
15
16
Nature Climate Change 5, 266–272 (2015) doi:10.1038/nclimate2491
Pre-print version -- this copy may differ from the final publication
Extended data: The Carbon Footprint of Traditional Woodfuels
Authors: Robert Bailis1*, Rudi Drigo2, Adrian Ghilardi3, Omar Masera4
Affiliations:
1 Yale School of Forestry and Environmental Studies
2 Independent Consultant
3 Center for Environmental Geography Research, National Autonomous University of Mexico
(UNAM)
4 Center for Ecosystems Research, National Autonomous University of Mexico (UNAM)
*Correspondence to: robert.bailis@yale.edu
!
!"#$%&'%(")*+",-*"./%.0%1..20-34)%5./)-67*"./%"/%899:%,;)32%./%<=3)*%>)*"6;*3)<%$$$%?!
!"#$%8'%@;/A*+.7"5;4%(>=%)*.5B%5.++3)7./2"/#%*.%*C3%0+;5*"./%.0%DE=%F.6"**"/#%
43;G3)H%*1"#)%;/2%)*-67)I%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%J!
!"#$%?'%K3#;44L%;/2%7CL)"5;44L%;553))",43%(>=%)-774L%"/54-2"/#%/;*-+;4%G3#3*;*"./%
;/2%74;/*;*"./)%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%M!
N;,43%&'%O;*"./;4A43G34%(>=%)*.5B%;/2%7+.2-5*"G"*L%FPDQI%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%R!
!"#$%J'%K.5;4%)-774LS236;/2%,;4;/53%"/%899:%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%:!
!"#$%M'%P;T.+%1..2)C32)%"/%3;5C%+3#"./%)C.1"/#%3)*"6;*32%,;4;/53%.0%(>=%,;)32%./%
5.663+5";4%1..20-34%236;/2%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&9!
!"#$%R'%OU=%0+.6%230.+3)*;*"./%;/2%U=%0+.6%;00.+3)*;*"./%%)-,A/;*"./;4%-/"*)$%N.7%
6;7%)C.1)%;,).4-*3%G;4-3)%;/2%,.**.6%6;7%)C.1)%OU=%;/2%U=%;)%73+53/*%.0%*.*;4%
1..20-34%C;+G3)*%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&&!
!"#$%V'%30OU=D%F*.7I%30OU==&W=8%F,.**.6I%%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&8!
!"#$%X'%73+%5;7"*;%OU=D%F*.7I%;/2%OU==&W=8%F,.**.6I%-)"/#%)-,A/;*"./;4%
;26"/")*+;*"G3%-/"*)%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&?!
!"#$%:'%OU=D%F*.7I%;/2%OU==&W=8%F,.**.6I%73+%;+3;%-)"/#%)-,A/;*"./;4%;26"/")*+;*"G3%
-/"*)%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&?!
!"#$%&9'%U3#"./;4%2")*+",-*"./%.0%30OU=%3)*"6;*3)%;*%)-,/;*"./;4%43G34)%)C.1"/#%
2"003+3/*%;))-67*"./)%;,.-*%*C3%-)3%.0%KYY%,LA7+.2-5*).%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&J!
GHG emissions%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&M!
!"#$%&&'%O;*"./;4%1..20-34%36"))"./)%;/2%YZ8%-7*;B3%;6./#%*C3%*.7A89%36"**3+)%
;55.-/*"/#%0.+%.G3+%X9[%.0%#4.,;4%36"))"./)%2");##+3#;*32%,L%0-341..2H%5C;+5.;4%
7+.2-5*"./%;/2%5C;+5.;4%-)3$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&M!
!"#$%&8'%O;*"./;4%1..20-34%36"))"./)%;/2%YZ8%-7*;B3%;6./#%*C3%*.7A89%36"**3+)%
;55.-/*"/#%0.+%.G3+%X9[%.0%#4.,;4%36"))"./)%2");##+3#;*32%,L%54"6;*3%0.+5"/#%;#3/*
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&M!
N;,43%8'%N.*;4%E\E%;/2%]KY!%36"))"./)%,L%1..20-34)%"/%5.67;+")./%*.%36"))"./)%
0+.6%;44%)35*.+)%"/%899:%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&R!
N;,43%?'%]-,/;*"./;4H%/;*"./;4%;/2%+3#"./;4%OU=%+3)-4*)'%P"/%^%60OU=%;/2%>_7%^%
30OU=%;)%3_74;"/32%"/%*C3%6;"/%*3_*%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%89!
%
Fig. 1: Distribution of woodfuels consumption in 2009 based on "Best Estimates"
Fig. 2: Pan-tropical DEB stock corresponding to the fraction of AGB (omitting leaves, twigs and stumps)
Fig. 3: Legally and physically accessible DEB supply including natural vegetation and plantations
Table 1: National-level DEB stock and productivity (MAI)
AGB stock
DEB
Total MAI
Legal
accessible
MAI
Legal and physically
accessible MAI
Accessible MAI inc.
plantations
Accessible MAI exc.
industrial roundwood
Regiona
Country
106 tons
103 dry tons per year
Af
Angola
5,218
4,491
111,147
107,994
68,337
68,725
68,055
S_Am
Argentina
8,014
6,917
182,272
178,616
144,194
149,222
143,340
As
Bangladesh
592
514
11,137
11,041
10,015
11,439
11,271
C_Am
Belize
453
399
4,744
3,568
2,803
2,817
2,792
Af
Benin
243
203
7,881
7,248
5,991
6,062
5,809
As
Bhutan
799
703
8,064
6,281
4,185
4,203
4,093
S_Am
Bolivia
12,703
11,152
158,344
132,187
88,354
88,432
87,865
Af
Botswana
367
311
17,377
15,749
10,945
10,945
10,885
S_Am
Brazil
114,026
99,961
1,383,730
1,223,610
801,955
840,308
767,477
As
Brunei Darussalam
142
125
1,410
1,076
811
831
768
Af
Burkina Faso
247
205
11,026
10,324
8,358
8,679
7,987
Af
Burundi
76
64
2,017
1,957
1,751
2,042
1,519
As
Cambodia
2,371
2,082
29,193
23,682
17,783
18,202
18,135
Af
Cameroon
6,478
5,676
76,957
71,498
54,677
55,238
53,948
Af
Central African
Republic
4,322
3,723
74,696
69,563
46,254
46,254
45,866
Af
Chad
718
600
26,473
25,018
18,425
18,465
18,009
S_Am
Chile
3,164
2,766
50,684
43,783
32,763
42,573
20,969
As
China
40,293
35,211
625,072
596,352
460,947
871,174
811,665
S_Am
Colombia
18,721
16,446
210,126
186,686
109,830
111,910
110,532
Af
Congo
6,254
5,497
68,873
62,731
37,590
38,009
36,832
C_Am
Costa Rica
697
611
8,613
6,959
5,528
7,106
6,340
Af
Côte d'Ivoire
839
733
12,229
10,850
10,059
10,948
10,822
C_Am
Cuba
1,651
1,418
33,121
30,826
25,781
31,828
29,276
Af
Dem. Rep. of the
Congo
37,092
32,557
431,221
404,204
287,337
287,622
284,842
C_Am
Dominican Republic
418
365
6,100
5,595
5,072
5,072
5,067
S_Am
Ecuador
3,704
3,253
43,862
38,442
26,837
27,836
26,694
C_Am
El Salvador
148
129
2,444
2,426
2,322
2,449
2,045
Af
Equatorial Guinea
615
541
6,372
5,393
4,424
4,424
4,114
Af
Eritrea
38
31
1,969
1,941
1,541
1,599
1,599
Af
Ethiopia
2,622
2,232
69,259
64,999
44,738
46,291
44,556
S_Am
French Guiana
2,046
1,801
20,733
19,641
9,552
9,561
9,505
AGB stock
DEB
Total MAI
Legal
accessible
MAI
Legal and physically
accessible MAI
Accessible MAI inc.
plantations
Accessible MAI exc.
industrial roundwood
Regiona
Country
106 tons
103 dry tons per year
Af
Gabon
5,831
5,130
60,429
59,725
35,649
35,856
33,844
Af
Gambia
25
21
732
730
597
602
535
Af
Ghana
879
752
19,947
19,009
16,160
17,417
16,644
C_Am
Guatemala
1,621
1,424
19,227
16,236
12,993
14,059
13,796
Af
Guinea
1,212
1,037
25,234
25,186
21,224
21,678
21,291
Af
Guinea-Bissau
184
158
3,612
3,612
2,816
2,820
2,742
S_Am
Guyana
4,400
3,871
47,014
45,519
24,619
24,619
24,356
C_Am
Haiti
86
74
2,072
2,069
1,847
2,021
1,880
C_Am
Honduras
1,560
1,368
19,158
17,296
13,498
13,498
13,184
As
India
15,067
13,070
267,725
259,303
225,181
304,236
290,565
As
Indonesia
33,654
29,581
373,614
343,274
208,946
232,956
204,540
C_Am
Jamaica
144
126
1,803
1,713
1,622
1,689
1,524
Af
Kenya
837
708
26,496
24,672
18,296
18,829
18,091
As
Lao People's Dem.
Rep.
4,926
4,334
52,256
49,990
37,121
38,860
38,736
Af
Lesotho
83
71
2,126
2,122
1,429
1,466
1,466
Af
Liberia
1,607
1,412
18,832
18,599
13,895
13,965
13,714
Af
Madagascar
2,692
2,332
50,695
48,448
38,348
40,683
40,534
Af
Malawi
254
215
7,060
6,256
5,168
6,293
5,461
As
Malaysia
6,640
5,839
70,629
66,176
41,470
54,372
42,404
Af
Mali
490
408
20,796
20,324
16,040
17,340
17,095
Af
Mauritania
41
35
4,060
4,060
2,899
2,926
2,926
C_Am
Mexico
12,975
11,331
203,422
196,618
162,807
181,185
178,191
Af
Mozambique
3,140
2,679
73,191
69,972
53,922
54,109
53,311
As
Myanmar
10,894
9,574
123,028
116,379
89,040
96,122
93,603
Af
Namibia
192
170
15,233
14,216
9,470
9,470
9,470
As
Nepal
1,333
1,169
18,038
16,755
13,149
13,464
12,718
C_Am
Nicaragua
1,506
1,319
18,846
16,568
12,434
12,912
12,876
Af
Niger
54
48
6,053
5,856
4,572
4,744
4,328
Af
Nigeria
2,644
2,266
61,934
59,251
50,239
51,900
46,316
As
Pakistan
336
289
13,043
12,786
10,801
12,089
10,314
C_Am
Panama
1,147
1,007
13,175
10,683
7,966
8,429
8,329
3
Papua New Guinea
9,359
8,234
100,731
100,731
50,803
51,362
49,618
S_Am
Paraguay
2,887
2,519
49,996
48,345
33,026
33,230
30,822
AGB stock
DEB
Total MAI
Legal
accessible
MAI
Legal and physically
accessible MAI
Accessible MAI inc.
plantations
Accessible MAI exc.
industrial roundwood
Regiona
Country
106 tons
103 dry tons per year
S_Am
Peru
19,632
17,252
216,544
206,658
111,051
115,784
114,975
As
Philippines
3,343
2,928
44,506
41,160
32,879
35,880
33,634
Af
Rwanda
73
62
1,860
1,657
1,422
2,772
2,054
Af
Senegal
272
228
9,501
8,550
7,053
8,519
8,046
Af
Sierra Leone
609
531
9,930
9,718
8,445
8,548
8,476
As
Singapore
2
1
30
25
25
25
25
3
Solomon Islands
485
427
5,448
5,448
3,348
3,564
2,926
Af
Somalia
414
348
19,137
19,137
13,531
13,536
13,473
Af
South Africa
2,049
1,750
59,728
58,125
48,480
54,811
43,608
As
Sri Lanka
826
725
10,942
9,614
8,493
9,695
9,332
Af
Sudan (former)
2,465
2,079
76,444
74,346
56,929
74,923
73,615
S_Am
Suriname
3,134
2,758
33,350
30,154
14,398
14,454
14,328
Af
Swaziland
59
51
1,447
1,427
1,217
1,820
1,625
As
Thailand
4,467
3,896
66,034
47,800
39,214
58,559
53,392
As
Timor-Leste
115
100
1,860
1,860
1,151
1,500
1,500
Af
Togo
144
122
4,126
3,853
3,331
3,484
3,386
C_Am
Trinidad and Tobago
85
75
958
958
881
1,042
1,014
Af
Uganda
913
782
19,589
17,120
14,635
14,887
12,525
Af
United Republic of
Tanzania
2,976
2,532
73,693
65,224
51,917
52,725
51,366
S_Am
Uruguay
652
550
15,965
15,965
13,238
18,632
14,968
S_Am
Venezuela
12,881
11,308
149,179
103,098
62,426
62,426
61,060
As
Viet Nam
4,287
3,762
53,616
51,051
42,240
67,990
64,537
Af
Zambia
2,594
2,206
63,500
55,908
39,123
39,303
38,522
Af
Zimbabwe
798
667
24,876
22,605
18,994
19,334
18,949
Total
467,045
408,428
6,449,618
5,924,184
4,181,626
4,909,677
4,615,231
a Region codes: Af = Africa; C_Am = Central America; S_Am = South America; As = Asia; 3 = Oceania
Fig. 4: Local supply/demand balance in 2009
Fig. 5: Major woodsheds in each region showing estimated balance of DEB based on commercial woodfuel demand
Fig. 6: NRB from deforestation and RB from afforestation sub-national units. Top map shows absolute values and bottom map shows
NRB and RB as percent of total woodfuel harvest
Fig. 7: efNRBA (top) efNRBB1+B2 (bottom)
In these maps, the impact of LCC by-products is apparent, particularly in regions subject to high rates of
deforestation like Central America, the Amazon Basin, and SE Asia. If by-products are not used (Scenario
A – top of Fig. 7), then few hotspots occur in those regions. However, by definition, woodfuel supplied by
deforestation is non-renewable. Thus, if LCC by-products are used as woodfuel, then those areas emerge
as major hotspots because the DEB obtained through LCC processes is sufficient to meet the majority of
the woodfuel demand.
The lower map in Fig. 7 may overemphasize the impact of NRB in deforestation hotspots. While it shows
woodfuel as 100% non-renewable, the underlying drivers of LCC are unrelated to energy demand and
would likely be unaffected by measures taken to reduce demand. In addition, if we normalize NRB by
population as in Fig. 8, or by area, as in Fig. 9, a different picture emerges. Conditions in the Amazon
Basin and SE Asia are less extreme. It is particularly noteworthy that considering NRB per unit area
causes large parts of India, which had relatively low levels of fNRB, to stand out among the worse off
regions.
Fig. 8: per capita NRBA (top) and NRBB1+B2 (bottom) using sub-national administrative units
Fig. 9: NRBA (top) and NRBB1+B2 (bottom) per area using sub-national administrative units
There is regional variation in outcome, as discussed in the main text. This is demonstrated in Fig. 10,
which shows the regional distribution of efNRB estimates at subnational levels showing different
assumptions about the use of LCC by-products.
Fig. 10: Regional distribution of efNRB estimates at subnational levels showing different
assumptions about the use of LCC by-products.
The main text gives results of our assessment assuming woodfuel harvesters did not harvest precisely
according to sustainable yields, which we defined as the “expected” or efNRB. We also carried out an
assessment assuming harvesters acted such that sustainable yields are fully exploited before any
unsustainable harvest occurred. This provides estimates of minimum or mfNRB. In addition, in the main
text, we focus primarily on national-level results and only refer to a handful of subnational outcomes. In
the following pages, we provide tables showing all subnational, national, and regional results. Table 3 lists
results of m- and efNRB in all subnational units of the pan-tropics for all scenarios.
GHG emissions
In 2009, net emissions of GHGs from traditional woodfuels were 1.0-1.2 Gt CO2e. Here we show how
these emissions break down by type of woodfuel (Fig. 11) and by climate forcing agent (Fig. 12).
Fig. 11: National woodfuel emissions and CO2 uptake among the top-20 emitters accounting for
over 80% of global emissions disaggregated by fuelwood, charcoal production and charcoal use.
Fig. 12: National woodfuel emissions and CO2 uptake among the top-20 emitters accounting for
over 80% of global emissions disaggregated by climate forcing agent
!400$
!200$
0$
200$
400$
India$
China$
Indonesia$
Ethiopia$
Pakistan$
Brazil$
Kenya$
Uganda$
Nepal$
Congo,$Dem.$Rep.$
Sudan$(former)$
Bangladesh$
Nigeria$
South$Africa$
Tanzania,$United$Rep.$
Mexico$
Viet$Nam$
Mozambique$
Thailand$
Philippines$
Mton%CO2e%
Carbon$taken$up$by$biomass$regrowth$under$each$scenario$$$$$$
Emissions$from$charcoal$consumpQon$$
Emissions$from$charcoal$producQon$
Emissions$from$fuelwood$$
Net$emissions$
!400$
!200$
0$
200$
400$
India$
China$
Indonesia$
Ethiopia$
Pakistan$
Brazil$
Kenya$
Uganda$
Nepal$
Congo,$Dem.$Rep.$
Sudan$(former)$
Bangladesh$
Nigeria$
South$Africa$
Tanzania,$United$Rep.$
Mexico$
Viet$Nam$
Mozambique$
Thailand$
Philippines$
Mton%CO2e%
CO2$uptake$ OC$ BC$
N2O$ NOx$$ NMOC$
CH4$ CO$ CO2$
Net$GHG$emissions$
Table 2: Total GHG and SLCF emissions by woodfuels in comparison to emissions from all sectors in 2009
Country/Region
Woodfuel
consumption (kton)
Woodfuel emissions (ktCO2e)
Range of CO2
uptake
Total
emissions
Range of
Woodfuel
Fuelwood
Charcoal
Fuelwood
Charcoal
production
Charcoal
consumption
Total
from all NRB
estimates
all sectors
(ktCO2e) a
contrubution to
total emissions
Angola
4179
1122
8907
3834
4151
16891
2620 - 7475
48103
5% - 16%
Argentina
3259
1318
6946
4506
4879
16330
2248 - 6149
329031
1% - 2%
Bangladesh
15081
321
32141
1096
1187
34425
18242 - 20032
204249
9% - 10%
Belize
72
1
153
3
3
159
27 - 158
1310
2% - 12%
Benin
2850
235
6075
803
870
7748
1247 - 2641
48568
3% - 5%
Bhutan
2813
46
5995
157
170
6322
3116 - 4018
6259
50% - 64%
Bolivia
1372
36
2924
123
134
3181
556 - 1396
135203
0% - 1%
Botswana
403
71
859
244
264
1367
212 - 1244
11004
2% - 11%
Brazil
70284
6144
149792
20118
22736
192646
30048 - 67056
1467005
2% - 5%
Brunei Darussalam
6
1
13
2
2
17
3 - 15
20367
0% - 0%
Burkina Faso
5427
570
11565
1948
2109
15622
5340 - 8663
23031
23% - 38%
Burundi
2426
172
5171
589
638
6397
3378 - 3972
6056
56% - 66%
Cambodia
5428
111
11568
378
409
12355
2146 - 6005
149734
1% - 4%
Cameroon
7961
214
16967
731
792
18489
3124 - 14758
90296
3% - 16%
Central African Rep.
1187
186
2529
636
688
3853
593 - 1450
460657
0.1% - 0.3%
Chad
5263
43
11217
148
160
11525
2069 - 4244
31404
7% - 14%
Chile
8348
278
17792
950
1029
19770
3318 - 3701
111533
3% - 3%
China
234635
0
500062
0
0
500062
91523 - 131720
11531663
1% - 1%
Colombia
4863
481
10363
1643
1779
13786
2187 - 6150
199101
1% - 3%
Congo, Dem. Rep.
49779
704
106090
2405
2604
111100
19034 - 41156
1077696
2% - 4%
Congo, Rep.
1289
169
2747
577
625
3950
612 - 940
40646
2% - 2%
Costa Rica
1970
11
4198
39
42
4278
740 - 1257
10727
7% - 12%
Côte D'Ivoire
7402
963
15774
3290
3562
22627
3656 - 6383
150079
2% - 4%
Cuba 1034 73 2204 249 270 2724 441 - 530 60380 1% - 1%
Country/Region
Woodfuel
consumption (kton)
Woodfuel emissions (ktCO2e)
Range of CO2
uptake
Total
emissions
Range of
Woodfuel
Fuelwood
Charcoal
Fuelwood
Charcoal
production
Charcoal
consumption
Total
from all NRB
estimates
all sectors
(ktCO2e) a
contrubution to
total emissions
Dominican Republic
1910
393
4070
1343
1454
6867
1457 - 2950
31449
5% - 9%
Ecuador
2663
85
5676
291
315
6282
1056 - 6230
52871
2% - 12%
El Salvador
2158
8
4600
27
29
4657
1027 - 2206
11889
9% - 19%
Equatorial Guinea
234
9
498
30
33
560
94 - 532
6056
2% - 9%
Eritrea
1287
128
2743
437
474
3654
2258 - 2658
4851
47% - 55%
Ethiopia
55504
1189
118292
4062
4398
126753
69348 - 85636
108731
64% - 79%
French Guiana
48
7
102
23
25
150
23 - 44
1311
2% - 3%
Gabon
564
20
1202
68
73
1343
225 - 225
14435
2% - 2%
Gambia
450
55
959
188
203
1350
491 - 681
1762
28% - 39%
Ghana
9860
1534
21014
5244
5677
31935
4874 - 12354
79469
6% - 16%
Guatemala
10416
22
22198
75
81
22353
3884 - 9777
47172
8% - 21%
Guinea
7062
340
15051
1164
1260
17475
3181 - 7712
567760
0.6% - 1.4%
Guinea-Bissau
1295
63
2759
214
232
3205
536 - 1273
2329
23% - 55%
Guyana
559
1
1192
2
2
1196
210 - 247
17148
1.2% - 1.4%
Haiti
3500
230
7460
786
851
9097
5873 - 6510
8432
70% - 77%
Honduras
5002
27
10660
92
100
10852
1878 - 7593
19341
10% - 39%
India
193459
128
412306
438
474
413217
104402 - 149126
2909258
4% - 5%
Indonesia
97110
473
206964
1616
1750
210330
61375 - 112241
2706926
2% - 4%
Jamaica
813
81
1732
277
300
2309
365 - 705
12169
3% - 6%
Kenya
11954
3027
25476
10346
11201
47023
27151 - 32204
57523
47% - 56%
Laos
3523
49
7508
167
181
7856
1377 - 3107
34473
4% - 9%
Lesotho
896
95
1910
323
350
2584
1268 - 1537
1951
65% - 79%
Liberia
3195
225
6810
770
834
8414
1364 - 3355
2846
48% - 118%
Madagascar
7774
1067
16567
3648
3950
24166
3792 - 10278
42332
9% - 24%
Malawi
3173
478
6762
1635
1770
10166
1555 - 4377
9165
17% - 48%
Malaysia
3231
6
6886
19
21
6926
1204 - 3840
376954
0.3% - 1.0%
Mali
2660
129
5669
441
477
6586
1101 - 2657
49997
2% - 5%
Country/Region
Woodfuel
consumption (kton)
Woodfuel emissions (ktCO2e)
Range of CO2
uptake
Total
emissions
Range of
Woodfuel
Fuelwood
Charcoal
Fuelwood
Charcoal
production
Charcoal
consumption
Total
from all NRB
estimates
all sectors
(ktCO2e) a
contrubution to
total emissions
Mauritania
417
180
888
614
665
2167
350 - 946
11505
3% - 8%
Mexico
13815
1038
29443
3547
3840
36831
6099 - 13703
683145
1% - 2%
Mozambique
9543
938
20338
3206
3471
27014
6243 - 13274
29996
21% - 44%
Myanmar
22136
94
47177
323
350
47850
8443 - 11129
354516
2% - 3%
Namibia
272
0
580
0
0
580
173 - 329
11459
2% - 3%
Nepal
18772
10
40008
34
37
40080
21233 - 24200
43946
48% - 55%
Nicaragua
2129
10
4538
34
37
4609
798 - 2995
14946
5% - 20%
Niger
3469
0
7394
0
0
7394
1335 - 2725
9418
14% - 29%
Nigeria
23415
3844
49904
13137
14223
77263
11725 - 45060
219671
5% - 21%
Pakistan
36485
255
77757
871
943
79572
63389 - 68569
392141
16% - 17%
Panama
661
5
1408
18
19
1445
249 - 851
16756
1% - 5%
Papua New Guinea
3744
6
7979
20
22
8022
1951 - 4053
44399
4% - 9%
Paraguay
6551
267
13962
913
988
15864
2650 - 7697
38490
7% - 20%
Peru
3980
106
8482
362
392
9236
3346 - 3902
72215
5% - 5%
Philippines
7924
1175
16887
4016
4348
25251
5097 - 8896
170779
3% - 5%
Rwanda
2633
435
5611
1486
1609
8706
5044 - 5242
6126
82% - 86%
Senegal
3120
561
6648
1918
2077
10643
1809 - 4612
21557
8% - 21%
Sierra Leone
1950
373
4155
1274
1379
6808
1017 - 2274
15812
6% - 14%
Singapore
1
16
2
54
58
113
80 - 88
51609
0.2% - 0.2%
Solomon Islands
71
1
151
4
5
160
27 - 160
4494
1% - 4%
Somalia
3854
873
8214
2985
3232
14432
4469 - 8570
21400
21% - 40%
South Africa
18954
1286
40396
4394
4757
49547
9182 - 17499
467681
2% - 4%
Sri Lanka
6718
11
14319
37
40
14396
2853 - 5719
33394
9% - 17%
Sudan (former)
11006
1812
23456
6195
6707
36358
12358 - 18190
212213
6% - 9%
Suriname
111
2
236
8
9
253
43 - 81
4938
1% - 2%
Swaziland
472
41
1005
141
153
1299
208 - 356
2867
7% - 12%
Tanzania, United
26962
1558
57463
5324
5764
68551
14493 - 24434
69372
21% - 35%
Country/Region
Woodfuel
consumption (kton)
Woodfuel emissions (ktCO2e)
Range of CO2
uptake
Total
emissions
Range of
Woodfuel
Fuelwood
Charcoal
Fuelwood
Charcoal
production
Charcoal
consumption
Total
from all NRB
estimates
all sectors
(ktCO2e) a
contrubution to
total emissions
Rep.
Thailand
8641
3521
18415
12035
13030
43480
6001 - 6328
386775
2% - 2%
Timor-Leste
74
0
159
0
0
159
28 - 159
934
3% - 17%
Togo
1827
556
3894
1900
2057
7851
2235 - 4019
25304
9% - 16%
Trinidad and Tobago
20
2
42
6
7
55
9 - 35
55097
0.0% - 0.1%
Uganda
19910
906
42432
3097
3353
48882
25044 - 33034
49689
50% - 66%
Uruguay
886
120
1888
411
445
2744
424 - 424
34133
1% - 1%
Venezuela
2380
7
5073
24
26
5123
889 - 3121
303709
0.3% - 1.0%
Viet Nam
22856
439
48711
1501
1625
51836
8905 - 11652
338482
2.6% - 3.4%
Zambia
7878
995
16789
3400
3681
23870
4912 - 10538
76610
6% - 14%
Zimbabwe
10525
5
22430
15
17
22463
3911 - 10861
24994
16% - 43%
Asia and Oceania
682706
6662
1455007
22769
24651
1502427
401395 - 566172
19761355
2% - 3%
Latin America
148803
10754
317135
35872
39792
392800
69846 - 155391
3739502
2% - 4%
sub-Saharan Africa
329754
27165
702782
92844
100521
896148
259720 - 449433
4187427
6% - 11%
TOTAL
1171788
44585
2497355
151501
164981
1181857
734871 - 1181857
27713279
3% - 4%
a From EDGAR {JRC, 2014 #3652}
Table 3: Subnational, national and regional NRB results: Min = mfNRB and Exp = efNRB as explained in the main text
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Angola
Bengo
1,057
7.5
44.8
3.6
3.9
41.2
7.5
44.8
1,054
6.7
44.3
3.6
3.1
40.7
6.7
44.3
Angola
Benguela
435
5.2
35.5
4.3
0.9
31.2
5.2
35.5
435
4.9
35.3
4.3
0.6
31.0
4.9
35.3
Angola
Bie
809
4.3
31.8
8.9
0.0
22.9
8.9
31.8
809
4.1
31.6
8.9
0.0
22.7
8.9
31.6
Angola
Cabinda
103
4.0
30.4
9.1
0.0
21.3
9.1
30.4
103
4.0
30.4
9.1
0.0
21.3
9.1
30.4
Angola
Cuando Cubango
76
7.4
44.2
1.1
6.4
43.2
7.4
44.2
76
7.4
44.2
1.1
6.4
43.2
7.4
44.2
Angola
Cuanza Sul
728
4.7
33.5
5.7
0.0
27.8
5.7
33.5
728
4.3
33.2
5.7
0.0
27.5
5.7
33.2
Angola
Cunene
134
7.3
43.6
0.2
7.1
43.4
7.3
43.6
134
7.3
43.6
0.2
7.1
43.4
7.3
43.6
Angola
Huambo
1,530
3.4
28.3
2.5
1.0
25.9
3.4
28.3
1,535
3.0
28.0
2.4
0.5
25.5
3.0
28.0
Angola
Huila
481
5.5
36.3
2.7
2.7
33.6
5.5
36.3
482
5.4
36.3
2.7
2.7
33.6
5.4
36.3
Angola
Kuanza Norte
793
4.3
31.9
7.1
0.0
24.9
7.1
31.9
793
3.6
31.5
7.1
0.0
24.4
7.1
31.5
Angola
Luanda
223
3.7
29.4
0.3
3.4
29.1
3.7
29.4
223
3.7
29.4
0.3
3.4
29.1
3.7
29.4
Angola
Lunda Norte
192
6.6
40.9
4.5
2.1
36.4
6.6
40.9
192
6.6
40.9
4.5
2.1
36.4
6.6
40.9
Angola
Lunda Sul
83
7.1
42.7
4.1
3.0
38.6
7.1
42.7
83
7.0
42.7
4.1
3.0
38.6
7.0
42.7
Angola
Malanje
578
5.0
34.5
8.4
0.0
26.2
8.4
34.5
578
4.9
34.4
8.4
0.0
26.1
8.4
34.4
Angola
Moxico
195
6.9
41.9
3.9
3.0
38.1
6.9
41.9
195
6.9
41.9
3.9
3.0
38.1
6.9
41.9
Angola
Namibe
20
7.3
44.0
1.2
6.2
42.8
7.3
44.0
20
7.0
43.8
1.2
5.8
42.7
7.0
43.8
Angola
Uige
531
5.0
34.6
19.5
0.0
15.0
19.5
34.6
531
4.9
34.5
19.5
0.0
15.0
19.5
34.5
Angola
Zaire
342
7.5
44.6
2.3
5.2
42.3
7.5
44.6
341
6.8
44.3
2.3
4.5
42.0
6.8
44.3
Angola tot
8,310
5.1
35.1
5.6
1.5
29.5
7.1
35.1
8,310
4.7
34.9
5.6
1.3
29.2
6.9
34.9
Argentina
Buenos Aires
1,347
0.0
24.1
8.0
0.0
16.2
8.0
24.1
1,379
0.0
23.7
7.8
0.0
15.9
7.8
23.7
Argentina
Buenos Aires D.f.
5
0.0
12.1
0.6
0.0
11.5
0.6
12.1
5
0.0
12.4
0.6
0.0
11.8
0.6
12.4
Argentina
Catamarca
66
0.0
24.8
13.7
0.0
11.1
13.7
24.8
66
0.0
24.8
13.7
0.0
11.1
13.7
24.8
Argentina
Chaco
289
0.0
25.9
17.8
0.0
8.0
17.8
25.9
288
0.0
25.1
17.9
0.0
7.2
17.9
25.1
Argentina
Chubut
52
0.0
19.5
10.9
0.0
8.7
10.9
19.5
52
0.0
19.8
10.8
0.0
9.0
10.8
19.8
Argentina
Cordoba
1,525
0.0
30.9
4.3
0.0
26.6
4.3
30.9
1,506
0.0
29.2
4.3
0.0
24.9
4.3
29.2
Argentina
Corrientes
192
0.0
24.5
6.7
0.0
17.8
6.7
24.5
193
0.0
24.4
6.6
0.0
17.7
6.6
24.4
Argentina
Entre Rios
1,050
0.0
31.5
5.7
0.0
25.8
5.7
31.5
1,044
0.0
29.8
5.7
0.0
24.0
5.7
29.8
Argentina
Formosa
112
0.0
21.8
30.8
0.0
0.0
30.8
30.8
112
0.0
22.0
30.7
0.0
0.0
30.7
30.7
Argentina
Jujuy
94
0.0
17.8
31.4
0.0
0.0
31.4
31.4
95
0.0
18.1
31.1
0.0
0.0
31.1
31.1
Argentina
La Pampa
59
0.0
23.8
7.9
0.0
15.8
7.9
23.8
59
0.0
24.0
7.9
0.0
16.1
7.9
24.0
Argentina
La Rioja
114
0.0
31.6
0.8
0.0
30.8
0.8
31.6
112
0.0
30.4
0.8
0.0
29.6
0.8
30.4
Argentina
Mendoza
208
0.0
22.7
4.7
0.0
18.0
4.7
22.7
213
0.0
22.4
4.6
0.0
17.8
4.6
22.4
Argentina
Misiones
239
0.0
20.8
54.3
0.0
0.0
54.3
54.3
239
0.0
20.6
54.2
0.0
0.0
54.2
54.2
Argentina
Neuquen
67
0.0
22.9
6.6
0.0
16.3
6.6
22.9
67
0.0
23.1
6.6
0.0
16.6
6.6
23.1
Argentina
Rio Negro
96
0.0
18.8
8.0
0.0
10.8
8.0
18.8
97
0.0
19.0
7.9
0.0
11.1
7.9
19.0
Argentina
Salta
225
0.0
23.2
28.6
0.0
0.0
28.6
28.6
226
0.0
22.9
28.5
0.0
0.0
28.5
28.5
Argentina
San Juan
62
0.0
23.9
3.7
0.0
20.2
3.7
23.9
63
0.0
23.9
3.6
0.0
20.3
3.6
23.9
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Argentina
San Luis
60
0.0
24.7
5.4
0.0
19.3
5.4
24.7
60
0.0
25.0
5.4
0.0
19.6
5.4
25.0
Argentina
Santa Cruz
43
0.0
21.0
8.1
0.0
12.9
8.1
21.0
43
0.0
21.3
8.1
0.0
13.2
8.1
21.3
Argentina
Santa Fe
1,347
0.0
29.7
5.6
0.0
24.2
5.6
29.7
1,336
0.0
28.2
5.6
0.0
22.6
5.6
28.2
Argentina
Santiago Del Estero
469
0.0
28.6
12.1
0.0
16.5
12.1
28.6
465
0.0
27.1
12.1
0.0
15.0
12.1
27.1
Argentina
Tierra Del Fuego
18
0.0
15.1
24.4
0.0
0.0
24.4
24.4
19
0.0
15.4
24.3
0.0
0.0
24.3
24.3
Argentina
Tucuman
360
0.0
25.4
11.0
0.0
14.4
11.0
25.4
360
0.0
23.9
11.0
0.0
12.9
11.0
23.9
Argentina tot
8,099
27.4
9.6
19.2
9.6
28.8
8,099
26.3
9.6
18.1
9.6
27.7
Arunachal Prad.
not available
397
0.0
0.0
0.0
0.0
0.0
0.0
0.0
339
6.3
22.2
0.0
6.3
22.2
6.3
22.2
Arunachal Prad.
not available
32
0.0
0.0
0.0
0.0
0.0
0.0
0.0
26
5.0
18.8
0.0
5.0
18.8
5.0
18.8
Arunachal Prad.
tot
429
0.0
365
0.0
Bangladesh
Barisal
749
16.7
25.5
0.0
16.7
25.4
16.7
25.5
755
15.6
24.4
0.0
15.6
24.4
15.6
24.4
Bangladesh
Chittagong
9,785
69.2
72.6
0.4
68.9
72.2
69.2
72.6
9,507
65.7
69.5
0.4
65.3
69.1
65.7
69.5
Bangladesh
Dhaka
2,109
11.5
20.8
0.0
11.5
20.8
11.5
20.8
2,114
10.8
20.2
0.0
10.8
20.2
10.8
20.2
Bangladesh
Khulna
1,545
28.9
36.7
0.2
28.7
36.4
28.9
36.7
1,781
27.4
35.3
0.2
27.3
35.2
27.4
35.3
Bangladesh
Rajshahi
2,183
5.8
15.7
0.0
5.8
15.7
5.8
15.7
2,184
5.6
15.5
0.0
5.6
15.5
5.6
15.5
Bangladesh
Sylhet
1,212
39.5
45.9
0.1
39.4
45.8
39.5
45.9
1,242
37.2
43.8
0.1
37.1
43.7
37.2
43.8
Bangladesh tot
17,584
46.6
52.3
0.2
46.4
52.1
46.6
52.3
17,584
43.6
49.6
0.2
43.4
49.4
43.6
49.6
Belize
Belize
17
0.0
0.0
96.4
0.0
0.0
96.4
96.4
17
0.0
0.0
96.5
0.0
0.0
96.5
96.5
Belize
Cayo
18
0.7
28.1
100.0
0.0
0.0
100.0
100.0
18
0.7
28.1
100.0
0.0
0.0
100.0
100.0
Belize
Corozal
16
0.3
26.2
100.0
0.0
0.0
100.0
100.0
16
0.3
26.2
100.0
0.0
0.0
100.0
100.0
Belize
Orange Walk
10
0.9
28.8
100.0
0.0
0.0
100.0
100.0
10
0.9
28.8
100.0
0.0
0.0
100.0
100.0
Belize
Stann Creek
11
0.5
27.2
100.0
0.0
0.0
100.0
100.0
11
0.5
27.2
100.0
0.0
0.0
100.0
100.0
Belize
Toledo
9
2.4
34.9
100.0
0.0
0.0
100.0
100.0
9
2.4
34.9
100.0
0.0
0.0
100.0
100.0
Belize tot
81
0.7
22.6
99.2
99.2
99.2
81
0.7
22.7
99.3
99.3
99.3
Benin
Alibori
283
4.0
20.1
4.3
0.0
15.9
4.3
20.1
283
4.0
20.1
4.3
0.0
15.9
4.3
20.1
Benin
Atakora
389
3.3
19.2
9.8
0.0
9.4
9.8
19.2
389
2.8
18.9
9.9
0.0
9.0
9.9
18.9
Benin
Atlantique
243
3.7
19.2
29.5
0.0
0.0
29.5
29.5
245
3.7
19.2
29.2
0.0
0.0
29.2
29.2
Benin
Borgou
840
2.8
20.3
13.2
0.0
7.1
13.2
20.3
835
1.6
19.3
13.2
0.0
6.0
13.2
19.3
Benin
Collines
583
2.2
18.2
21.3
0.0
0.0
21.3
21.3
582
1.2
17.3
21.3
0.0
0.0
21.3
21.3
Benin
Couffo
174
3.6
19.1
18.4
0.0
0.7
18.4
19.1
175
3.5
19.0
18.3
0.0
0.8
18.3
19.0
Benin
Donga
399
3.6
22.8
15.9
0.0
6.9
15.9
22.8
397
2.3
21.8
16.0
0.0
5.8
16.0
21.8
Benin
Littoral
65
3.7
19.2
0.0
3.7
19.2
3.7
19.2
65
3.7
19.2
0.0
3.7
19.2
3.7
19.2
Benin
Mono
113
3.7
19.2
30.3
0.0
0.0
30.3
30.3
114
3.7
19.2
29.9
0.0
0.0
29.9
29.9
Benin
Oueme
108
3.7
19.2
23.2
0.0
0.0
23.2
23.2
109
3.7
19.2
23.1
0.0
0.0
23.1
23.1
Benin
Plateau
216
2.7
18.4
27.3
0.0
0.0
27.3
27.3
217
2.0
17.8
27.2
0.0
0.0
27.2
27.2
Benin
Zou
336
2.7
18.3
20.3
0.0
0.0
20.3
20.3
337
1.9
17.7
20.2
0.0
0.0
20.2
20.2
Benin tot
3,748
3.1
19.6
17.0
0.1
4.9
17.1
21.9
3,748
2.4
19.0
17.0
0.1
4.5
17.1
21.5
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Bhutan
Bumthang
40
4.8
29.9
-0.5
4.3
29.4
4.3
29.4
40
4.8
29.9
-0.5
4.3
29.4
4.3
29.4
Bhutan
Chhukha
356
54.2
67.6
-0.2
53.9
67.4
53.9
67.4
356
53.7
67.3
-0.3
53.4
67.0
53.4
67.0
Bhutan
Dagana
166
25.8
44.6
-0.4
25.4
44.2
25.4
44.2
167
25.5
44.3
-0.4
25.1
44.0
25.1
44.0
Bhutan
Gasa
0
8.9
45.1
0.0
8.9
45.1
8.9
45.1
0
8.9
45.1
0.0
8.9
45.1
8.9
45.1
Bhutan
Ha
84
65.6
78.3
-0.2
65.4
78.1
65.4
78.1
84
65.1
78.0
-0.2
64.9
77.8
64.9
77.8
Bhutan
Lhuentse
82
9.8
34.2
-0.5
9.3
33.7
9.3
33.7
82
9.7
34.2
-0.5
9.2
33.6
9.2
33.6
Bhutan
Mongar
195
35.0
52.9
-0.4
34.6
52.5
34.6
52.5
195
34.6
52.6
-0.4
34.3
52.2
34.3
52.2
Bhutan
Paro
112
44.7
61.2
-0.3
44.4
60.9
44.4
60.9
112
44.3
60.9
-0.3
44.0
60.6
44.0
60.6
Bhutan
Pemagatshel
62
17.0
37.5
-0.5
16.4
37.0
16.4
37.0
62
16.8
37.4
-0.5
16.3
36.9
16.3
36.9
Bhutan
Punakha
49
23.1
42.5
-0.4
22.7
42.1
22.7
42.1
49
22.9
42.3
-0.4
22.5
41.9
22.5
41.9
Bhutan
Samdrup-Jonkha
259
52.1
67.0
-0.3
51.9
66.7
51.9
66.7
259
51.5
66.5
-0.3
51.2
66.3
51.2
66.3
Bhutan
Samtse
267
43.8
59.3
-0.3
43.5
59.0
43.5
59.0
268
43.2
58.8
-0.3
42.9
58.5
42.9
58.5
Bhutan
Sarpang
241
42.1
57.7
-0.3
41.8
57.4
41.8
57.4
241
41.6
57.3
-0.3
41.3
57.0
41.3
57.0
Bhutan
Thimphu
77
25.9
45.7
-0.4
25.5
45.3
25.5
45.3
77
25.6
45.5
-0.4
25.2
45.1
25.2
45.1
Bhutan
Trashi Yangtse
77
16.8
37.8
-0.4
16.4
37.4
16.4
37.4
77
16.7
37.7
-0.4
16.3
37.3
16.3
37.3
Bhutan
Trashigang
207
30.0
47.4
-0.4
29.7
47.0
29.7
47.0
207
29.7
47.2
-0.4
29.4
46.8
29.4
46.8
Bhutan
Trongsa
39
5.4
32.3
-0.5
5.0
31.8
5.0
31.8
39
5.4
32.3
-0.5
5.0
31.8
5.0
31.8
Bhutan
Tsirang
73
22.0
41.1
-0.5
21.5
40.6
21.5
40.6
73
21.9
41.0
-0.5
21.5
40.5
21.5
40.5
Bhutan
Wangdue-Phodrang
211
53.6
68.5
-0.2
53.4
68.2
53.4
68.2
210
53.2
68.2
-0.2
52.9
67.9
52.9
67.9
Bhutan
Zhemgang
179
43.9
60.3
-0.3
43.6
60.0
43.6
60.0
178
43.5
60.1
-0.3
43.2
59.7
43.2
59.7
Bhutan tot
2,777
39.6
56.4
-0.3
39.3
56.0
39.3
56.0
2,777
39.2
56.0
-0.3
38.8
55.7
38.8
55.7
Bolivia
Pando
15
3.8
31.6
50.9
0.0
0.0
50.9
50.9
15
3.8
31.6
50.9
0.0
0.0
50.9
50.9
Bolivia
Beni
79
0.0
22.8
91.2
0.0
0.0
91.2
91.2
79
0.0
22.8
91.2
0.0
0.0
91.2
91.2
Bolivia
Chuquisaca
114
2.9
28.4
0.1
2.8
28.3
2.9
28.4
114
2.9
28.4
0.1
2.8
28.3
2.9
28.4
Bolivia
Cochabamba
185
0.0
11.8
2.7
0.0
9.1
2.7
11.8
185
0.0
11.8
2.7
0.0
9.1
2.7
11.8
Bolivia
La Paz
389
0.0
0.0
0.8
0.0
0.0
0.8
0.8
389
0.0
0.0
0.8
0.0
0.0
0.8
0.8
Bolivia
Oruro
50
4.1
32.8
0.0
4.1
32.8
4.1
32.8
50
4.1
32.8
0.0
4.1
32.8
4.1
32.8
Bolivia
Potosi
132
2.4
26.9
0.0
2.4
26.9
2.4
26.9
132
2.4
26.9
0.0
2.4
26.9
2.4
26.9
Bolivia
Santa Cruz
511
0.0
0.0
57.0
0.0
0.0
57.0
57.0
511
0.0
0.0
57.0
0.0
0.0
57.0
57.0
Bolivia
Tarija
73
3.5
30.6
0.1
3.4
30.5
3.5
30.6
73
3.5
30.6
0.1
3.4
30.5
3.5
30.6
Bolivia tot
1,548
0.8
9.8
24.5
0.7
8.0
25.2
32.5
1,548
0.8
9.8
24.5
0.7
8.0
25.2
32.5
Botswana
Central
207
0.0
35.5
84.9
0.0
0.0
84.9
84.9
207
0.0
35.5
85.0
0.0
0.0
85.0
85.0
Botswana
Chobe
8
7.9
45.3
20.2
0.0
25.2
20.2
45.3
8
7.9
45.3
20.2
0.0
25.2
20.2
45.3
Botswana
Ghanzi
9
7.7
44.2
0.2
7.4
44.0
7.7
44.2
9
7.7
44.2
0.2
7.4
44.0
7.7
44.2
Botswana
Kgalagadi
12
6.3
38.9
0.0
6.3
38.9
6.3
38.9
12
6.4
38.9
0.0
6.4
38.9
6.4
38.9
Botswana
Kgatleng
79
0.0
0.0
100.0
0.0
0.0
100.0
100.0
79
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Botswana
Kweneng
98
0.0
9.1
100.0
0.0
0.0
100.0
100.0
98
0.0
9.0
100.0
0.0
0.0
100.0
100.0
Botswana
Ngamiland
37
8.4
47.4
2.3
6.2
45.1
8.4
47.4
37
8.4
47.4
2.3
6.2
45.1
8.4
47.4
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Botswana
North East
59
0.0
0.0
100.0
0.0
0.0
100.0
100.0
59
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Botswana
South-East
59
0.0
0.0
93.7
0.0
0.0
93.7
93.7
59
0.0
0.0
93.5
0.0
0.0
93.5
93.5
Botswana
Southern
110
0.0
2.7
100.0
0.0
0.0
100.0
100.0
110
0.0
2.6
100.0
0.0
0.0
100.0
100.0
Botswana tot
677
0.8
17.0
85.4
0.6
4.1
86.0
89.5
677
0.8
17.0
85.4
0.6
4.1
86.0
89.5
Brazil
Acre
263
0.0
27.6
22.0
0.0
5.6
22.0
27.6
263
0.0
28.0
21.9
0.0
6.0
21.9
28.0
Brazil
Alagoas
1,363
0.0
12.0
0.0
0.0
12.0
0.0
12.0
1,420
0.0
11.5
0.0
0.0
11.5
0.0
11.5
Brazil
Amapa
66
0.0
21.5
4.8
0.0
16.8
4.8
21.5
66
0.0
22.0
4.7
0.0
17.2
4.7
22.0
Brazil
Amazonas
892
0.0
28.8
73.4
0.0
0.0
73.4
73.4
894
0.0
29.2
73.3
0.0
0.0
73.3
73.3
Brazil
Bahia
12,404
0.0
19.1
5.8
0.0
13.3
5.8
19.1
12,372
0.0
16.9
5.8
0.0
11.1
5.8
16.9
Brazil
Ceara
7,066
0.0
14.2
0.2
0.0
14.0
0.2
14.2
7,034
0.0
10.8
0.2
0.0
10.6
0.2
10.8
Brazil
Distrito Federal
24
0.0
14.7
0.0
0.0
14.6
0.0
14.7
24
0.0
15.1
0.0
0.0
15.1
0.0
15.1
Brazil
Espirito Santo
1,236
0.0
14.4
5.5
0.0
8.9
5.5
14.4
1,238
0.0
14.2
5.5
0.0
8.7
5.5
14.2
Brazil
Goias
1,533
0.0
25.4
0.3
0.0
25.1
0.3
25.4
1,537
0.0
25.4
0.3
0.0
25.1
0.3
25.4
Brazil
Maranhao
10,655
0.0
20.8
33.3
0.0
0.0
33.3
33.3
10,653
0.0
18.2
33.3
0.0
0.0
33.3
33.3
Brazil
Mato Grosso
913
0.0
27.7
100.0
0.0
0.0
100.0
100.0
915
0.0
28.0
100.0
0.0
0.0
100.0
100.0
Brazil
Mato Grosso Do Sul
692
0.0
28.3
0.3
0.0
28.0
0.3
28.3
694
0.0
28.7
0.3
0.0
28.4
0.3
28.7
Brazil
Minas Gerais
11,861
0.0
17.1
13.1
0.0
4.0
13.1
17.1
11,849
0.0
14.7
13.1
0.0
1.6
13.1
14.7
Brazil
Para
3,627
0.0
23.7
100.0
0.0
0.0
100.0
100.0
3,637
0.0
23.9
100.0
0.0
0.0
100.0
100.0
Brazil
Paraiba
2,633
0.0
14.9
0.0
0.0
14.9
0.0
14.9
2,702
0.0
14.6
0.0
0.0
14.5
0.0
14.6
Brazil
Parana
5,878
0.0
18.4
4.7
0.0
13.7
4.7
18.4
5,865
0.0
16.2
4.7
0.0
11.5
4.7
16.2
Brazil
Pernambuco
5,054
0.0
18.0
0.0
0.0
17.9
0.0
18.0
5,084
0.0
16.0
0.0
0.0
16.0
0.0
16.0
Brazil
Piaui
6,199
0.0
22.1
1.2
0.0
20.9
1.2
22.1
6,090
0.0
17.8
1.2
0.0
16.5
1.2
17.8
Brazil
Rio De Janeiro
1,359
0.0
10.6
0.5
0.0
10.1
0.5
10.6
1,349
0.0
6.5
0.5
0.0
6.0
0.5
6.5
Brazil
Rio Grande Do Norte
1,679
0.0
15.4
0.0
0.0
15.4
0.0
15.4
1,723
0.0
14.4
0.0
0.0
14.4
0.0
14.4
Brazil
Rio Grande Do Sul
6,563
0.0
18.8
0.3
0.0
18.4
0.3
18.8
6,576
0.0
16.5
0.3
0.0
16.2
0.3
16.5
Brazil
Rondonia
945
0.0
27.5
91.7
0.0
0.0
91.7
91.7
948
0.0
27.9
91.5
0.0
0.0
91.5
91.5
Brazil
Roraima
98
0.0
31.5
7.0
0.0
24.5
7.0
31.5
98
0.0
31.9
7.0
0.0
24.9
7.0
31.9
Brazil
Santa Catarina
3,911
0.0
15.3
2.7
0.0
12.6
2.7
15.3
3,912
0.0
12.7
2.7
0.0
10.0
2.7
12.7
Brazil
Sao Paulo
3,820
0.0
12.8
4.3
0.0
8.5
4.3
12.8
3,759
0.0
8.6
4.3
0.0
4.3
4.3
8.6
Brazil
Sergipe
1,048
0.0
11.2
0.1
0.0
11.1
0.1
11.2
1,076
0.0
9.1
0.1
0.0
9.0
0.1
9.1
Brazil
Tocantins
917
0.0
26.2
4.4
0.0
21.8
4.4
26.2
920
0.0
26.5
4.4
0.0
22.1
4.4
26.5
Brazil
Name Unknown
0
0.0
35.8
0.0
0.0
35.8
0.0
35.8
0
0.0
36.2
0.0
0.0
36.2
0.0
36.2
Brazil
Name Unknown
0
0.0
35.8
0.0
0.0
35.8
0.0
35.8
0
0.0
36.2
0.0
0.0
36.2
0.0
36.2
Brazil
Name Unknown
0
0.0
35.8
0.0
0.0
35.8
0.0
35.8
0
0.0
36.2
0.0
0.0
36.2
0.0
36.2
Brazil
Name Unknown
0
0.0
35.8
0.0
0.0
35.8
0.0
35.8
0
0.0
36.2
0.0
0.0
36.2
0.0
36.2
Brazil tot
92,698
18.5
13.7
11.0
13.7
24.7
92,698
16.2
13.8
9.0
13.8
22.8
Brunei Daruss.
Belait
2
0.0
0.0
100.0
0.0
0.0
100.0
100.0
2
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Brunei Daruss.
Brunei and Muara
5
0.0
0.0
70.8
0.0
0.0
70.8
70.8
5
0.0
0.0
70.8
0.0
0.0
70.8
70.8
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Brunei Daruss.
Temburong
3
0.0
0.0
100.0
0.0
0.0
100.0
100.0
3
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Brunei Daruss.
Tutong
2
0.0
0.0
100.0
0.0
0.0
100.0
100.0
2
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Brunei Daruss.
tot
12
87.2
87.2
87.2
12
87.2
87.2
87.2
Burkina Faso
Boucle Du Mouhoun
682
8.0
29.0
27.6
0.0
1.4
27.6
29.0
693
8.5
29.4
27.1
0.0
2.3
27.1
29.4
Burkina Faso
Cascades
1,698
56.1
68.7
5.5
50.6
63.2
56.1
68.7
1,658
53.9
67.2
5.6
48.2
61.5
53.9
67.2
Burkina Faso
Centre
91
2.5
24.7
3.9
0.0
20.8
3.9
24.7
92
2.6
24.8
3.9
0.0
20.9
3.9
24.8
Burkina Faso
Centre-est
289
3.4
25.4
9.8
0.0
15.6
9.8
25.4
292
3.5
25.5
9.7
0.0
15.9
9.7
25.5
Burkina Faso
Centre-nord
334
2.5
24.7
23.1
0.0
1.6
23.1
24.7
337
2.6
24.8
22.9
0.0
1.9
22.9
24.8
Burkina Faso
Centre-ouest
679
29.5
46.1
10.6
19.0
35.6
29.5
46.1
692
28.9
45.6
10.4
18.5
35.3
28.9
45.6
Burkina Faso
Centre-sud
271
18.2
37.9
17.6
0.6
20.3
18.2
37.9
270
17.3
37.2
17.6
0.0
19.6
17.6
37.2
Burkina Faso
Est
575
20.8
40.3
16.4
4.4
23.9
20.8
40.3
579
20.3
39.9
16.3
4.0
23.6
20.3
39.9
Burkina Faso
Hauts-bassins
1,586
45.1
57.8
5.1
40.0
52.7
45.1
57.8
1,591
43.5
56.6
5.1
38.4
51.5
43.5
56.6
Burkina Faso
Nord
316
2.5
24.8
22.9
0.0
1.8
22.9
24.8
320
2.6
24.8
22.6
0.0
2.2
22.6
24.8
Burkina Faso
Plateau Central
160
2.5
24.7
6.8
0.0
18.0
6.8
24.7
161
2.6
24.8
6.7
0.0
18.1
6.7
24.8
Burkina Faso
Sahel
220
2.6
25.0
25.2
0.0
0.0
25.2
25.2
221
2.6
25.1
25.2
0.0
0.0
25.2
25.2
Burkina Faso
Sud-ouest
723
38.5
53.0
22.1
16.4
30.9
38.5
53.0
717
36.9
51.8
22.3
14.6
29.5
36.9
51.8
Burkina Faso tot
7,623
31.6
48.1
12.9
23.2
35.2
36.1
48.1
7,623
30.3
47.1
12.9
21.9
34.2
34.8
47.1
Burundi
Bubanza
71
3.6
18.6
10.2
0.0
8.4
10.2
18.6
88
17.6
30.4
8.2
9.4
22.2
17.6
30.4
Burundi
Bujumbura-Mairie
64
3.6
18.6
0.0
3.6
18.6
3.6
18.6
65
3.7
18.7
0.0
3.7
18.7
3.7
18.7
Burundi
Bujumbura-Rural
144
35.8
45.8
4.3
31.5
41.5
35.8
45.8
206
51.6
59.1
3.0
48.5
56.1
51.6
59.1
Burundi
Bururi
722
77.1
80.6
0.2
76.9
80.5
77.1
80.6
609
71.1
75.6
0.2
70.9
75.4
71.1
75.6
Burundi
Cankuzo
70
3.6
18.6
0.6
3.0
18.0
3.6
18.6
72
3.7
18.7
0.6
3.1
18.1
3.7
18.7
Burundi
Cibitoke
108
3.6
18.6
61.4
0.0
0.0
61.4
61.4
249
55.5
62.4
26.7
28.8
35.7
55.5
62.4
Burundi
Gitega
139
3.6
18.6
0.4
3.2
18.2
3.6
18.6
149
3.7
18.7
0.4
3.3
18.3
3.7
18.7
Burundi
Karuzi
95
3.6
18.6
0.5
3.2
18.1
3.6
18.6
103
3.7
18.7
0.4
3.3
18.3
3.7
18.7
Burundi
Kayanza
84
3.6
18.6
0.6
3.0
18.0
3.6
18.6
93
3.7
18.7
0.6
3.2
18.1
3.7
18.7
Burundi
Kirundo
115
3.6
18.6
0.5
3.2
18.1
3.6
18.6
127
3.7
18.7
0.4
3.3
18.3
3.7
18.7
Burundi
Makamba
526
79.3
82.5
0.2
79.1
82.3
79.3
82.5
592
80.5
83.5
0.1
80.3
83.4
80.5
83.5
Burundi
Muramvya
47
3.6
18.6
1.7
2.0
16.9
3.6
18.6
51
3.7
18.7
1.5
2.2
17.2
3.7
18.7
Burundi
Muyinga
114
3.6
18.6
0.5
3.1
18.1
3.6
18.6
124
3.7
18.7
0.5
3.2
18.2
3.7
18.7
Burundi
Mwaro
60
3.6
18.6
0.4
3.2
18.2
3.6
18.6
64
3.7
18.7
0.4
3.3
18.3
3.7
18.7
Burundi
Ngozi
107
3.6
18.6
0.6
3.1
18.0
3.6
18.6
118
3.7
18.7
0.5
3.2
18.2
3.7
18.7
Burundi
Rutana
615
85.1
87.4
0.1
85.0
87.4
85.1
87.4
368
74.3
78.3
0.1
74.2
78.2
74.3
78.3
Burundi
Ruyigi
113
3.6
18.6
0.5
3.1
18.1
3.6
18.6
116
3.7
18.7
0.5
3.2
18.2
3.7
18.7
Burundi tot
3,194
49.8
57.6
2.8
49.2
56.3
51.9
59.1
3,194
46.4
54.8
2.8
43.7
52.0
46.4
54.8
Cambodia
Banteay Meanchey
252
0.0
26.0
2.3
0.0
23.7
2.3
26.0
255
0.0
25.5
2.3
0.0
23.2
2.3
25.5
Cambodia
Battambang
474
0.0
21.5
96.4
0.0
0.0
96.4
96.4
474
0.0
20.3
96.4
0.0
0.0
96.4
96.4
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Cambodia
Kampong Cham
662
0.0
23.4
15.3
0.0
8.1
15.3
23.4
666
0.0
22.5
15.2
0.0
7.3
15.2
22.5
Cambodia
Kampong Chhnang
348
0.0
21.7
0.9
0.0
20.8
0.9
21.7
347
0.0
20.5
0.9
0.0
19.6
0.9
20.5
Cambodia
Kampong Speu
399
0.0
21.1
6.2
0.0
14.9
6.2
21.1
397
0.0
19.6
6.2
0.0
13.3
6.2
19.6
Cambodia
Kampong Thom
692
0.0
23.2
28.7
0.0
0.0
28.7
28.7
692
0.0
21.5
28.7
0.0
0.0
28.7
28.7
Cambodia
Kampot
280
0.0
23.6
17.2
0.0
6.4
17.2
23.6
279
0.0
22.4
17.2
0.0
5.1
17.2
22.4
Cambodia
Kandal
258
1.6
27.3
1.3
0.4
26.0
1.6
27.3
259
1.2
27.0
1.3
0.0
25.7
1.3
27.0
Cambodia
Koh Kong
163
0.0
22.5
100.0
0.0
0.0
100.0
100.0
162
0.0
20.8
100.0
0.0
0.0
100.0
100.0
Cambodia
Kep
10
0.0
25.4
0.2
0.0
25.2
0.2
25.4
10
0.0
24.9
0.2
0.0
24.7
0.2
24.9
Cambodia
Kratie
178
0.8
27.4
5.4
0.0
22.0
5.4
27.4
179
0.2
26.9
5.3
0.0
21.6
5.3
26.9
Cambodia
Sihanoukville
123
0.0
19.1
34.7
0.0
0.0
34.7
34.7
123
0.0
17.3
34.9
0.0
0.0
34.9
34.9
Cambodia
Mondul Kiri
19
7.0
38.3
3.9
3.1
34.4
7.0
38.3
19
7.0
38.3
3.9
3.1
34.4
7.0
38.3
Cambodia
Oddar Meanchey
86
0.0
22.8
2.5
0.0
20.3
2.5
22.8
86
0.0
21.7
2.5
0.0
19.2
2.5
21.7
Cambodia
Pailin
35
0.0
18.9
13.8
0.0
5.1
13.8
18.9
35
0.0
16.9
13.8
0.0
3.1
13.8
16.9
Cambodia
Phnom Penh
94
4.8
29.6
0.0
4.8
29.6
4.8
29.6
94
4.8
29.6
0.0
4.8
29.6
4.8
29.6
Cambodia
Preah Vihear
236
0.0
20.4
1.6
0.0
18.8
1.6
20.4
235
0.0
18.5
1.6
0.0
16.8
1.6
18.5
Cambodia
Prey Veng
216
4.6
29.4
0.0
4.5
29.4
4.6
29.4
216
4.5
29.4
0.0
4.5
29.4
4.5
29.4
Cambodia
Pursat
465
0.0
23.0
100.0
0.0
0.0
100.0
100.0
463
0.0
21.3
100.0
0.0
0.0
100.0
100.0
Cambodia
Ratanak Kiri
60
5.6
32.7
8.6
0.0
24.0
8.6
32.7
61
5.6
32.7
8.6
0.0
24.1
8.6
32.7
Cambodia
Siemreap
523
0.0
20.9
5.5
0.0
15.3
5.5
20.9
521
0.0
19.4
5.5
0.0
13.8
5.5
19.4
Cambodia
Stung Treng
49
5.9
34.1
4.2
1.7
29.9
5.9
34.1
49
5.9
34.1
4.2
1.7
29.9
5.9
34.1
Cambodia
Svay Rieng
178
2.6
28.0
0.2
2.5
27.8
2.6
28.0
181
2.3
27.7
0.2
2.1
27.6
2.3
27.7
Cambodia
Takeo
162
3.8
28.9
0.0
3.8
28.9
3.8
28.9
163
3.7
28.8
0.0
3.7
28.8
3.7
28.8
Cambodia
Nat. Admin. 1
0
9.8
49.6
0.0
9.8
49.6
9.8
49.6
0
9.8
49.6
0.0
9.8
49.6
9.8
49.6
Cambodia
Nat. Admin. 2
5
3.0
34.1
0.6
2.4
33.5
3.0
34.1
5
2.4
33.7
0.6
1.8
33.1
2.4
33.7
Cambodia tot
5,969
0.6
23.7
26.3
0.5
12.4
26.8
38.7
5,969
0.6
22.6
26.3
0.4
11.8
26.7
38.1
Cameroon
Adamaoua
472
4.2
22.9
51.7
0.0
0.0
51.7
51.7
473
4.2
22.9
51.7
0.0
0.0
51.7
51.7
Cameroon
Centre
1,912
0.0
0.0
100.0
0.0
0.0
100.0
100.0
1,908
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Cameroon
Est
405
4.9
24.6
100.0
0.0
0.0
100.0
100.0
406
4.9
24.6
100.0
0.0
0.0
100.0
100.0
Cameroon
Extreme-Nord
828
2.7
18.1
4.3
0.0
13.8
4.3
18.1
831
2.7
18.1
4.2
0.0
13.9
4.2
18.1
Cameroon
Littoral
1,401
0.0
0.0
100.0
0.0
0.0
100.0
100.0
1,397
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Cameroon
Nord
578
3.6
21.3
10.9
0.0
10.3
10.9
21.3
579
3.6
21.3
10.9
0.0
10.4
10.9
21.3
Cameroon
Nord-Ouest
921
0.0
14.6
58.7
0.0
0.0
58.7
58.7
923
0.0
14.5
58.6
0.0
0.0
58.6
58.6
Cameroon
Ouest
877
0.0
10.7
54.5
0.0
0.0
54.5
54.5
879
0.0
10.3
54.4
0.0
0.0
54.4
54.4
Cameroon
Sud
433
0.0
15.0
100.0
0.0
0.0
100.0
100.0
433
0.0
14.7
100.0
0.0
0.0
100.0
100.0
Cameroon
Sud-Ouest
1,018
0.0
3.0
100.0
0.0
0.0
100.0
100.0
1,017
0.0
2.3
100.0
0.0
0.0
100.0
100.0
Cameroon tot
8,846
0.9
9.1
73.8
2.0
73.8
75.8
8,846
0.9
9.0
73.7
2.0
73.7
75.7
Cent. Afr. Rep.
Bamingui-bangora
10
6.5
40.1
0.0
6.5
40.1
6.5
40.1
10
6.5
40.1
0.0
6.5
40.1
6.5
40.1
Cent. Afr. Rep.
Basse Kotto
100
2.8
27.0
22.4
0.0
4.6
22.4
27.0
100
2.8
27.0
22.4
0.0
4.6
22.4
27.0
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Cent. Afr. Rep.
Haut-mboumou
21
4.7
33.7
15.7
0.0
18.0
15.7
33.7
21
4.7
33.7
15.7
0.0
18.0
15.7
33.7
Cent. Afr. Rep.
Hautte-kotto
32
5.6
36.8
2.8
2.8
34.1
5.6
36.8
32
5.6
36.8
2.8
2.8
34.1
5.6
36.8
Cent. Afr. Rep.
Kemo
63
0.0
28.5
6.1
0.0
22.4
6.1
28.5
63
0.0
28.5
6.1
0.0
22.4
6.1
28.5
Cent. Afr. Rep.
Lobaye
175
0.0
15.9
29.8
0.0
0.0
29.8
29.8
175
0.0
15.9
29.8
0.0
0.0
29.8
29.8
Cent. Afr. Rep.
Mambere-kadei
131
1.5
28.7
16.6
0.0
12.1
16.6
28.7
131
1.5
28.7
16.6
0.0
12.1
16.6
28.7
Cent. Afr. Rep.
Mbomou
66
4.4
32.5
16.0
0.0
16.6
16.0
32.5
66
4.4
32.5
16.0
0.0
16.6
16.0
32.5
Cent. Afr. Rep.
Nana Grebizi
36
5.1
35.0
3.8
1.3
31.2
5.1
35.0
36
5.1
35.0
3.8
1.3
31.2
5.1
35.0
Cent. Afr. Rep.
Nana Mambere
80
3.8
30.6
7.8
0.0
22.8
7.8
30.6
80
3.8
30.6
7.8
0.0
22.8
7.8
30.6
Cent. Afr. Rep.
Ombella-mpoko
697
0.0
15.6
3.9
0.0
11.8
3.9
15.6
697
0.0
15.6
3.9
0.0
11.8
3.9
15.6
Cent. Afr. Rep.
Ouaka
96
4.8
34.1
10.4
0.0
23.7
10.4
34.1
96
4.8
34.1
10.4
0.0
23.7
10.4
34.1
Cent. Afr. Rep.
Ouham
120
4.3
32.4
4.9
0.0
27.5
4.9
32.4
120
4.3
32.4
4.9
0.0
27.5
4.9
32.4
Cent. Afr. Rep.
Ouham-pende
158
2.8
27.1
8.5
0.0
18.7
8.5
27.1
158
2.8
27.1
8.5
0.0
18.7
8.5
27.1
Cent. Afr. Rep.
Sangha Mbaere
43
3.2
28.5
100.0
0.0
0.0
100.0
100.0
43
3.2
28.5
100.0
0.0
0.0
100.0
100.0
Cent. Afr. Rep.
Vakaga
18
5.9
37.8
0.0
5.8
37.8
5.9
37.8
18
5.9
37.8
0.0
5.8
37.8
5.9
37.8
Cent. Afr. Rep.
Bangui
37
1.1
21.5
0.4
0.7
21.1
1.1
21.5
37
1.1
21.5
0.4
0.7
21.1
1.1
21.5
Cent. Afr. Rep.
tot
1,882
1.8
23.5
11.8
0.2
14.6
12.0
26.4
1,882
1.8
23.5
11.8
0.2
14.6
12.0
26.4
Chad
Biltine
152
5.5
36.1
0.5
5.0
35.5
5.5
36.1
152
5.5
36.1
0.5
5.0
35.5
5.5
36.1
Chad
Guera
244
5.1
34.4
8.3
0.0
26.1
8.3
34.4
244
5.1
34.4
8.3
0.0
26.1
8.3
34.4
Chad
Lac
82
4.4
31.8
1.4
3.1
30.4
4.4
31.8
82
4.4
31.8
1.4
3.1
30.4
4.4
31.8
Chad
Logone Occidental
376
0.0
17.8
0.9
0.0
16.9
0.9
17.8
376
0.0
17.7
0.9
0.0
16.8
0.9
17.7
Chad
Salamat
129
7.3
43.4
6.7
0.6
36.7
7.3
43.4
129
7.3
43.4
6.7
0.6
36.7
7.3
43.4
Chad
Batha Est
71
7.1
42.6
0.9
6.3
41.8
7.1
42.6
71
7.1
42.6
0.9
6.3
41.8
7.1
42.6
Chad
Batha Ouest
152
5.1
34.7
4.2
0.9
30.4
5.1
34.7
152
5.1
34.7
4.2
0.9
30.4
5.1
34.7
Chad
Borkou
1
8.6
48.5
0.0
8.6
48.5
8.6
48.5
1
8.6
48.5
0.0
8.6
48.5
8.6
48.5
Chad
Ennedi
18
8.7
48.8
0.0
8.7
48.8
8.7
48.8
18
8.7
48.8
0.0
8.7
48.8
8.7
48.8
Chad
Tibesti
1
8.7
48.9
0.0
8.7
48.9
8.7
48.9
1
8.7
48.9
0.0
8.7
48.9
8.7
48.9
Chad
Baguirmi
495
0.0
20.3
2.5
0.0
17.7
2.5
20.3
495
0.0
20.1
2.5
0.0
17.6
2.5
20.1
Chad
Daraba
118
4.7
32.9
2.9
1.8
30.0
4.7
32.9
118
4.7
32.9
2.9
1.8
30.1
4.7
32.9
Chad
Hadjer Lamis
308
3.7
28.9
1.7
2.0
27.2
3.7
28.9
308
3.7
28.9
1.7
2.0
27.2
3.7
28.9
Chad
Barl El Gazal
45
8.3
47.4
0.1
8.2
47.3
8.3
47.4
45
8.3
47.4
0.1
8.2
47.3
8.3
47.4
Chad
Kanem
197
4.3
31.4
0.5
3.9
30.9
4.3
31.4
197
4.3
31.4
0.5
3.9
30.9
4.3
31.4
Chad
Logone Oriental
402
0.0
20.9
4.9
0.0
16.0
4.9
20.9
402
0.0
20.8
4.9
0.0
15.9
4.9
20.8
Chad
Mont De Lam
147
0.0
14.2
11.3
0.0
2.9
11.3
14.2
146
0.0
14.1
11.3
0.0
2.8
11.3
14.1
Chad
Kabia
237
0.0
25.6
1.0
0.0
24.6
1.0
25.6
237
0.0
25.6
1.0
0.0
24.6
1.0
25.6
Chad
Mayo-Boneye
258
0.0
16.2
1.8
0.0
14.5
1.8
16.2
258
0.0
16.1
1.8
0.0
14.3
1.8
16.1
Chad
Mayo-Dala
317
0.0
15.7
4.7
0.0
11.0
4.7
15.7
317
0.0
15.7
4.7
0.0
10.9
4.7
15.7
Chad
Barh Koh
261
0.0
21.2
10.0
0.0
11.2
10.0
21.2
261
0.0
21.1
10.0
0.0
11.1
10.0
21.1
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Chad
Lac Iro
122
0.0
24.4
5.3
0.0
19.2
5.3
24.4
122
0.0
24.3
5.3
0.0
19.0
5.3
24.3
Chad
Mandoul
530
0.0
8.8
5.5
0.0
3.3
5.5
8.8
530
0.0
8.7
5.5
0.0
3.2
5.5
8.7
Chad
Assongha
105
3.6
28.5
3.0
0.6
25.5
3.6
28.5
105
3.6
28.5
3.0
0.6
25.5
3.6
28.5
Chad
Ouaddai
143
7.2
42.8
1.8
5.4
41.0
7.2
42.8
143
7.2
42.8
1.8
5.4
41.0
7.2
42.8
Chad
Sila
133
5.3
35.3
5.8
0.0
29.6
5.8
35.3
133
5.3
35.3
5.8
0.0
29.6
5.8
35.3
Chad
Tandjile Est
243
0.0
15.3
2.2
0.0
13.0
2.2
15.3
243
0.0
15.1
2.2
0.0
12.9
2.2
15.1
Chad
Tandjile Ouest
193
0.0
22.7
0.9
0.0
21.8
0.9
22.7
193
0.0
22.6
0.9
0.0
21.7
0.9
22.6
Chad tot
5,481
1.8
23.7
3.7
0.8
20.0
4.6
23.7
5,481
1.8
23.7
3.7
0.8
19.9
4.6
23.7
Chile
Antofagasta (ii)
152
8.5
17.5
-0.3
8.2
17.3
8.2
17.3
95
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
Chile
Araucania (ix)
1,011
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
1,926
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Chile
Atacama (iii)
158
0.0
0.0
-0.7
0.0
0.0
0.0
0.0
177
0.0
0.0
-0.6
0.0
0.0
0.0
0.0
Chile
Aysen Del Gen.d.c.
(xi)
57
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
63
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Chile
Biobio (viii)
1,948
24.8
29.8
-0.2
24.5
29.5
24.5
29.5
2,720
0.0
7.9
-0.2
0.0
7.8
0.0
7.8
Chile
Coquimbo (iv)
511
7.8
16.6
-0.2
7.5
16.4
7.5
16.4
346
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
Chile
Libertador (vi)
485
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
492
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Chile
Los Lagos (x)
925
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
1,088
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Chile
Magallanes (xii)
1,663
78.0
80.2
0.0
77.9
80.1
77.9
80.1
78
0.0
0.0
-0.8
0.0
0.0
0.0
0.0
Chile
Maule (vii)
743
0.0
4.7
-0.3
0.0
4.4
0.0
4.4
1,133
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Chile
Metropolitana (xiii)
472
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
434
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
Chile
Ocean Islands
4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Chile
Tarapaca (i)
45
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
53
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
Chile
Valparaiso (v)
1,102
21.9
26.1
-0.1
21.8
26.0
21.8
26.0
670
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Chile tot
9,278
22.3
25.3
-0.2
22.2
25.2
22.2
25.2
9,278
2.3
-0.2
2.3
2.3
China
Anhui Sheng
11,492
18.6
26.3
0.0
18.6
26.3
18.6
26.3
10,782
1.4
10.8
0.0
1.3
10.8
1.3
10.8
China
Beijing Shi
918
38.1
44.7
0.0
38.1
44.7
38.1
44.7
922
4.1
14.4
0.0
4.1
14.4
4.1
14.4
China
Chongqing Shi
9,428
14.6
22.6
0.0
14.5
22.6
14.5
22.6
10,592
1.3
10.7
0.0
1.3
10.6
1.3
10.6
China
Fujian Sheng
2,406
0.0
8.9
-4.0
0.0
4.9
0.0
4.9
2,450
0.2
9.7
-4.0
0.0
5.8
0.0
5.8
China
Gansu Sheng
4,326
3.9
13.1
0.0
3.9
13.1
3.9
13.1
4,629
0.4
10.0
0.0
0.4
10.0
0.4
10.0
China
Guangdong Sheng
7,648
5.7
14.7
-19.5
0.0
0.0
0.0
0.0
7,350
0.4
9.9
-20.3
0.0
0.0
0.0
0.0
China
Guangxi Zhuangzu
Zizhiqu
26,095
20.2
27.7
-5.0
15.2
22.8
15.2
22.8
23,629
1.4
10.8
-5.5
0.0
5.3
0.0
5.3
China
Guizhou Sheng
19,786
15.1
23.1
0.0
15.1
23.1
15.1
23.1
21,798
1.4
10.8
0.0
1.4
10.8
1.4
10.8
China
Hainan Sheng
1,454
0.0
8.9
-0.1
0.0
8.8
0.0
8.8
1,502
0.3
9.8
-0.1
0.1
9.7
0.1
9.7
China
Hebei Sheng
6,056
9.9
18.5
0.0
9.9
18.4
9.9
18.4
6,102
0.9
10.3
0.0
0.8
10.3
0.8
10.3
China
Heilongjiang Sheng
8,583
0.0
9.3
0.0
0.0
9.3
0.0
9.3
9,887
0.4
10.1
0.0
0.4
10.0
0.4
10.0
China
Henan Sheng
8,150
14.1
22.2
0.0
14.0
22.2
14.0
22.2
8,765
1.3
10.8
0.0
1.3
10.8
1.3
10.8
China
Hong Kong
6
0.0
9.0
-0.4
0.0
8.6
0.0
8.6
6
0.3
9.8
-0.4
0.0
9.4
0.0
9.4
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
China
Hubei Sheng
15,809
21.5
29.0
0.0
21.5
29.0
21.5
29.0
14,815
1.7
11.2
0.0
1.7
11.2
1.7
11.2
China
Hunan Sheng
25,776
28.7
35.5
-0.1
28.6
35.4
28.6
35.4
18,390
2.0
11.3
-0.1
1.9
11.2
1.9
11.2
China
Jiangsu Sheng
3,807
3.7
12.8
0.0
3.7
12.8
3.7
12.8
3,938
0.5
10.0
0.0
0.5
10.0
0.5
10.0
China
Jiangxi Sheng
7,694
17.4
25.2
-0.4
17.0
24.9
17.0
24.9
6,764
1.4
10.8
-0.4
0.9
10.4
0.9
10.4
China
Jilin Sheng
6,311
0.0
9.0
0.0
0.0
9.0
0.0
9.0
6,944
0.3
9.8
0.0
0.2
9.8
0.2
9.8
China
Liaoning Sheng
5,805
0.0
9.0
0.0
0.0
9.0
0.0
9.0
6,880
0.3
9.8
0.0
0.2
9.7
0.2
9.7
China
Nei Mongol Zizhiqu
5,558
0.0
10.1
0.0
0.0
10.1
0.0
10.1
5,838
0.8
10.9
0.0
0.7
10.8
0.7
10.8
China
Ningxia Huizu Zizhiqu
658
0.0
9.0
0.0
0.0
9.0
0.0
9.0
737
0.3
9.8
0.0
0.2
9.8
0.2
9.8
China
Qinghai Sheng
398
0.0
10.1
-0.1
0.0
10.0
0.0
10.0
414
0.8
10.8
-0.1
0.7
10.8
0.7
10.8
China
Shaanxi Sheng
13,982
27.4
34.8
0.0
27.4
34.8
27.4
34.8
13,524
2.6
12.5
0.0
2.6
12.5
2.6
12.5
China
Shandong Sheng
6,211
2.7
11.9
0.0
2.7
11.9
2.7
11.9
6,942
0.5
10.0
0.0
0.5
10.0
0.5
10.0
China
Shanghai Shi
49
0.0
8.9
-0.1
0.0
8.8
0.0
8.8
53
0.2
9.7
-0.1
0.2
9.7
0.2
9.7
China
Shanxi Sheng
7,405
23.9
31.2
0.0
23.8
31.1
23.8
31.1
7,531
2.1
11.6
0.0
2.1
11.5
2.1
11.5
China
Sichuan Sheng
21,766
15.9
23.9
0.0
15.9
23.9
15.9
23.9
26,433
1.6
11.0
0.0
1.6
11.0
1.6
11.0
China
Taiwan Sheng
63
0.0
10.1
-0.8
0.0
9.3
0.0
9.3
63
0.8
10.9
-0.8
0.0
10.1
0.0
10.1
China
Tianjin Shi
433
11.2
19.6
0.0
11.2
19.6
11.2
19.6
508
1.3
10.7
0.0
1.3
10.7
1.3
10.7
China
Xinjiang Uygur
Zizhiqu
2,106
0.0
10.0
0.0
0.0
10.0
0.0
10.0
2,165
0.7
10.8
0.0
0.7
10.8
0.7
10.8
China
Xizang Zizhiqu
245
1.9
14.3
0.0
1.9
14.2
1.9
14.2
248
2.7
15.0
0.0
2.6
15.0
2.6
15.0
China
Yunnan Sheng
9,404
6.8
15.7
-1.2
5.6
14.5
5.6
14.5
9,893
0.9
10.4
-1.1
0.0
9.2
0.0
9.2
China
Zhejiang Sheng
2,302
13.2
21.4
-0.3
12.9
21.1
12.9
21.1
1,634
0.4
9.9
-0.4
0.0
9.5
0.0
9.5
China tot
242,127
15.3
23.3
-1.3
14.5
22.2
14.5
22.2
242,127
1.3
10.8
-1.3
1.1
9.8
1.1
9.8
Colombia
Amazonas
14
4.2
39.6
45.2
0.0
0.0
45.2
45.2
14
4.3
39.6
45.2
0.0
0.0
45.2
45.2
Colombia
Antioquia
865
6.5
31.0
39.2
0.0
0.0
39.2
39.2
864
5.4
30.2
39.2
0.0
0.0
39.2
39.2
Colombia
Arauca
62
2.4
32.3
25.6
0.0
6.7
25.6
32.3
62
2.5
32.3
25.6
0.0
6.7
25.6
32.3
Colombia
Atlantico
108
2.7
27.2
3.6
0.0
23.6
3.6
27.2
108
2.4
27.0
3.5
0.0
23.5
3.5
27.0
Colombia
Bolivar
286
1.4
27.1
26.8
0.0
0.3
26.8
27.1
286
1.4
27.1
26.8
0.0
0.4
26.8
27.1
Colombia
Boyaca
290
2.1
27.1
30.7
0.0
0.0
30.7
30.7
290
1.9
27.0
30.7
0.0
0.0
30.7
30.7
Colombia
Buenaventura
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Colombia
Caldas
163
0.8
25.8
38.3
0.0
0.0
38.3
38.3
164
0.9
25.8
38.2
0.0
0.0
38.2
38.2
Colombia
Caqueta
126
2.1
30.7
32.0
0.0
0.0
32.0
32.0
126
2.1
30.7
32.0
0.0
0.0
32.0
32.0
Colombia
Casanare
85
3.1
34.8
18.7
0.0
16.1
18.7
34.8
85
3.1
34.9
18.7
0.0
16.2
18.7
34.9
Colombia
Cauca
386
3.3
28.2
30.6
0.0
0.0
30.6
30.6
387
2.9
27.9
30.6
0.0
0.0
30.6
30.6
Colombia
Cesar
171
1.2
27.1
20.8
0.0
6.3
20.8
27.1
172
1.2
27.1
20.8
0.0
6.4
20.8
27.1
Colombia
Choco
114
2.5
32.3
68.9
0.0
0.0
68.9
68.9
114
2.5
32.4
68.9
0.0
0.0
68.9
68.9
Colombia
Cordoba
279
0.9
26.2
21.0
0.0
5.2
21.0
26.2
279
1.0
26.3
21.0
0.0
5.3
21.0
26.3
Colombia
Cundinamarca
1,184
13.2
35.2
10.4
2.8
24.7
13.2
35.2
1,179
10.7
33.2
10.5
0.2
22.8
10.7
33.2
Colombia
Guainia
11
4.5
40.8
21.8
0.0
19.0
21.8
40.8
11
4.6
40.8
21.8
0.0
19.0
21.8
40.8
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Colombia
Guajira
89
2.1
30.8
17.6
0.0
13.1
17.6
30.8
89
2.1
30.8
17.6
0.0
13.2
17.6
30.8
Colombia
Guaviare
29
3.1
35.1
33.8
0.0
1.3
33.8
35.1
29
3.2
35.1
33.8
0.0
1.3
33.8
35.1
Colombia
Huila
186
1.2
27.2
24.1
0.0
3.1
24.1
27.2
186
1.2
27.2
24.1
0.0
3.1
24.1
27.2
Colombia
Magdalena
200
1.0
26.5
15.1
0.0
11.4
15.1
26.5
200
1.0
26.5
15.1
0.0
11.4
15.1
26.5
Colombia
Meta
128
3.8
34.5
23.2
0.0
11.3
23.2
34.5
128
3.6
34.4
23.2
0.0
11.2
23.2
34.4
Colombia
Narino
389
1.0
26.5
35.5
0.0
0.0
35.5
35.5
389
1.0
26.5
35.5
0.0
0.0
35.5
35.5
Colombia
Norte De Santander
165
1.7
28.1
52.1
0.0
0.0
52.1
52.1
165
1.6
28.1
52.0
0.0
0.0
52.0
52.0
Colombia
Putumayo
89
2.2
31.2
37.7
0.0
0.0
37.7
37.7
89
2.2
31.2
37.7
0.0
0.0
37.7
37.7
Colombia
Quindio
43
0.8
25.7
13.6
0.0
12.2
13.6
25.7
43
0.9
25.8
13.5
0.0
12.2
13.5
25.8
Colombia
Risaralda
91
0.8
25.8
32.1
0.0
0.0
32.1
32.1
92
0.9
25.8
31.9
0.0
0.0
31.9
31.9
Colombia
San Andres Y
Providencia
10
0.8
25.5
0.6
0.2
24.9
0.8
25.5
10
0.8
25.5
0.6
0.2
24.9
0.8
25.5
Colombia
Santander
285
1.2
27.3
52.2
0.0
0.0
52.2
52.2
285
1.2
27.4
52.1
0.0
0.0
52.1
52.1
Colombia
Sucre
159
0.9
26.2
11.8
0.0
14.4
11.8
26.2
160
1.0
26.2
11.8
0.0
14.4
11.8
26.2
Colombia
Tolima
246
2.9
28.2
24.9
0.0
3.3
24.9
28.2
247
2.6
28.0
24.9
0.0
3.1
24.9
28.0
Colombia
Valle Del Cauca
389
6.8
30.7
14.5
0.0
16.2
14.5
30.7
389
5.6
29.8
14.5
0.0
15.3
14.5
29.8
Colombia
Vaupes
8
4.5
40.8
44.4
0.0
0.0
44.4
44.4
8
4.6
40.8
44.4
0.0
0.0
44.4
44.4
Colombia
Vichada
27
4.9
42.1
9.6
0.0
32.5
9.6
42.1
27
4.9
42.1
9.6
0.0
32.5
9.6
42.1
Colombia tot
6,676
4.8
29.9
26.7
0.5
7.9
27.2
34.6
6,676
4.0
29.4
26.7
0.0
7.5
26.7
34.2
Congo
Bouenza
234
0.0
15.8
0.3
0.0
15.6
0.3
15.8
234
0.0
15.9
0.3
0.0
15.6
0.3
15.9
Congo
Cuvette
112
0.0
24.2
38.8
0.0
0.0
38.8
38.8
112
0.0
24.3
38.8
0.0
0.0
38.8
38.8
Congo
Cuvette Ovest
43
0.0
24.0
0.5
0.0
23.5
0.5
24.0
43
0.0
24.1
0.5
0.0
23.6
0.5
24.1
Congo
Kouilou
236
0.0
0.0
0.3
0.0
0.0
0.3
0.3
237
0.0
0.0
0.3
0.0
0.0
0.3
0.3
Congo
Lekoumou
82
0.0
23.2
0.8
0.0
22.4
0.8
23.2
82
0.0
23.2
0.8
0.0
22.5
0.8
23.2
Congo
Likouala
52
0.0
21.6
15.3
0.0
6.4
15.3
21.6
52
0.0
21.6
15.2
0.0
6.4
15.2
21.6
Congo
Niari
159
0.0
18.6
0.8
0.0
17.8
0.8
18.6
160
0.0
18.6
0.8
0.0
17.8
0.8
18.6
Congo
Plateaux
164
0.0
23.3
17.7
0.0
5.6
17.7
23.3
164
0.0
23.3
17.7
0.0
5.6
17.7
23.3
Congo
Pool
909
0.0
0.0
0.1
0.0
0.0
0.1
0.1
908
0.0
0.0
0.1
0.0
0.0
0.1
0.1
Congo
Sangha
52
0.0
20.3
7.7
0.0
12.6
7.7
20.3
52
0.0
20.3
7.7
0.0
12.7
7.7
20.3
Congo tot
2,043
9.0
4.3
5.5
4.3
9.8
2,043
9.0
4.3
5.5
4.3
9.9
Costa Rica
Alajuela
535
1.0
23.6
-0.6
0.4
23.0
0.4
23.0
527
0.0
10.8
-0.6
0.0
10.2
0.0
10.2
Costa Rica
Cartago
155
0.0
22.4
-0.6
0.0
21.9
0.0
21.9
163
0.0
14.5
-0.5
0.0
14.0
0.0
14.0
Costa Rica
Guanacaste
255
0.0
21.5
-0.8
0.0
20.6
0.0
20.6
259
0.0
22.2
-0.8
0.0
21.4
0.0
21.4
Costa Rica
Heredia
157
3.0
25.2
-0.6
2.4
24.6
2.4
24.6
143
0.0
3.7
-0.7
0.0
3.0
0.0
3.0
Costa Rica
Limon
234
0.0
21.8
-0.9
0.0
20.9
0.0
20.9
242
0.0
20.0
-0.9
0.0
19.1
0.0
19.1
Costa Rica
Puntarenas
372
0.0
22.3
-0.8
0.0
21.5
0.0
21.5
374
0.0
18.2
-0.8
0.0
17.4
0.0
17.4
Costa Rica
San Jose
312
0.7
23.1
-0.6
0.2
22.6
0.2
22.6
312
0.0
11.3
-0.6
0.0
10.8
0.0
10.8
Costa Rica tot
2,020
0.6
22.8
-0.7
0.3
22.1
0.3
22.1
2,020
14.6
-0.7
13.9
13.9
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Côte d'Ivoire
Agneby
726
0.0
10.2
0.4
0.0
9.8
0.4
10.2
718
0.0
4.1
0.4
0.0
3.7
0.4
4.1
Côte d'Ivoire
Bas Sassandra
885
1.2
21.9
0.7
0.5
21.2
1.2
21.9
895
0.1
21.1
0.7
0.0
20.4
0.7
21.1
Côte d'Ivoire
Denguele
190
5.0
28.5
0.6
4.4
27.9
5.0
28.5
190
5.1
28.5
0.6
4.5
27.9
5.1
28.5
Côte d'Ivoire
Lacs
592
0.0
7.8
0.3
0.0
7.5
0.3
7.8
577
0.0
1.5
0.3
0.0
1.2
0.3
1.5
Côte d'Ivoire
Lagunes
1,235
0.0
13.8
0.3
0.0
13.5
0.3
13.8
1,231
0.0
9.9
0.3
0.0
9.6
0.3
9.9
Côte d'Ivoire
Marahoue
452
0.0
18.1
0.3
0.0
17.8
0.3
18.1
457
0.0
15.9
0.3
0.0
15.5
0.3
15.9
Côte d'Ivoire
Moyen Comoe
325
0.0
17.7
0.6
0.0
17.1
0.6
17.7
325
0.0
15.3
0.6
0.0
14.7
0.6
15.3
Côte d'Ivoire
N'zi Comoe
911
0.0
10.9
0.6
0.0
10.4
0.6
10.9
896
0.0
5.9
0.6
0.0
5.3
0.6
5.9
Côte d'Ivoire
Savanes
640
3.9
24.8
0.2
3.8
24.6
3.9
24.8
642
4.0
24.8
0.1
3.8
24.6
4.0
24.8
Côte d'Ivoire
Sud Bandama
571
0.0
15.5
0.5
0.0
14.9
0.5
15.5
576
0.0
12.2
0.5
0.0
11.6
0.5
12.2
Côte d'Ivoire
Sud Comoe
447
0.0
15.0
0.6
0.0
14.4
0.6
15.0
448
0.0
11.6
0.6
0.0
11.0
0.6
11.6
Côte d'Ivoire
Vallee Du Bandama
797
0.0
15.1
0.2
0.0
14.9
0.2
15.1
782
0.0
12.0
0.2
0.0
11.8
0.2
12.0
Côte d'Ivoire
Zanzan
601
3.9
24.6
0.6
3.3
24.0
3.9
24.6
602
3.9
24.7
0.6
3.3
24.0
3.9
24.7
Côte d'Ivoire
18 Montagnes
615
2.7
23.0
1.1
1.6
22.0
2.7
23.0
622
2.3
22.7
1.1
1.2
21.7
2.3
22.7
Côte d'Ivoire
Moyen-Cavally
392
3.8
24.2
0.8
3.0
23.4
3.8
24.2
398
3.8
24.2
0.8
3.0
23.4
3.8
24.2
Côte d'Ivoire
Haut-sassandra
697
0.7
21.4
0.4
0.3
20.9
0.7
21.4
710
0.0
20.3
0.4
0.0
19.8
0.4
20.3
Côte d'Ivoire
Fromager
439
0.0
15.3
0.4
0.0
14.9
0.4
15.3
447
0.0
11.8
0.4
0.0
11.4
0.4
11.8
Côte d'Ivoire
Bafing
129
4.0
24.8
1.0
3.0
23.8
4.0
24.8
129
4.0
24.9
1.0
3.0
23.9
4.0
24.9
Côte d'Ivoire
Worodougou
339
3.6
25.3
0.5
3.1
24.8
3.6
25.3
339
3.5
25.2
0.5
3.0
24.7
3.5
25.2
Côte d'Ivoire tot
10,984
1.1
17.6
0.5
0.9
17.1
1.4
17.6
10,984
1.0
15.0
0.5
0.8
14.6
1.3
15.0
Cuba
Camaguey
109
0.3
4.9
-4.0
0.0
0.9
0.0
0.9
109
0.5
5.1
-4.0
0.0
1.1
0.0
1.1
Cuba
Ciego De Avila
64
0.2
4.8
-2.3
0.0
2.5
0.0
2.5
64
0.4
4.9
-2.3
0.0
2.7
0.0
2.7
Cuba
Cienfuegos
47
0.1
4.6
-1.8
0.0
2.8
0.0
2.8
48
0.3
4.8
-1.8
0.0
3.0
0.0
3.0
Cuba
Ciudad De La
Habana
47
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
48
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
Cuba
Granma
112
0.1
4.6
-1.4
0.0
3.2
0.0
3.2
112
0.3
4.8
-1.4
0.0
3.4
0.0
3.4
Cuba
Guantanamo
65
0.3
4.9
-2.0
0.0
2.9
0.0
2.9
65
0.5
5.1
-2.0
0.0
3.1
0.0
3.1
Cuba
Holguin
135
0.1
4.6
-1.9
0.0
2.8
0.0
2.8
135
0.3
4.8
-1.9
0.0
3.0
0.0
3.0
Cuba
Isla De La Juventud
14
0.5
5.2
-3.0
0.0
2.2
0.0
2.2
14
0.6
5.4
-3.0
0.0
2.4
0.0
2.4
Cuba
La Habana
173
0.0
0.0
-0.8
0.0
0.0
0.0
0.0
167
0.0
0.0
-0.8
0.0
0.0
0.0
0.0
Cuba
Las Tunas
81
0.1
4.6
-2.2
0.0
2.4
0.0
2.4
82
0.3
4.8
-2.1
0.0
2.6
0.0
2.6
Cuba
Matanzas
84
0.2
4.7
-2.5
0.0
2.3
0.0
2.3
84
0.4
4.9
-2.4
0.0
2.5
0.0
2.5
Cuba
Pinar Del Rio
116
0.0
3.3
-2.5
0.0
0.8
0.0
0.8
117
0.0
2.5
-2.5
0.0
0.0
0.0
0.0
Cuba
Sancti Spiritus
84
0.1
4.6
-1.5
0.0
3.2
0.0
3.2
84
0.3
4.8
-1.5
0.0
3.3
0.0
3.3
Cuba
Santiago De Cuba
92
0.1
4.7
-1.8
0.0
2.9
0.0
2.9
93
0.3
4.9
-1.8
0.0
3.1
0.0
3.1
Cuba
Villa Clara
113
0.1
4.6
-1.8
0.0
2.8
0.0
2.8
113
0.3
4.8
-1.8
0.0
3.0
0.0
3.0
Cuba tot
1,335
0.1
3.8
-1.9
2.0
2.0
1,335
0.3
3.9
-1.9
2.1
2.1
DR Congo
Bandundu
6,173
0.0
25.4
26.3
0.0
0.0
26.3
26.3
6,174
0.0
25.3
26.3
0.0
0.0
26.3
26.3
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
DR Congo
Bas-Congo
3,667
0.0
12.8
6.8
0.0
6.1
6.8
12.8
3,667
0.0
12.8
6.8
0.0
6.0
6.8
12.8
DR Congo
Equateur
5,563
4.9
31.5
50.2
0.0
0.0
50.2
50.2
5,563
4.9
31.5
50.2
0.0
0.0
50.2
50.2
DR Congo
Kasai-Occidental
5,096
0.0
13.6
23.8
0.0
0.0
23.8
23.8
5,096
0.0
13.6
23.8
0.0
0.0
23.8
23.8
DR Congo
Kasai-Oriental
5,298
0.0
10.9
17.2
0.0
0.0
17.2
17.2
5,297
0.0
10.8
17.2
0.0
0.0
17.2
17.2
DR Congo
Katanga
8,985
0.0
13.8
9.2
0.0
4.7
9.2
13.8
8,983
0.0
13.8
9.2
0.0
4.6
9.2
13.8
DR Congo
Kinshasa
837
0.0
20.1
3.2
0.0
16.9
3.2
20.1
837
0.0
20.1
3.2
0.0
16.9
3.2
20.1
DR Congo
Maniema
3,074
0.0
7.1
24.7
0.0
0.0
24.7
24.7
3,073
0.0
7.0
24.7
0.0
0.0
24.7
24.7
DR Congo
Nord-Kivu
4,288
0.0
5.8
15.6
0.0
0.0
15.6
15.6
4,289
0.0
5.7
15.6
0.0
0.0
15.6
15.6
DR Congo
Province Orientale
6,830
0.0
21.0
34.4
0.0
0.0
34.4
34.4
6,830
0.0
21.0
34.4
0.0
0.0
34.4
34.4
DR Congo
Sud-Kivu
2,720
0.0
15.2
16.2
0.0
0.0
16.2
16.2
2,722
0.0
15.2
16.2
0.0
0.0
16.2
16.2
DR Congo tot
52,531
0.5
16.7
22.6
1.5
22.6
24.0
52,531
0.5
16.7
22.6
1.5
22.6
24.0
Dominican Rep.
Azua
79
5.5
31.1
0.0
5.5
31.1
5.5
31.1
79
5.5
31.1
0.0
5.5
31.1
5.5
31.1
Dominican Rep.
Baoruco
31
5.1
30.6
0.0
5.1
30.6
5.1
30.6
31
5.1
30.6
0.0
5.1
30.6
5.1
30.6
Dominican Rep.
Barahona
42
5.3
30.9
0.0
5.3
30.9
5.3
30.9
42
5.3
30.9
0.0
5.3
30.9
5.3
30.9
Dominican Rep.
Dajabon
41
5.0
30.1
0.0
5.0
30.1
5.0
30.1
41
5.0
30.1
0.0
5.0
30.1
5.0
30.1
Dominican Rep.
Santo Domingo
136
7.6
32.4
0.0
7.6
32.4
7.6
32.4
136
7.6
32.4
0.0
7.6
32.4
7.6
32.4
Dominican Rep.
Duarte
237
7.9
33.1
0.0
7.9
33.1
7.9
33.1
237
7.9
33.1
0.0
7.9
33.1
7.9
33.1
Dominican Rep.
El Seibo
65
6.2
32.3
0.0
6.2
32.3
6.2
32.3
65
6.2
32.3
0.0
6.2
32.3
6.2
32.3
Dominican Rep.
Espaillat
108
7.5
32.0
0.0
7.5
32.0
7.5
32.0
108
7.5
32.0
0.0
7.5
32.0
7.5
32.0
Dominican Rep.
Independencia
29
5.2
31.0
0.0
5.2
31.0
5.2
31.0
29
5.2
31.0
0.0
5.2
31.0
5.2
31.0
Dominican Rep.
La Altagracia
82
5.0
30.2
0.0
5.0
30.2
5.0
30.2
82
5.0
30.2
0.0
5.0
30.2
5.0
30.2
Dominican Rep.
Elias Pina
40
5.1
30.6
0.0
5.1
30.6
5.1
30.6
40
5.1
30.6
0.0
5.1
30.6
5.1
30.6
Dominican Rep.
La Romana
24
5.0
30.0
0.0
5.0
30.0
5.0
30.0
24
5.0
30.0
0.0
5.0
30.0
5.0
30.0
Dominican Rep.
La Vega
242
8.2
33.6
0.0
8.2
33.6
8.2
33.6
242
8.2
33.6
0.0
8.2
33.6
8.2
33.6
Dominican Rep.
Maria Trinidad
Sanches
135
7.3
32.0
0.0
7.3
32.0
7.3
32.0
135
7.3
32.0
0.0
7.3
32.0
7.3
32.0
Dominican Rep.
Monte Cristi
73
5.8
30.6
0.0
5.8
30.6
5.8
30.6
73
5.8
30.6
0.0
5.8
30.6
5.8
30.6
Dominican Rep.
Pedernales
11
6.2
35.0
0.0
6.2
35.0
6.2
35.0
11
6.2
35.0
0.0
6.2
35.0
6.2
35.0
Dominican Rep.
Peravia
50
6.8
32.4
0.0
6.8
32.4
6.8
32.4
50
6.8
32.4
0.0
6.8
32.4
6.8
32.4
Dominican Rep.
Puerto Plata
205
8.5
35.4
0.0
8.5
35.4
8.5
35.4
205
8.5
35.4
0.0
8.5
35.4
8.5
35.4
Dominican Rep.
Salcedo
69
7.4
31.8
0.0
7.4
31.8
7.4
31.8
69
7.4
31.8
0.0
7.4
31.8
7.4
31.8
Dominican Rep.
Samana
60
5.8
30.6
0.0
5.8
30.6
5.8
30.6
60
5.8
30.6
0.0
5.8
30.6
5.8
30.6
Dominican Rep.
San Cristobal
205
7.4
31.8
0.0
7.4
31.8
7.4
31.8
205
7.4
31.8
0.0
7.4
31.8
7.4
31.8
Dominican Rep.
San Juan
96
5.1
30.5
0.0
5.1
30.5
5.1
30.5
96
5.1
30.5
0.0
5.1
30.5
5.1
30.5
Dominican Rep.
San Pedro de
Macoris
92
6.5
31.1
0.0
6.5
31.1
6.5
31.1
92
6.5
31.1
0.0
6.5
31.1
6.5
31.1
Dominican Rep.
Sanchez Ramirez
153
7.5
31.8
0.0
7.5
31.8
7.5
31.8
153
7.5
31.8
0.0
7.5
31.8
7.5
31.8
Dominican Rep.
Santiago
214
9.3
37.2
0.0
9.3
37.2
9.3
37.2
214
9.3
37.2
0.0
9.3
37.2
9.3
37.2
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Dominican Rep.
Santiago Rodriguez
66
7.9
34.3
0.0
7.9
34.3
7.9
34.3
66
7.9
34.3
0.0
7.9
34.3
7.9
34.3
Dominican Rep.
Valverde
68
6.8
31.5
0.0
6.8
31.5
6.8
31.5
68
6.8
31.5
0.0
6.8
31.5
6.8
31.5
Dominican Rep.
Hato Mayor
102
8.6
35.3
0.0
8.6
35.3
8.6
35.3
102
8.6
35.3
0.0
8.6
35.3
8.6
35.3
Dominican Rep.
Monsenor Nouel
144
9.5
37.8
0.0
9.5
37.8
9.5
37.8
144
9.4
37.8
0.0
9.4
37.8
9.4
37.8
Dominican Rep.
Monte Plata
376
8.3
33.1
0.0
8.3
33.1
8.3
33.1
376
8.3
33.1
0.0
8.3
33.1
8.3
33.1
Dominican Rep.
San José de Ocoa
78
8.9
34.2
0.0
8.9
34.2
8.9
34.2
78
8.9
34.2
0.0
8.9
34.2
8.9
34.2
Dominican Rep.
Distrito Nacional
4
5.0
30.0
0.0
5.0
30.0
5.0
30.0
4
5.0
30.0
0.0
5.0
30.0
5.0
30.0
Dominican Rep.
tot
3,358
7.5
33.0
0.0
7.5
33.0
7.5
33.0
3,358
7.5
33.0
0.0
7.5
33.0
7.5
33.0
Ecuador
Azuay
111
0.0
22.6
100.0
0.0
0.0
100.0
100.0
111
0.0
22.7
100.0
0.0
0.0
100.0
100.0
Ecuador
Bolivar
75
0.0
22.2
100.0
0.0
0.0
100.0
100.0
75
0.0
22.3
100.0
0.0
0.0
100.0
100.0
Ecuador
Canar
79
8.7
30.7
100.0
0.0
0.0
100.0
100.0
78
5.8
28.5
100.0
0.0
0.0
100.0
100.0
Ecuador
Carchi
51
0.0
23.0
100.0
0.0
0.0
100.0
100.0
52
0.0
23.1
100.0
0.0
0.0
100.0
100.0
Ecuador
Chimborazo
86
0.0
22.3
100.0
0.0
0.0
100.0
100.0
87
0.0
22.4
100.0
0.0
0.0
100.0
100.0
Ecuador
Cotopaxi
89
0.0
23.6
100.0
0.0
0.0
100.0
100.0
90
0.0
23.4
100.0
0.0
0.0
100.0
100.0
Ecuador
El Oro
129
0.0
22.2
100.0
0.0
0.0
100.0
100.0
130
0.0
22.3
100.0
0.0
0.0
100.0
100.0
Ecuador
Esmeraldas
115
0.0
25.4
100.0
0.0
0.0
100.0
100.0
115
0.0
25.6
100.0
0.0
0.0
100.0
100.0
Ecuador
Galapagos
6
0.3
34.5
0.0
0.3
34.5
0.3
34.5
6
0.5
34.6
0.0
0.5
34.6
0.5
34.6
Ecuador
Guayas
864
15.4
35.9
100.0
0.0
0.0
100.0
100.0
857
11.1
32.6
100.0
0.0
0.0
100.0
100.0
Ecuador
Imbabura
74
0.0
24.0
100.0
0.0
0.0
100.0
100.0
75
0.0
23.9
100.0
0.0
0.0
100.0
100.0
Ecuador
Loja
145
0.0
23.0
100.0
0.0
0.0
100.0
100.0
145
0.0
23.2
100.0
0.0
0.0
100.0
100.0
Ecuador
Los Rios
275
2.3
25.6
100.0
0.0
0.0
100.0
100.0
276
1.2
24.8
100.0
0.0
0.0
100.0
100.0
Ecuador
Manabi
378
0.0
22.1
100.0
0.0
0.0
100.0
100.0
379
0.0
22.3
100.0
0.0
0.0
100.0
100.0
Ecuador
Morona Santiago
57
0.0
29.0
100.0
0.0
0.0
100.0
100.0
57
0.0
29.2
100.0
0.0
0.0
100.0
100.0
Ecuador
Napo
15
0.0
26.4
100.0
0.0
0.0
100.0
100.0
15
0.0
26.6
100.0
0.0
0.0
100.0
100.0
Ecuador
Orellana
14
0.0
28.0
100.0
0.0
0.0
100.0
100.0
14
0.0
28.2
100.0
0.0
0.0
100.0
100.0
Ecuador
Pastaza
12
0.0
31.3
100.0
0.0
0.0
100.0
100.0
12
0.0
31.4
100.0
0.0
0.0
100.0
100.0
Ecuador
Pichincha
288
8.5
31.9
100.0
0.0
0.0
100.0
100.0
289
5.9
30.1
100.0
0.0
0.0
100.0
100.0
Ecuador
Sucumbios
36
0.0
30.4
100.0
0.0
0.0
100.0
100.0
36
0.0
30.6
100.0
0.0
0.0
100.0
100.0
Ecuador
Tungurahua
63
0.0
22.1
59.9
0.0
0.0
59.9
59.9
64
0.0
22.2
59.0
0.0
0.0
59.0
59.0
Ecuador
Zamora Chinchipe
16
0.0
30.1
100.0
0.0
0.0
100.0
100.0
16
0.0
30.2
100.0
0.0
0.0
100.0
100.0
Ecuador
Zona No Delimtda
37
0.0
22.4
100.0
0.0
0.0
100.0
100.0
37
0.0
22.4
100.0
0.0
0.0
100.0
100.0
Ecuador tot
3,018
5.7
28.2
99.0
0.0
0.1
99.0
99.0
3,018
4.0
27.0
98.9
0.0
0.1
98.9
99.0
El Salvador
Ahuachapan
149
21.6
40.9
14.3
7.3
26.6
21.6
40.9
148
18.8
38.8
14.4
4.4
24.5
18.8
38.8
El Salvador
Cabanas
125
22.4
40.9
7.7
14.7
33.2
22.4
40.9
125
19.5
38.7
7.8
11.7
30.9
19.5
38.7
El Salvador
Chalatenango
233
24.5
42.5
9.7
14.8
32.9
24.5
42.5
230
21.2
40.1
9.8
11.4
30.3
21.2
40.1
El Salvador
Cuscatlan
79
16.9
36.8
9.6
7.3
27.2
16.9
36.8
80
14.6
35.2
9.6
5.1
25.6
14.6
35.2
El Salvador
La Libertad
220
20.0
39.4
12.0
8.0
27.3
20.0
39.4
219
17.3
37.3
12.1
5.2
25.2
17.3
37.3
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
El Salvador
La Paz
114
11.5
32.9
10.5
0.9
22.3
11.5
32.9
115
10.0
31.8
10.4
0.0
21.4
10.4
31.8
El Salvador
La Union
148
7.7
29.7
7.8
0.0
21.9
7.8
29.7
151
7.2
29.4
7.6
0.0
21.7
7.6
29.4
El Salvador
Morazan
150
18.4
37.8
9.7
8.7
28.2
18.4
37.8
151
16.1
36.1
9.6
6.5
26.5
16.1
36.1
El Salvador
San Miguel
209
16.4
36.3
9.9
6.4
26.4
16.4
36.3
211
14.4
34.8
9.9
4.5
24.9
14.4
34.8
El Salvador
San Salvador
86
5.3
27.9
10.5
0.0
17.4
10.5
27.9
88
4.7
27.5
10.3
0.0
17.2
10.3
27.5
El Salvador
San Vicente
125
22.4
41.4
9.1
13.3
32.3
22.4
41.4
125
19.6
39.3
9.1
10.5
30.3
19.6
39.3
El Salvador
Santa Ana
206
19.6
40.1
11.0
8.7
29.2
19.6
40.1
205
17.0
38.2
11.1
5.9
27.1
17.0
38.2
El Salvador
Sonsonate
147
15.6
35.8
12.7
2.9
23.0
15.6
35.8
147
13.5
34.2
12.7
0.7
21.5
13.5
34.2
El Salvador
Usulutan
235
22.0
41.2
11.1
10.9
30.1
22.0
41.2
234
19.1
39.1
11.2
7.9
27.9
19.1
39.1
El Salvador tot
2,227
18.3
38.1
10.5
8.0
27.6
18.5
38.1
2,227
15.9
36.3
10.5
5.7
25.8
16.2
36.3
Equat. Guinea
Annobon
2
0.0
13.5
5.5
0.0
8.0
5.5
13.5
2
0.0
13.5
5.5
0.0
8.0
5.5
13.5
Equat. Guinea
Bioko Norte
19
0.0
0.0
53.3
0.0
0.0
53.3
53.3
19
0.0
0.0
53.3
0.0
0.0
53.3
53.3
Equat. Guinea
Bioko Sur
11
0.0
0.0
100.0
0.0
0.0
100.0
100.0
11
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Equat. Guinea
Centro Sur
48
0.0
20.7
100.0
0.0
0.0
100.0
100.0
48
0.0
20.7
100.0
0.0
0.0
100.0
100.0
Equat. Guinea
Kientem
58
0.0
13.6
100.0
0.0
0.0
100.0
100.0
58
0.0
13.6
100.0
0.0
0.0
100.0
100.0
Equat. Guinea
Litoral
61
0.0
0.0
92.7
0.0
0.0
92.7
92.7
61
0.0
0.0
92.8
0.0
0.0
92.8
92.8
Equat. Guinea
Welenzas
49
0.0
17.4
100.0
0.0
0.0
100.0
100.0
49
0.0
17.4
100.0
0.0
0.0
100.0
100.0
Equat. Guinea tot
247
10.7
94.0
0.0
94.0
94.0
247
10.7
94.0
0.0
94.0
94.0
Eritrea
Anseba
140
11.7
35.6
1.0
10.7
34.6
11.7
35.6
140
10.8
34.9
1.0
9.8
33.9
10.8
34.9
Eritrea
Archipelagos
4
5.6
31.7
0.0
5.6
31.7
5.6
31.7
4
5.6
31.7
0.0
5.6
31.7
5.6
31.7
Eritrea
Debub
592
59.8
70.1
1.3
58.5
68.8
59.8
70.1
603
59.7
70.0
1.3
58.4
68.7
59.7
70.0
Eritrea
Debubawi Keih Bahri
18
7.1
37.7
0.1
7.1
37.6
7.1
37.7
18
7.1
37.7
0.1
7.1
37.6
7.1
37.7
Eritrea
Gash Barka
725
66.5
75.6
1.5
65.1
74.1
66.5
75.6
715
65.7
75.0
1.5
64.2
73.5
65.7
75.0
Eritrea
Maekel
31
5.0
29.2
1.6
3.3
27.6
5.0
29.2
32
8.2
31.6
1.6
6.6
30.1
8.2
31.6
Eritrea
Semenawi Keih Bahri
298
55.6
67.5
0.8
54.8
66.6
55.6
67.5
295
54.4
66.6
0.8
53.6
65.8
54.4
66.6
Eritrea tot
1,807
56.5
68.1
1.3
55.3
66.8
56.5
68.1
1,807
55.9
67.6
1.3
54.6
66.4
55.9
67.6
Ethiopia
Addis Ababa
28
4.0
27.9
1.2
2.8
26.7
4.0
27.9
28
4.0
27.9
1.2
2.8
26.8
4.0
27.9
Ethiopia
Afar
673
17.0
39.8
1.9
15.1
37.9
17.0
39.8
679
16.8
39.7
1.9
14.9
37.7
16.8
39.7
Ethiopia
Amhara
8,742
23.2
42.4
1.8
21.4
40.6
23.2
42.4
8,845
22.9
42.2
1.8
21.1
40.4
22.9
42.2
Ethiopia
Benishangul Gumuz
3,975
75.4
82.7
0.9
74.4
81.7
75.4
82.7
3,850
74.3
81.9
1.0
73.3
80.9
74.3
81.9
Ethiopia
Dire Dawa
27
4.0
27.9
1.1
2.9
26.8
4.0
27.9
28
4.0
27.9
1.1
2.9
26.9
4.0
27.9
Ethiopia
Gambella
1,738
79.6
86.9
1.6
78.0
85.3
79.6
86.9
1,676
78.6
86.2
1.6
76.9
84.6
78.6
86.2
Ethiopia
Harari
15
4.0
27.9
0.2
3.7
27.7
4.0
27.9
16
4.0
27.9
0.2
3.8
27.7
4.0
27.9
Ethiopia
SNNP
7,714
37.3
53.2
2.4
35.0
50.9
37.3
53.2
7,800
36.8
52.8
2.4
34.5
50.5
36.8
52.8
Ethiopia
Tigray
2,728
42.0
56.7
1.6
40.4
55.1
42.0
56.7
2,752
41.4
56.2
1.6
39.7
54.6
41.4
56.2
Ethiopia
Oromia
31,872
56.9
67.9
1.6
55.3
66.4
56.9
67.9
31,829
56.0
67.3
1.6
54.4
65.7
56.0
67.3
Ethiopia
Somali
2,966
13.1
38.8
2.5
10.6
36.3
13.1
38.8
2,975
12.9
38.6
2.5
10.4
36.2
12.9
38.6
Ethiopia tot
60,478
48.1
61.6
1.7
46.3
59.9
48.1
61.6
60,478
47.2
60.9
1.7
45.4
59.2
47.2
60.9
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
French Guiana
Cayenne
45
0.0
0.0
11.1
0.0
0.0
11.1
11.1
45
0.0
0.0
11.1
0.0
0.0
11.1
11.1
French Guiana
Saint-laurent-du-
maroni
21
0.0
13.7
28.2
0.0
0.0
28.2
28.2
21
0.0
13.7
28.2
0.0
0.0
28.2
28.2
French Guiana
tot
66
4.3
16.5
16.5
16.5
66
4.4
16.5
16.5
16.5
Gabon
Estuaire
166
0.0
0.0
0.0
0.0
0.0
0.0
0.0
166
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Gabon
Haut-Ogooue
68
0.0
0.0
0.0
0.0
0.0
0.0
0.0
68
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Gabon
Moyen-Ogooue
40
0.0
0.0
0.0
0.0
0.0
0.0
0.0
40
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Gabon
Ngounie
95
0.0
0.0
0.0
0.0
0.0
0.0
0.0
95
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Gabon
Nyanga
63
0.0
0.0
0.0
0.0
0.0
0.0
0.0
63
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Gabon
Ogooue-Ivindo
49
0.0
0.0
0.0
0.0
0.0
0.0
0.0
49
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Gabon
Ogooue-lolo
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Gabon
Ogooue-Maritime
28
0.0
0.0
0.0
0.0
0.0
0.0
0.0
28
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Gabon
Woleu-Ntem
81
0.0
0.0
0.0
0.0
0.0
0.0
0.0
81
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Gabon tot
635
0.0
635
0.0
Gambia
Banjul
1
2.4
23.4
-0.2
2.2
23.2
2.2
23.2
1
2.4
23.4
-0.2
2.2
23.2
2.2
23.2
Gambia
Central River
122
15.5
33.7
-0.6
15.0
33.2
15.0
33.2
123
15.3
33.6
-0.6
14.8
33.0
14.8
33.0
Gambia
Kombo Saint Mary
9
2.4
23.4
-0.2
2.2
23.2
2.2
23.2
9
2.4
23.4
-0.2
2.3
23.3
2.3
23.3
Gambia
Lower River
159
50.3
61.5
-0.3
50.1
61.2
50.1
61.2
156
48.8
60.3
-0.3
48.6
60.1
48.6
60.1
Gambia
North Bank
92
10.7
30.1
-0.5
10.2
29.6
10.2
29.6
92
10.4
29.8
-0.5
9.9
29.3
9.9
29.3
Gambia
Upper River
90
3.1
23.9
-0.5
2.5
23.4
2.5
23.4
91
3.2
24.1
-0.5
2.7
23.5
2.7
23.5
Gambia
Western
173
31.4
46.2
-0.3
31.1
45.9
31.1
45.9
175
30.9
45.8
-0.3
30.6
45.5
30.6
45.5
Gambia tot
647
25.7
41.9
-0.4
25.3
41.5
25.3
41.5
647
25.0
41.3
-0.4
24.6
40.9
24.6
40.9
Ghana
Ashanti
2,235
9.0
28.3
21.8
0.0
6.5
21.8
28.3
2,309
7.1
26.9
21.1
0.0
5.7
21.1
26.9
Ghana
Brong Ahafo
2,623
10.1
29.5
15.9
0.0
13.6
15.9
29.5
2,663
7.9
27.7
15.6
0.0
12.1
15.6
27.7
Ghana
Central
884
7.2
26.8
21.5
0.0
5.4
21.5
26.8
926
6.0
25.9
20.5
0.0
5.4
20.5
25.9
Ghana
Eastern
1,494
7.1
26.6
20.8
0.0
5.9
20.8
26.6
1,549
6.0
25.7
20.1
0.0
5.7
20.1
25.7
Ghana
Greater Accra
143
4.1
24.2
6.4
0.0
17.8
6.4
24.2
147
4.1
24.2
6.2
0.0
18.0
6.2
24.2
Ghana
Northern
2,462
10.0
31.1
7.6
2.4
23.5
10.0
31.1
2,415
7.9
29.3
7.7
0.1
21.6
7.9
29.3
Ghana
Upper East
353
4.3
24.3
4.3
0.0
20.0
4.3
24.3
358
4.2
24.1
4.3
0.0
19.8
4.3
24.1
Ghana
Upper West
818
10.5
31.4
7.1
3.4
24.3
10.5
31.4
545
5.8
26.5
10.6
0.0
15.9
10.6
26.5
Ghana
Volta
1,309
6.8
26.3
13.3
0.0
12.9
13.3
26.3
1,334
5.8
25.4
13.1
0.0
12.4
13.1
25.4
Ghana
Western
3,144
12.4
32.3
30.4
0.0
1.9
30.4
32.3
3,217
9.4
30.0
29.7
0.0
0.3
29.7
30.0
Ghana tot
15,465
9.5
29.4
18.1
0.6
11.3
18.7
29.4
15,465
7.4
27.7
18.1
0.0
9.5
18.1
27.7
Guatemala
Guatemala
281
6.9
30.1
24.9
0.0
5.2
24.9
30.1
290
5.1
28.7
24.1
0.0
4.6
24.1
28.7
Guatemala
El Progreso
183
10.1
33.5
25.2
0.0
8.3
25.2
33.5
185
6.0
30.5
25.0
0.0
5.5
25.0
30.5
Guatemala
Sacatepequez
76
5.6
29.1
29.4
0.0
0.0
29.4
29.4
78
4.7
28.5
28.3
0.0
0.2
28.3
28.5
Guatemala
Chimaltenango
327
7.7
30.7
31.5
0.0
0.0
31.5
31.5
335
5.2
28.8
30.7
0.0
0.0
30.7
30.7
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Guatemala
Escuintla
449
8.2
31.8
19.0
0.0
12.9
19.0
31.8
457
5.5
29.9
18.6
0.0
11.3
18.6
29.9
Guatemala
Santa Rosa
420
10.2
33.6
26.8
0.0
6.8
26.8
33.6
425
6.1
30.5
26.5
0.0
4.1
26.5
30.5
Guatemala
Solola
199
5.5
29.1
29.4
0.0
0.0
29.4
29.4
206
4.7
28.5
28.4
0.0
0.1
28.4
28.5
Guatemala
Totonicapan
162
5.2
28.9
21.0
0.0
7.8
21.0
28.9
169
4.7
28.5
20.2
0.0
8.2
20.2
28.5
Guatemala
Quetzaltenango
292
6.0
29.4
25.3
0.0
4.1
25.3
29.4
303
4.8
28.6
24.4
0.0
4.2
24.4
28.6
Guatemala
Suchitepequez
272
6.5
29.8
22.3
0.0
7.5
22.3
29.8
281
4.9
28.6
21.6
0.0
7.0
21.6
28.6
Guatemala
Retalhulehu
130
7.3
31.2
17.5
0.0
13.8
17.5
31.2
133
5.3
29.8
17.1
0.0
12.7
17.1
29.8
Guatemala
San Marcos
559
5.4
28.9
27.0
0.0
1.9
27.0
28.9
580
4.7
28.5
26.1
0.0
2.4
26.1
28.5
Guatemala
Huehuetenango
1,093
10.6
34.0
29.7
0.0
4.3
29.7
34.0
1,094
6.2
30.7
29.7
0.0
1.1
29.7
30.7
Guatemala
Quiche
1,088
13.2
38.1
32.1
0.0
6.0
32.1
38.1
1,070
7.3
33.9
32.6
0.0
1.3
32.6
33.9
Guatemala
Baja Verapaz
379
13.0
35.7
30.0
0.0
5.7
30.0
35.7
375
6.7
31.0
30.3
0.0
0.7
30.3
31.0
Guatemala
Alta Verapaz
1,843
14.0
37.5
33.8
0.0
3.7
33.8
37.5
1,809
7.2
32.6
34.5
0.0
0.0
34.5
34.5
Guatemala
Peten
710
12.9
38.5
33.6
0.0
4.9
33.6
38.5
694
7.4
34.7
34.4
0.0
0.2
34.4
34.7
Guatemala
Izabal
967
17.3
42.0
32.0
0.0
10.0
32.0
42.0
926
8.5
35.8
33.4
0.0
2.5
33.4
35.8
Guatemala
Zacapa
283
12.1
36.5
30.7
0.0
5.8
30.7
36.5
282
6.9
32.8
30.8
0.0
1.9
30.8
32.8
Guatemala
Chiquimula
304
8.4
32.2
23.1
0.0
9.0
23.1
32.2
311
5.6
30.1
22.6
0.0
7.5
22.6
30.1
Guatemala
Jalapa
247
8.2
31.4
23.7
0.0
7.7
23.7
31.4
253
5.4
29.3
23.2
0.0
6.1
23.2
29.3
Guatemala
Jutiapa
276
6.1
29.8
15.0
0.0
14.8
15.0
29.8
285
4.9
28.9
14.5
0.0
14.4
14.5
28.9
Guatemala tot
10,541
11.0
34.9
29.0
6.0
29.0
34.9
10,541
6.4
31.5
29.0
2.9
29.0
31.9
Guinea
Boke
1,369
0.0
14.9
0.6
0.0
14.3
0.6
14.9
1,300
2.8
27.5
0.6
2.2
26.9
2.8
27.5
Guinea
Conakry
210
3.1
27.6
0.1
3.0
27.4
3.1
27.6
213
4.1
28.3
0.1
4.0
28.2
4.1
28.3
Guinea
Faranah
566
4.9
30.9
0.7
4.2
30.2
4.9
30.9
566
4.9
30.9
0.7
4.2
30.2
4.9
30.9
Guinea
Kankan
1,123
4.7
30.6
0.4
4.3
30.2
4.7
30.6
1,123
4.8
30.7
0.4
4.5
30.3
4.8
30.7
Guinea
Kindia
2,058
0.0
12.0
6.3
0.0
5.7
6.3
12.0
2,191
2.2
26.8
5.9
0.0
20.9
5.9
26.8
Guinea
Labe
811
1.7
26.6
0.2
1.5
26.4
1.7
26.6
785
4.2
28.4
0.2
4.0
28.3
4.2
28.4
Guinea
Mamou
892
0.0
19.2
0.4
0.0
18.8
0.4
19.2
847
3.3
27.6
0.4
2.9
27.2
3.3
27.6
Guinea
N'Zerekore
1,316
3.7
28.1
59.0
0.0
0.0
59.0
59.0
1,318
4.2
28.5
58.9
0.0
0.0
58.9
58.9
Guinea tot
8,344
1.8
21.4
11.1
1.1
15.1
12.2
26.2
8,344
3.5
28.3
11.1
2.0
22.0
13.1
33.1
Guinea-Bissau
Bafata
259
3.0
26.9
5.4
0.0
21.5
5.4
26.9
259
2.8
26.8
5.5
0.0
21.4
5.5
26.8
Guinea-Bissau
Biombo
55
4.0
27.3
3.9
0.1
23.4
4.0
27.3
55
4.0
27.3
3.9
0.1
23.4
4.0
27.3
Guinea-Bissau
Bolama/bijagos
28
5.3
32.0
12.2
0.0
19.8
12.2
32.0
28
5.3
32.0
12.2
0.0
19.8
12.2
32.0
Guinea-Bissau
Cacheu
337
2.7
27.6
5.8
0.0
21.8
5.8
27.6
338
2.4
27.4
5.8
0.0
21.6
5.8
27.4
Guinea-Bissau
Gabu
199
4.8
30.3
3.5
1.3
26.8
4.8
30.3
199
4.8
30.3
3.5
1.3
26.8
4.8
30.3
Guinea-Bissau
Oio
452
2.2
27.0
4.5
0.0
22.6
4.5
27.0
451
1.8
26.8
4.5
0.0
22.3
4.5
26.8
Guinea-Bissau
Quinara
63
4.7
29.8
18.9
0.0
11.0
18.9
29.8
63
4.7
29.8
18.9
0.0
11.0
18.9
29.8
Guinea-Bissau
Sector Autonomo De
Bissau
15
4.0
27.3
0.8
3.2
26.4
4.0
27.3
15
4.0
27.3
0.8
3.2
26.4
4.0
27.3
Guinea-Bissau
Tombali
107
4.4
28.9
14.6
0.0
14.3
14.6
28.9
107
4.4
28.9
14.6
0.0
14.3
14.6
28.9
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Guinea-Bissau
tot
1,515
3.2
27.9
6.2
0.2
21.7
6.4
27.9
1,515
3.0
27.8
6.2
0.2
21.6
6.4
27.8
Guyana
Barima Waini
19
1.9
26.0
0.0
1.9
26.0
1.9
26.0
19
1.9
26.0
0.0
1.9
26.0
1.9
26.0
Guyana
Cuyuni/mazaruni
37
0.0
0.0
0.0
0.0
0.0
0.0
0.0
37
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Guyana
Demerara Mahaica
101
0.0
0.0
0.0
0.0
0.0
0.0
0.0
101
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Guyana
East Berbice/
corentyne
51
0.0
7.9
0.0
0.0
7.9
0.0
7.9
51
0.0
7.9
0.0
0.0
7.9
0.0
7.9
Guyana
Essequibo Isl./ west
Demerar
155
0.0
0.0
0.0
0.0
0.0
0.0
0.0
155
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Guyana
Mahaica Berbice
85
0.0
0.0
0.0
0.0
0.0
0.0
0.0
85
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Guyana
Pomeroon/supenaam
33
0.0
16.4
0.0
0.0
16.4
0.0
16.4
33
0.0
16.4
0.0
0.0
16.4
0.0
16.4
Guyana
Potaro/siparuni
8
2.5
27.6
0.0
2.5
27.6
2.5
27.6
8
2.5
27.6
0.0
2.5
27.6
2.5
27.6
Guyana
Upper Demerara/
berbice
51
0.0
0.0
0.0
0.0
0.0
0.0
0.0
51
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Guyana
Upp. Takutu/ Upp.
Essequibo
19
2.8
28.7
0.0
2.8
28.7
2.8
28.7
19
2.8
28.7
0.0
2.8
28.7
2.8
28.7
Guyana tot
559
0.2
3.9
0.0
0.2
3.9
0.2
3.9
559
0.2
3.9
0.0
0.2
3.9
0.2
3.9
Haiti
L'Artibonite
461
46.5
56.5
0.4
46.1
56.1
46.5
56.5
463
44.8
55.2
0.4
44.4
54.8
44.8
55.2
Haiti
Centre
440
55.3
63.7
0.4
54.9
63.2
55.3
63.7
453
55.0
63.5
0.4
54.6
63.0
55.0
63.5
Haiti
Nord
416
58.1
66.0
0.8
57.4
65.2
58.1
66.0
414
56.4
64.5
0.8
55.6
63.8
56.4
64.5
Haiti
Nord-Est
531
77.2
81.4
0.4
76.7
81.0
77.2
81.4
515
75.6
80.2
0.4
75.2
79.7
75.6
80.2
Haiti
Nord-Ouest
220
41.4
52.4
0.8
40.7
51.7
41.4
52.4
228
41.6
52.5
0.7
40.9
51.8
41.6
52.5
Haiti
Ouest
488
43.5
54.1
0.5
43.1
53.7
43.5
54.1
485
41.6
52.5
0.5
41.1
52.1
41.6
52.5
Haiti
Sud
559
68.9
74.7
0.4
68.6
74.4
68.9
74.7
549
67.1
73.3
0.4
66.8
72.9
67.1
73.3
Haiti
Sud-Est
278
52.3
61.3
0.5
51.8
60.8
52.3
61.3
277
50.7
59.9
0.5
50.2
59.4
50.7
59.9
Haiti
Grand'Anse
726
74.6
79.4
0.5
74.1
78.8
74.6
79.4
722
73.4
78.4
0.5
72.8
77.8
73.4
78.4
Haiti
Nippes
153
39.6
50.9
1.1
38.6
49.9
39.6
50.9
167
42.8
53.5
1.0
41.8
52.5
42.8
53.5
Haiti tot
4,272
59.6
67.2
0.5
59.1
66.6
59.6
67.2
4,272
58.2
66.0
0.5
57.7
65.5
58.2
66.0
Honduras
Atlantida
210
0.0
17.7
78.7
0.0
0.0
78.7
78.7
210
0.0
17.7
78.7
0.0
0.0
78.7
78.7
Honduras
Choluteca
265
1.0
21.8
21.0
0.0
0.8
21.0
21.8
265
1.0
21.8
21.0
0.0
0.8
21.0
21.8
Honduras
Colon
203
4.2
24.7
79.0
0.0
0.0
79.0
79.0
203
4.2
24.7
79.0
0.0
0.0
79.0
79.0
Honduras
Comayagua
421
0.0
16.8
48.6
0.0
0.0
48.6
48.6
421
0.0
16.8
48.6
0.0
0.0
48.6
48.6
Honduras
Copan
255
3.9
23.8
77.7
0.0
0.0
77.7
77.7
255
3.9
23.8
77.6
0.0
0.0
77.6
77.6
Honduras
Cortes
384
0.0
17.7
57.7
0.0
0.0
57.7
57.7
384
0.0
17.7
57.7
0.0
0.0
57.7
57.7
Honduras
Francisco Morazan
751
0.0
14.3
52.2
0.0
0.0
52.2
52.2
751
0.0
14.3
52.2
0.0
0.0
52.2
52.2
Honduras
Gracias A Dios
68
6.7
33.1
100.0
0.0
0.0
100.0
100.0
68
6.7
33.1
100.0
0.0
0.0
100.0
100.0
Honduras
Intibuca
251
0.0
19.0
70.5
0.0
0.0
70.5
70.5
251
0.0
19.0
70.5
0.0
0.0
70.5
70.5
Honduras
Islas De Bahia
15
3.9
23.8
21.7
0.0
2.1
21.7
23.8
15
3.9
23.8
21.7
0.0
2.1
21.7
23.8
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Honduras
La Paz
182
0.0
18.7
60.0
0.0
0.0
60.0
60.0
182
0.0
18.7
60.0
0.0
0.0
60.0
60.0
Honduras
Lempira
285
3.3
23.3
77.8
0.0
0.0
77.8
77.8
285
3.3
23.3
77.8
0.0
0.0
77.8
77.8
Honduras
Name Unknown
0
9.0
40.7
0.0
9.0
40.7
9.0
40.7
0
9.0
40.7
0.0
9.0
40.7
9.0
40.7
Honduras
Ocotepeque
100
3.9
23.8
95.1
0.0
0.0
95.1
95.1
100
3.9
23.8
95.1
0.0
0.0
95.1
95.1
Honduras
Olancho
454
2.9
24.2
88.0
0.0
0.0
88.0
88.0
454
2.9
24.2
88.0
0.0
0.0
88.0
88.0
Honduras
Paraiso
316
0.0
20.8
54.4
0.0
0.0
54.4
54.4
316
0.0
20.8
54.4
0.0
0.0
54.4
54.4
Honduras
Santa Barbara
467
0.0
18.7
73.6
0.0
0.0
73.6
73.6
467
0.0
18.7
73.6
0.0
0.0
73.6
73.6
Honduras
Valle
119
1.8
22.1
25.1
0.0
0.0
25.1
25.1
119
1.8
22.1
25.0
0.0
0.0
25.0
25.0
Honduras
Yoro
351
0.0
21.8
64.6
0.0
0.0
64.6
64.6
351
0.0
21.8
64.6
0.0
0.0
64.6
64.6
Honduras tot
5,097
1.1
19.9
63.6
0.0
0.0
63.6
63.7
5,097
1.1
19.9
63.6
0.0
0.0
63.6
63.7
India
Andaman and
Nicobar
344
17.4
29.2
-0.5
16.8
28.7
16.8
28.7
80
3.7
17.6
-2.3
1.4
15.3
1.4
15.3
India
Andhra Pradesh
17,820
10.7
23.5
-0.1
10.7
23.5
10.7
23.5
19,678
10.5
23.3
-0.1
10.4
23.2
10.4
23.2
India
Assam
9,148
13.3
26.4
-0.3
13.1
26.1
13.1
26.1
4,587
4.1
17.8
-0.5
3.5
17.2
3.5
17.2
India
Delhi
27
3.6
17.3
0.0
3.5
17.3
3.5
17.3
27
3.6
17.3
0.0
3.6
17.3
3.6
17.3
India
Goa
573
18.9
30.7
0.0
18.9
30.7
18.9
30.7
636
17.0
29.1
0.0
17.0
29.1
17.0
29.1
India
Gujarat
6,406
6.3
19.7
0.0
6.3
19.7
6.3
19.7
6,181
5.0
18.6
0.0
5.0
18.5
5.0
18.5
India
Haryana
1,708
5.5
19.0
0.0
5.5
19.0
5.5
19.0
1,713
5.2
18.7
0.0
5.2
18.7
5.2
18.7
India
Himachal Pradesh
2,762
10.6
23.4
0.0
10.6
23.3
10.6
23.3
2,352
7.2
20.5
0.0
7.2
20.4
7.2
20.4
India
Karnataka
15,078
9.8
22.8
0.0
9.8
22.8
9.8
22.8
17,604
9.8
22.8
0.0
9.8
22.8
9.8
22.8
India
Kerala
6,917
9.2
22.1
0.0
9.1
22.1
9.1
22.1
8,634
9.3
22.2
0.0
9.2
22.2
9.2
22.2
India
Lakshadweep
0
3.6
17.5
0.0
3.6
17.4
3.6
17.4
0
3.7
17.5
0.0
3.6
17.4
3.6
17.4
India
Maharashtra
21,944
11.6
24.2
0.0
11.5
24.2
11.5
24.2
26,161
11.6
24.3
0.0
11.6
24.2
11.6
24.2
India
Manipur
3,300
20.5
33.0
-0.6
19.9
32.4
19.9
32.4
330
3.7
17.6
-5.5
0.0
12.1
0.0
12.1
India
Meghalaya
3,804
18.5
30.8
-0.2
18.3
30.6
18.3
30.6
721
3.7
17.5
-1.1
2.5
16.4
2.5
16.4
India
Mizoram
2,909
18.9
30.7
-2.5
16.4
28.1
16.4
28.1
437
3.6
17.5
-16.9
0.0
0.6
0.0
0.6
India
Nagaland
3,361
16.9
28.9
-0.3
16.6
28.6
16.6
28.6
883
3.6
17.4
-1.1
2.5
16.3
2.5
16.3
India
Orissa
16,534
13.6
26.2
-0.5
13.1
25.7
13.1
25.7
18,377
12.7
25.4
-0.5
12.2
24.9
12.2
24.9
India
Punjab
2,159
5.5
19.0
0.0
5.5
19.0
5.5
19.0
2,142
5.1
18.6
0.0
5.1
18.6
5.1
18.6
India
Rajasthan
8,208
4.2
17.9
0.0
4.2
17.9
4.2
17.9
8,460
3.8
17.6
0.0
3.8
17.5
3.8
17.5
India
Sikkim
375
16.0
28.0
0.0
15.9
28.0
15.9
28.0
346
13.8
26.1
0.0
13.7
26.1
13.7
26.1
India
Tamil Nadu
9,350
9.7
22.7
0.0
9.7
22.7
9.7
22.7
10,226
9.5
22.6
0.0
9.5
22.5
9.5
22.5
India
Tripura
1,708
13.3
25.7
0.0
13.3
25.7
13.3
25.7
824
3.6
17.3
-0.1
3.5
17.3
3.5
17.3
India
West Bengal
6,038
5.6
19.1
-0.1
5.5
19.0
5.5
19.0
6,567
5.3
18.8
-0.1
5.3
18.8
5.3
18.8
India
Arunachal Pradesh
1,127
16.9
29.3
-0.1
16.8
29.3
16.8
29.3
316
3.8
17.9
-0.3
3.5
17.6
3.5
17.6
India
Bihar
5,092
5.0
18.5
-0.2
4.8
18.3
4.8
18.3
5,184
5.0
18.5
-0.2
4.7
18.3
4.7
18.3
India
Chandigarh
5
3.7
17.4
0.0
3.7
17.4
3.7
17.4
5
3.8
17.5
0.0
3.8
17.5
3.8
17.5
India
Chhattisgarh
11,095
16.8
29.2
0.0
16.8
29.1
16.8
29.1
11,907
15.3
27.8
0.0
15.2
27.7
15.2
27.7
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
India
Dadra and Nagar
Haveli
60
18.2
29.9
0.0
18.2
29.8
18.2
29.8
47
15.4
27.5
0.0
15.4
27.5
15.4
27.5
India
Daman and Diu
19
14.8
27.0
0.0
14.8
26.9
14.8
26.9
7
3.6
17.3
-0.1
3.5
17.2
3.5
17.2
India
Jharkhand
7,374
11.3
24.0
0.0
11.3
23.9
11.3
23.9
8,454
11.1
23.9
0.0
11.1
23.8
11.1
23.8
India
Madhya Pradesh
18,629
12.0
24.6
0.0
11.9
24.6
11.9
24.6
21,367
11.7
24.4
0.0
11.7
24.4
11.7
24.4
India
Puducherry
42
4.0
17.7
0.0
4.0
17.7
4.0
17.7
45
4.4
18.0
0.0
4.3
18.0
4.3
18.0
India
Uttar Pradesh
12,425
5.1
18.6
0.0
5.1
18.6
5.1
18.6
12,662
5.1
18.6
0.0
5.1
18.6
5.1
18.6
India
Uttarakhand
3,955
13.3
25.8
0.0
13.3
25.8
13.3
25.8
3,335
10.4
23.3
0.0
10.4
23.3
10.4
23.3
India tot
200,298
11.0
23.9
-0.1
10.9
23.7
10.9
23.7
200,298
9.6
22.6
-0.1
9.5
22.5
9.5
22.5
Indonesia
Nangroe Aceh
Darussalam
3,331
24.1
45.4
7.9
16.2
37.5
24.1
45.4
3,753
27.5
47.8
7.0
20.5
40.8
27.5
47.8
Indonesia
Bali
823
14.5
34.9
0.0
14.4
34.9
14.5
34.9
882
15.7
35.5
0.0
15.7
35.5
15.7
35.5
Indonesia
Bengkulu
2,189
22.7
41.9
2.1
20.6
39.8
22.7
41.9
2,533
26.5
44.8
1.8
24.7
43.0
26.5
44.8
Indonesia
Daerah Istimewa
Yogyakarta
380
1.5
24.5
0.0
1.5
24.5
1.5
24.5
422
2.5
25.3
0.0
2.5
25.3
2.5
25.3
Indonesia
Dki Jakarta
19
0.0
21.9
0.0
0.0
21.9
0.0
21.9
19
0.0
21.8
0.0
0.0
21.8
0.0
21.8
Indonesia
Jambi
4,899
27.3
47.3
6.2
21.1
41.1
27.3
47.3
5,705
31.2
50.1
5.3
25.9
44.8
31.2
50.1
Indonesia
Jawa Tengah
4,281
6.0
28.0
0.1
5.8
27.9
6.0
28.0
4,910
8.4
29.9
0.1
8.3
29.8
8.4
29.9
Indonesia
Jawa Timur
4,840
7.1
29.2
0.1
7.0
29.1
7.1
29.2
5,462
9.1
30.8
0.1
9.0
30.7
9.1
30.8
Indonesia
Kalimantan Barat
4,496
17.7
39.5
44.2
0.0
0.0
44.2
44.2
2,748
4.3
27.9
72.4
0.0
0.0
72.4
72.4
Indonesia
Kalimantan Selatan
4,628
26.5
45.8
5.7
20.8
40.1
26.5
45.8
1,911
10.2
31.8
13.8
0.0
18.0
13.8
31.8
Indonesia
Kalimantan Tengah
2,176
16.5
38.7
100.0
0.0
0.0
100.0
100.0
1,215
0.0
25.1
100.0
0.0
0.0
100.0
100.0
Indonesia
Kalimantan Timur
1,233
29.6
53.5
37.4
0.0
16.1
37.4
53.5
320
0.3
27.9
100.0
0.0
0.0
100.0
100.0
Indonesia
Lampung
3,223
9.9
32.1
1.0
8.9
31.1
9.9
32.1
3,742
12.6
34.1
0.9
11.7
33.2
12.6
34.1
Indonesia
Nusatenggara Barat
1,527
10.4
32.2
0.0
10.4
32.2
10.4
32.2
1,254
2.8
25.9
0.0
2.8
25.9
2.8
25.9
Indonesia
Nusatenggara Timur
3,593
3.0
25.8
0.0
3.0
25.8
3.0
25.8
3,305
0.0
22.2
0.0
0.0
22.2
0.0
22.2
Indonesia
Sulawesi Tengah
3,229
22.0
44.9
3.6
18.4
41.4
22.0
44.9
3,356
24.2
46.6
3.4
20.7
43.1
24.2
46.6
Indonesia
Sulawesi Tenggara
3,872
28.3
49.9
2.5
25.8
47.4
28.3
49.9
1,099
0.0
23.7
8.7
0.0
14.9
8.7
23.7
Indonesia
Sumatera Barat
5,605
24.8
44.2
5.4
19.4
38.8
24.8
44.2
6,623
28.6
47.1
4.6
24.0
42.5
28.6
47.1
Indonesia
Sumatera Utara
8,441
26.3
45.5
11.4
14.9
34.0
26.3
45.5
9,607
29.8
48.1
10.0
19.7
38.1
29.8
48.1
Indonesia
Bangka Belitung
353
0.0
22.1
7.4
0.0
14.8
7.4
22.1
354
0.0
22.1
7.3
0.0
14.8
7.3
22.1
Indonesia
Banten
1,341
19.9
38.9
0.1
19.8
38.8
19.9
38.9
1,588
23.7
41.8
0.1
23.7
41.8
23.7
41.8
Indonesia
Gorontalo
1,041
25.0
45.9
0.5
24.5
45.4
25.0
45.9
592
14.6
36.1
0.8
13.8
35.3
14.6
36.1
Indonesia
Papua Barat
217
0.0
29.3
1.5
0.0
27.8
1.5
29.3
219
0.0
29.2
1.5
0.0
27.7
1.5
29.2
Indonesia
Jawa Barat
5,247
11.9
32.6
0.7
11.2
31.9
11.9
32.6
6,136
15.2
35.2
0.6
14.7
34.6
15.2
35.2
Indonesia
Kepulauan-riau
123
0.0
22.0
0.1
0.0
22.0
0.1
22.0
124
0.0
22.0
0.1
0.0
21.9
0.1
22.0
Indonesia
Maluku
515
1.7
26.7
0.7
1.0
26.1
1.7
26.7
493
0.0
25.2
0.7
0.0
24.5
0.7
25.2
Indonesia
Maluku Utara
712
5.0
29.1
0.2
4.8
28.9
5.0
29.1
612
0.0
23.8
0.2
0.0
23.6
0.2
23.8
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Indonesia
Papua
958
0.0
28.7
5.2
0.0
23.5
5.2
28.7
970
0.0
28.3
5.1
0.0
23.2
5.1
28.3
Indonesia
Riau
7,747
30.1
49.8
56.6
0.0
0.0
56.6
56.6
9,086
34.0
52.6
48.3
0.0
4.3
48.3
52.6
Indonesia
Sulawesi Barat
1,833
25.1
44.8
0.5
24.7
44.3
25.1
44.8
2,150
29.0
47.6
0.4
28.6
47.2
29.0
47.6
Indonesia
Sulawesi Selatan
5,387
22.2
43.0
0.7
21.5
42.2
22.2
43.0
6,127
25.4
45.3
0.6
24.8
44.6
25.4
45.3
Indonesia
Sulawesi Utara
1,806
21.3
41.3
0.1
21.2
41.2
21.3
41.3
882
3.0
25.9
0.2
2.8
25.7
3.0
25.9
Indonesia
Sumatera Selatan
9,823
26.5
44.9
13.6
12.9
31.3
26.5
44.9
11,690
30.6
48.0
11.4
19.2
36.6
30.6
48.0
Indonesia tot
99,890
20.3
41.0
12.9
12.6
30.1
25.5
43.1
99,890
21.2
41.2
11.8
14.3
31.8
26.2
43.6
Jamaica
Clarendon
100
0.0
18.5
2.0
0.0
16.5
2.0
18.5
100
0.0
16.4
2.0
0.0
14.4
2.0
16.4
Jamaica
Hanover
47
0.0
20.2
2.8
0.0
17.4
2.8
20.2
47
0.0
18.4
2.8
0.0
15.6
2.8
18.4
Jamaica
Manchester
94
0.0
19.4
2.1
0.0
17.3
2.1
19.4
94
0.0
17.5
2.1
0.0
15.4
2.1
17.5
Jamaica
Portland
61
0.0
18.2
4.6
0.0
13.6
4.6
18.2
61
0.0
16.0
4.7
0.0
11.3
4.7
16.0
Jamaica
Saint Andrew And
Kingston
57
0.0
23.3
1.5
0.0
21.8
1.5
23.3
57
0.0
22.3
1.5
0.0
20.8
1.5
22.3
Jamaica
Saint Ann
137
0.0
19.3
2.2
0.0
17.1
2.2
19.3
138
0.0
17.4
2.2
0.0
15.2
2.2
17.4
Jamaica
Saint Catherine
126
0.0
20.0
2.1
0.0
17.9
2.1
20.0
126
0.0
18.0
2.1
0.0
15.9
2.1
18.0
Jamaica
Saint Elizabeth
106
0.0
19.0
1.8
0.0
17.2
1.8
19.0
106
0.0
17.0
1.8
0.0
15.1
1.8
17.0
Jamaica
Saint James
77
0.0
19.2
2.3
0.0
16.9
2.3
19.2
77
0.0
17.3
2.3
0.0
15.0
2.3
17.3
Jamaica
Saint Mary
85
0.0
18.8
2.2
0.0
16.5
2.2
18.8
85
0.0
16.7
2.2
0.0
14.4
2.2
16.7
Jamaica
Saint Thomas
78
0.0
19.6
2.5
0.0
17.1
2.5
19.6
78
0.0
17.5
2.5
0.0
15.1
2.5
17.5
Jamaica
Trelawny
75
0.0
18.9
3.5
0.0
15.5
3.5
18.9
74
0.0
16.7
3.5
0.0
13.2
3.5
16.7
Jamaica
Westmoreland
73
0.0
19.8
2.1
0.0
17.6
2.1
19.8
73
0.0
18.0
2.1
0.0
15.9
2.1
18.0
Jamaica tot
1,115
19.4
2.4
17.1
2.4
19.4
1,115
17.5
2.4
15.1
2.4
17.5
Jammu Kashmir
not available
664
1.8
16.0
-0.2
1.6
15.8
1.6
15.8
392
5.0
18.8
-0.3
4.7
18.5
4.7
18.5
Jammu Kashmir
not available
134
5.7
20.6
-0.2
5.5
20.4
5.5
20.4
137
5.7
20.6
-0.2
5.5
20.4
5.5
20.4
Jammu Kashmir
not available
14
7.0
24.0
-0.1
6.9
24.0
6.9
24.0
14
6.9
23.9
-0.1
6.9
23.8
6.9
23.8
Jammu Kashmir
not available
15
5.8
21.0
-0.1
5.7
20.8
5.7
20.8
15
5.8
20.9
-0.1
5.7
20.8
5.7
20.8
Jammu Kashmir
not available
63
3.9
17.8
-0.2
3.7
17.6
3.7
17.6
55
5.0
18.8
-0.2
4.8
18.6
4.8
18.6
Jammu Kashmir
not available
121
3.3
17.3
-0.2
3.1
17.1
3.1
17.1
97
5.0
18.8
-0.2
4.8
18.6
4.8
18.6
Jammu Kashmir
not available
38
4.2
18.0
-0.2
4.0
17.9
4.0
17.9
34
5.0
18.8
-0.2
4.8
18.6
4.8
18.6
Jammu Kashmir
not available
110
3.7
17.7
-0.5
3.2
17.2
3.2
17.2
90
5.1
18.9
-0.6
4.5
18.3
4.5
18.3
Jammu Kashmir
not available
36
2.2
16.4
-0.2
2.1
16.3
2.1
16.3
23
5.0
18.8
-0.2
4.8
18.5
4.8
18.5
Jammu Kashmir
not available
252
3.6
17.6
-0.1
3.5
17.4
3.5
17.4
210
5.0
18.8
-0.2
4.8
18.6
4.8
18.6
Jammu Kashmir
not available
166
1.7
15.9
-0.2
1.5
15.7
1.5
15.7
92
5.0
18.8
-0.3
4.7
18.5
4.7
18.5
Jammu Kashmir
not available
988
1.0
15.4
-0.2
0.8
15.2
0.8
15.2
465
5.0
18.8
-0.4
4.6
18.3
4.6
18.3
Jammu Kashmir
tot
2,600
2.2
16.4
-0.2
2.0
16.2
2.0
16.2
1,626
5.1
19.0
-0.3
4.8
18.7
4.8
18.7
Kenya
Central
1,301
34.5
47.7
0.7
33.8
47.0
34.5
47.7
1,318
33.8
47.1
0.7
33.1
46.4
33.8
47.1
Kenya
Coast
3,189
61.1
69.5
0.1
61.0
69.4
61.1
69.5
3,215
60.4
68.9
0.1
60.4
68.9
60.4
68.9
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Kenya
Eastern
5,284
56.6
65.7
0.1
56.5
65.6
56.6
65.7
5,217
55.5
64.9
0.1
55.4
64.7
55.5
64.9
Kenya
Nairobi
28
3.7
22.7
0.0
3.7
22.7
3.7
22.7
28
3.7
22.7
0.0
3.7
22.7
3.7
22.7
Kenya
North Eastern
1,188
51.1
64.1
0.1
51.1
64.1
51.1
64.1
1,180
50.3
63.5
0.1
50.2
63.5
50.3
63.5
Kenya
Nyanza
922
8.8
26.8
0.1
8.8
26.7
8.8
26.8
942
8.9
26.8
0.1
8.8
26.8
8.9
26.8
Kenya
Rift Valley
10,525
60.1
68.4
5.8
54.3
62.6
60.1
68.4
10,523
59.2
67.7
5.8
53.4
61.9
59.2
67.7
Kenya
Western
717
20.7
36.5
0.2
20.5
36.3
20.7
36.5
732
20.1
36.1
0.2
19.9
35.9
20.1
36.1
Kenya tot
23,154
54.2
63.9
2.7
51.5
61.1
54.2
63.9
23,154
53.3
63.1
2.7
50.6
60.4
53.3
63.1
Lao P. D. R.
Attapu
72
5.2
31.9
0.3
4.9
31.6
5.2
31.9
72
5.2
31.9
0.3
4.9
31.6
5.2
31.9
Lao P. D. R.
Bokeo
96
5.1
31.8
13.9
0.0
18.0
13.9
31.8
96
5.2
31.8
13.8
0.0
18.1
13.8
31.8
Lao P. D. R.
Bolikhamxai
110
0.0
17.2
62.4
0.0
0.0
62.4
62.4
111
0.0
14.9
61.9
0.0
0.0
61.9
61.9
Lao P. D. R.
Champasak
354
0.0
23.9
0.9
0.0
23.0
0.9
23.9
355
0.0
23.2
0.9
0.0
22.3
0.9
23.2
Lao P. D. R.
Houaphan
179
5.4
32.7
15.7
0.0
17.0
15.7
32.7
179
5.4
32.7
15.7
0.0
17.0
15.7
32.7
Lao P. D. R.
Khammouan
202
0.0
15.6
75.1
0.0
0.0
75.1
75.1
203
0.0
13.6
74.7
0.0
0.0
74.7
74.7
Lao P. D. R.
Louangphabang
522
0.0
0.0
9.1
0.0
0.0
9.1
9.1
514
0.0
0.0
9.2
0.0
0.0
9.2
9.2
Lao P. D. R.
Louang-Namtha
86
5.6
33.8
42.0
0.0
0.0
42.0
42.0
86
5.6
33.7
41.8
0.0
0.0
41.8
41.8
Lao P. D. R.
Oudomxai
138
0.0
28.0
25.1
0.0
2.8
25.1
28.0
137
0.0
27.5
25.2
0.0
2.3
25.2
27.5
Lao P. D. R.
Phongsali
114
6.0
35.2
26.1
0.0
9.1
26.1
35.2
114
6.0
35.2
26.1
0.0
9.1
26.1
35.2
Lao P. D. R.
Salavan
184
4.8
30.5
0.2
4.7
30.4
4.8
30.5
185
4.8
30.6
0.2
4.7
30.4
4.8
30.6
Lao P. D. R.
Savannakhet
485
0.0
22.3
15.9
0.0
6.3
15.9
22.3
486
0.0
21.4
15.9
0.0
5.5
15.9
21.4
Lao P. D. R.
Xaignabouli
195
1.1
29.0
9.6
0.0
19.3
9.6
29.0
196
0.7
28.6
9.6
0.0
19.0
9.6
28.6
Lao P. D. R.
Xekong
40
6.0
35.2
5.0
0.9
30.1
6.0
35.2
40
6.0
35.2
5.0
1.0
30.2
6.0
35.2
Lao P. D. R.
Vientiane capital
234
0.0
11.7
1.7
0.0
10.0
1.7
11.7
239
0.0
9.4
1.7
0.0
7.7
1.7
9.4
Lao P. D. R.
Vientiane
443
0.0
0.0
22.0
0.0
0.0
22.0
22.0
439
0.0
0.0
22.3
0.0
0.0
22.3
22.3
Lao P. D. R.
Xiangkhouang
160
5.1
31.6
2.3
2.8
29.3
5.1
31.6
161
5.1
31.6
2.3
2.8
29.3
5.1
31.6
Lao P. D. R. tot
3,613
1.4
18.5
17.1
0.5
10.3
17.5
27.4
3,613
1.4
18.0
17.1
0.5
10.0
17.5
27.1
Lesotho
Berea
88
30.8
44.9
0.0
30.8
44.8
30.8
44.8
89
29.9
44.1
0.0
29.9
44.1
29.9
44.1
Lesotho
Butha Buthe
95
45.0
56.2
0.0
45.0
56.2
45.0
56.2
95
43.7
55.1
0.0
43.7
55.1
43.7
55.1
Lesotho
Leribe
135
41.8
53.6
0.0
41.8
53.6
41.8
53.6
137
40.3
52.5
0.0
40.3
52.5
40.3
52.5
Lesotho
Mafeteng
75
31.0
45.1
0.0
31.0
45.0
31.0
45.0
76
30.8
44.8
0.0
30.8
44.8
30.8
44.8
Lesotho
Maseru
361
54.9
64.2
0.0
54.9
64.2
54.9
64.2
357
53.1
62.7
0.0
53.1
62.7
53.1
62.7
Lesotho
Mohale's Hoek
65
12.9
30.6
0.0
12.9
30.6
12.9
30.6
67
13.6
31.2
0.0
13.6
31.2
13.6
31.2
Lesotho
Mokhotlong
64
30.0
44.8
0.0
30.0
44.7
30.0
44.7
63
28.9
43.8
0.0
28.8
43.8
28.8
43.8
Lesotho
Qacha's Nek
38
15.3
32.9
0.0
15.2
32.8
15.2
32.8
38
15.2
32.8
0.0
15.2
32.8
15.2
32.8
Lesotho
Quthing
59
17.8
34.5
0.0
17.8
34.5
17.8
34.5
60
17.5
34.3
0.0
17.5
34.2
17.5
34.2
Lesotho
Thaba Tseka
149
47.1
57.8
0.0
47.0
57.8
47.0
57.8
146
45.3
56.5
0.0
45.3
56.5
45.3
56.5
Lesotho tot
1,129
40.9
53.0
0.0
40.9
53.0
40.9
53.0
1,129
39.5
51.9
0.0
39.5
51.9
39.5
51.9
Liberia
Bomi
278
0.0
15.4
12.7
0.0
2.7
12.7
15.4
278
0.0
15.1
12.7
0.0
2.4
12.7
15.1
Liberia
Bong
521
0.0
20.2
20.6
0.0
0.0
20.6
20.6
520
0.0
20.0
20.6
0.0
0.0
20.6
20.6
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Liberia
Gbarpolu
368
0.0
21.1
26.5
0.0
0.0
26.5
26.5
368
0.0
20.7
26.5
0.0
0.0
26.5
26.5
Liberia
Grand Bassa
423
0.0
18.7
30.5
0.0
0.0
30.5
30.5
423
0.0
18.5
30.5
0.0
0.0
30.5
30.5
Liberia
Grand Cape Mount
459
0.0
14.6
17.4
0.0
0.0
17.4
17.4
458
0.0
14.2
17.4
0.0
0.0
17.4
17.4
Liberia
Grand Gedeh
70
6.4
37.0
30.1
0.0
6.9
30.1
37.0
70
6.4
37.0
30.1
0.0
6.9
30.1
37.0
Liberia
Grand Kru
45
5.7
34.5
43.7
0.0
0.0
43.7
43.7
45
5.7
34.5
43.7
0.0
0.0
43.7
43.7
Liberia
Lofa
377
4.2
28.6
50.3
0.0
0.0
50.3
50.3
377
4.2
28.6
50.3
0.0
0.0
50.3
50.3
Liberia
Margibi
257
0.0
23.9
10.4
0.0
13.6
10.4
23.9
257
0.0
23.8
10.3
0.0
13.5
10.3
23.8
Liberia
Maryland
100
4.1
28.4
22.3
0.0
6.1
22.3
28.4
100
4.1
28.4
22.3
0.0
6.1
22.3
28.4
Liberia
Montserrado
259
1.3
25.4
6.7
0.0
18.7
6.7
25.4
260
1.2
25.4
6.7
0.0
18.6
6.7
25.4
Liberia
Nimba
459
4.1
28.4
21.8
0.0
6.5
21.8
28.4
460
4.1
28.4
21.8
0.0
6.6
21.8
28.4
Liberia
Rivercess
58
6.2
36.3
40.2
0.0
0.0
40.2
40.2
58
6.2
36.3
40.2
0.0
0.0
40.2
40.2
Liberia
River Ghee
57
6.6
38.0
40.4
0.0
0.0
40.4
40.4
57
6.6
38.0
40.4
0.0
0.0
40.4
40.4
Liberia
Sinoe
109
5.7
34.3
56.6
0.0
0.0
56.6
56.6
109
5.7
34.3
56.6
0.0
0.0
56.6
56.6
Liberia tot
3,840
1.6
23.1
24.8
3.4
24.8
28.3
3,840
1.6
22.9
24.8
3.4
24.8
28.2
Madagascar
Alaotra Mangoro
1,575
0.0
26.3
18.4
0.0
7.9
18.4
26.3
1,558
0.0
22.8
18.6
0.0
4.2
18.6
22.8
Madagascar
Amoron'i Mania
714
0.0
26.0
6.9
0.0
19.1
6.9
26.0
710
0.0
23.3
6.9
0.0
16.4
6.9
23.3
Madagascar
Analamanga
970
0.0
26.0
6.2
0.0
19.7
6.2
26.0
967
0.0
23.4
6.3
0.0
17.1
6.3
23.4
Madagascar
Analanjirofo
645
2.1
27.5
73.1
0.0
0.0
73.1
73.1
646
0.8
26.5
73.0
0.0
0.0
73.0
73.0
Madagascar
Androy
242
5.0
29.7
0.4
4.6
29.3
5.0
29.7
242
5.0
29.7
0.4
4.6
29.3
5.0
29.7
Madagascar
Anosy
278
5.5
31.8
20.6
0.0
11.2
20.6
31.8
279
5.5
31.8
20.6
0.0
11.2
20.6
31.8
Madagascar
Atsimo Andrefana
504
5.7
32.6
1.5
4.2
31.1
5.7
32.6
504
5.7
32.6
1.5
4.2
31.1
5.7
32.6
Madagascar
Atsimo Atsinanana
327
5.0
29.8
51.0
0.0
0.0
51.0
51.0
328
4.9
29.8
50.9
0.0
0.0
50.9
50.9
Madagascar
Atsinanana
988
0.0
24.4
36.7
0.0
0.0
36.7
36.7
983
0.0
21.4
36.9
0.0
0.0
36.9
36.9
Madagascar
Betsiboka
223
0.7
33.4
2.2
0.0
31.2
2.2
33.4
221
0.0
31.6
2.3
0.0
29.3
2.3
31.6
Madagascar
Boeny
215
5.8
32.9
12.6
0.0
20.3
12.6
32.9
215
5.8
32.9
12.6
0.0
20.3
12.6
32.9
Madagascar
Bongolava
371
0.0
25.7
0.5
0.0
25.2
0.5
25.7
369
0.0
23.2
0.5
0.0
22.6
0.5
23.2
Madagascar
Diana
251
5.1
30.3
36.5
0.0
0.0
36.5
36.5
252
5.1
30.3
36.3
0.0
0.0
36.3
36.3
Madagascar
Haute Matsiatra
630
0.5
26.5
9.6
0.0
17.0
9.6
26.5
637
0.0
25.0
9.5
0.0
15.5
9.5
25.0
Madagascar
Ihorombe
101
7.0
38.3
2.3
4.8
36.0
7.0
38.3
101
7.0
38.2
2.3
4.7
36.0
7.0
38.2
Madagascar
Itasy
331
2.2
27.0
0.9
1.3
26.1
2.2
27.0
340
0.7
25.9
0.9
0.0
25.0
0.9
25.9
Madagascar
Melaky
95
8.5
43.7
7.8
0.8
35.9
8.5
43.7
95
8.6
43.7
7.8
0.8
35.9
8.6
43.7
Madagascar
Menabe
203
6.8
37.0
9.6
0.0
27.4
9.6
37.0
203
6.8
37.0
9.6
0.0
27.4
9.6
37.0
Madagascar
Sava
379
5.0
30.0
56.4
0.0
0.0
56.4
56.4
381
5.0
30.0
56.1
0.0
0.0
56.1
56.1
Madagascar
Sofia
490
5.3
31.1
32.5
0.0
0.0
32.5
32.5
491
5.3
31.1
32.4
0.0
0.0
32.4
32.4
Madagascar
Vakinankaratra
885
0.5
26.1
2.6
0.0
23.5
2.6
26.1
895
0.0
24.6
2.5
0.0
22.1
2.5
24.6
Madagascar
Vatovavy Fitovinany
1,234
0.0
23.6
28.3
0.0
0.0
28.3
28.3
1,235
0.0
20.9
28.3
0.0
0.0
28.3
28.3
Madagascar tot
11,652
1.7
27.5
20.9
0.4
12.4
21.2
33.3
11,652
1.5
25.7
20.9
0.3
11.2
21.2
32.1
Malawi
Central Region
1,575
14.1
33.4
23.5
0.0
9.9
23.5
33.4
1,641
8.4
29.1
22.5
0.0
6.5
22.5
29.1
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Malawi
Northern Region
1,640
40.4
54.1
34.5
5.9
19.7
40.4
54.1
1,495
21.4
39.6
37.8
0.0
1.8
37.8
39.6
Malawi
Southern Region
1,725
19.0
37.3
30.6
0.0
6.8
30.6
37.3
1,805
10.4
30.8
29.2
0.0
1.6
29.2
30.8
Malawi
Nat. Admin.
62
1.2
23.8
1.0
0.2
22.8
1.2
23.8
62
1.6
24.3
1.0
0.6
23.3
1.6
24.3
Malawi tot
5,003
24.2
41.4
29.3
1.9
12.2
31.2
41.4
5,003
12.9
32.8
29.3
0.0
3.5
29.3
32.8
Malaysia
Johor
315
0.0
0.0
52.1
0.0
0.0
52.1
52.1
307
0.0
0.0
53.5
0.0
0.0
53.5
53.5
Malaysia
Kedah
282
0.0
0.0
2.7
0.0
0.0
2.7
2.7
248
0.0
0.0
3.0
0.0
0.0
3.0
3.0
Malaysia
Kelantan
285
0.0
0.0
24.0
0.0
0.0
24.0
24.0
281
0.0
0.0
24.3
0.0
0.0
24.3
24.3
Malaysia
Kuala Lumpur
9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Malaysia
Melaka
86
0.0
0.0
0.3
0.0
0.0
0.3
0.3
69
0.0
0.0
0.4
0.0
0.0
0.4
0.4
Malaysia
Negeri Sembilan
183
0.0
0.0
6.8
0.0
0.0
6.8
6.8
136
0.0
0.0
9.1
0.0
0.0
9.1
9.1
Malaysia
Pahang
334
0.0
0.0
100.0
0.0
0.0
100.0
100.0
302
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Malaysia
Perak
368
0.0
0.0
27.7
0.0
0.0
27.7
27.7
317
0.0
0.0
32.1
0.0
0.0
32.1
32.1
Malaysia
Perlis
42
0.0
0.0
0.0
0.0
0.0
0.0
0.0
39
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Malaysia
Pulau Pinang
49
0.0
0.0
0.1
0.0
0.0
0.1
0.1
47
0.0
0.0
0.1
0.0
0.0
0.1
0.1
Malaysia
Sabah
521
0.0
0.0
90.4
0.0
0.0
90.4
90.4
536
0.0
0.0
87.9
0.0
0.0
87.9
87.9
Malaysia
Sarawak
348
0.0
0.0
100.0
0.0
0.0
100.0
100.0
353
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Malaysia
Selangor
374
0.0
0.0
6.9
0.0
0.0
6.9
6.9
549
0.0
0.0
4.7
0.0
0.0
4.7
4.7
Malaysia
Terengganu
117
0.0
0.0
18.3
0.0
0.0
18.3
18.3
118
0.0
0.0
18.1
0.0
0.0
18.1
18.1
Malaysia
Labuan
4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Malaysia tot
3,317
46.9
46.9
46.9
3,317
46.1
46.1
46.1
Mali
Bamako
35
3.5
27.3
0.7
2.9
26.6
3.5
27.3
35
3.6
27.3
0.7
2.9
26.6
3.6
27.3
Mali
Gao
52
6.5
38.7
3.8
2.7
34.9
6.5
38.7
52
6.5
38.7
3.8
2.7
34.9
6.5
38.7
Mali
Kayes
524
5.0
33.5
20.3
0.0
13.2
20.3
33.5
522
3.6
32.6
20.4
0.0
12.2
20.4
32.6
Mali
Kidal
4
7.7
43.5
0.0
7.7
43.5
7.7
43.5
4
7.7
43.4
0.0
7.7
43.4
7.7
43.4
Mali
Koulikoro
1,068
3.4
28.7
7.4
0.0
21.3
7.4
28.7
1,066
0.0
25.9
7.4
0.0
18.5
7.4
25.9
Mali
Mopti
407
4.1
29.3
16.1
0.0
13.2
16.1
29.3
408
4.1
29.3
16.0
0.0
13.3
16.0
29.3
Mali
Segou
445
3.8
28.2
7.0
0.0
21.2
7.0
28.2
447
3.8
28.2
7.0
0.0
21.2
7.0
28.2
Mali
Sikasso
587
3.6
27.8
10.2
0.0
17.6
10.2
27.8
587
2.9
27.2
10.2
0.0
17.1
10.2
27.2
Mali
Tombouctou
120
5.3
33.9
1.9
3.4
32.0
5.3
33.9
120
5.3
33.9
1.9
3.4
32.0
5.3
33.9
Mali tot
3,243
4.0
29.6
10.7
0.2
19.0
10.9
29.6
3,243
2.5
28.5
10.7
0.2
17.8
10.9
28.5
Mauritania
Adrar
0
9.9
46.5
0.0
9.9
46.5
9.9
46.5
0
9.9
46.5
0.0
9.9
46.5
9.9
46.5
Mauritania
Assaba
67
7.5
37.3
9.3
0.0
28.0
9.3
37.3
67
7.5
37.3
9.3
0.0
28.0
9.3
37.3
Mauritania
Brakna
69
6.4
33.1
0.8
5.6
32.4
6.4
33.1
69
6.4
33.1
0.8
5.6
32.4
6.4
33.1
Mauritania
Dakhlet Nouadhibou
1
5.1
28.5
0.0
5.1
28.5
5.1
28.5
1
5.1
28.5
0.0
5.1
28.5
5.1
28.5
Mauritania
Gorgol
76
5.2
28.7
3.8
1.4
25.0
5.2
28.7
77
5.2
28.7
3.8
1.4
25.0
5.2
28.7
Mauritania
Guidimaka
61
5.1
28.3
7.7
0.0
20.6
7.7
28.3
61
5.1
28.3
7.7
0.0
20.6
7.7
28.3
Mauritania
Hodh Ech Chargui
88
8.8
42.1
2.6
6.2
39.5
8.8
42.1
88
8.8
42.1
2.6
6.2
39.5
8.8
42.1
Mauritania
Hodh El Gharbi
73
7.6
37.9
6.8
0.9
31.1
7.6
37.9
73
7.6
37.9
6.8
0.9
31.1
7.6
37.9
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Mauritania
Inchiri
0
9.0
43.1
0.0
9.0
43.1
9.0
43.1
0
9.0
43.1
0.0
9.0
43.1
9.0
43.1
Mauritania
Nouakchott
1
6.4
33.1
0.0
6.4
33.1
6.4
33.1
1
6.4
33.1
0.0
6.4
33.1
6.4
33.1
Mauritania
Tagant
14
8.4
40.8
1.3
7.1
39.5
8.4
40.8
14
8.4
40.8
1.3
7.1
39.5
8.4
40.8
Mauritania
Tiris Zemmour
0
9.2
43.7
0.0
9.2
43.7
9.2
43.7
0
9.2
43.7
0.0
9.2
43.7
9.2
43.7
Mauritania
Trarza
71
6.3
32.8
2.2
4.0
30.5
6.3
32.8
71
6.3
32.8
2.2
4.1
30.5
6.3
32.8
Mauritania tot
521
6.8
34.8
4.5
2.9
30.3
7.4
34.8
522
6.8
34.8
4.5
2.9
30.3
7.3
34.8
Mexico
Aguascalientes
18
1.7
25.6
0.2
1.5
25.4
1.7
25.6
18
1.9
25.8
0.2
1.7
25.6
1.9
25.8
Mexico
Baja California
74
1.9
26.0
0.1
1.8
25.9
1.9
26.0
75
1.7
25.9
0.1
1.6
25.8
1.7
25.9
Mexico
Baja California Sur
17
2.3
27.9
0.0
2.3
27.9
2.3
27.9
17
2.5
28.1
0.0
2.4
28.0
2.5
28.1
Mexico
Campeche
149
2.9
30.0
33.0
0.0
0.0
33.0
33.0
149
3.0
30.2
32.8
0.0
0.0
32.8
32.8
Mexico
Chiapas
1,542
1.9
26.4
0.5
1.4
25.9
1.9
26.4
1,560
2.1
26.5
0.5
1.6
26.0
2.1
26.5
Mexico
Chihuahua
278
4.1
33.7
0.3
3.8
33.4
4.1
33.7
276
3.1
33.1
0.3
2.8
32.7
3.1
33.1
Mexico
Coahuila
116
2.7
28.4
0.1
2.6
28.3
2.7
28.4
116
1.8
27.8
0.1
1.8
27.7
1.8
27.8
Mexico
Colima
55
2.0
26.5
0.7
1.3
25.9
2.0
26.5
56
2.1
26.6
0.6
1.5
26.0
2.1
26.6
Mexico
Distrito Federal
95
5.1
30.3
0.1
4.9
30.1
5.1
30.3
94
0.0
24.2
0.1
0.0
24.1
0.1
24.2
Mexico
Durango
177
3.5
32.4
0.4
3.1
32.0
3.5
32.4
178
3.6
32.5
0.4
3.2
32.1
3.6
32.5
Mexico
Guanajuato
442
3.4
27.0
0.2
3.2
26.7
3.4
27.0
443
0.0
22.9
0.2
0.0
22.7
0.2
22.9
Mexico
Guerrero
1,360
3.7
28.2
0.4
3.3
27.8
3.7
28.2
1,351
0.0
24.6
0.4
0.0
24.2
0.4
24.6
Mexico
Hidalgo
1,237
4.8
28.2
0.2
4.6
28.0
4.8
28.2
1,212
0.0
21.0
0.2
0.0
20.7
0.2
21.0
Mexico
Jalisco
452
3.9
28.0
0.6
3.3
27.3
3.9
28.0
445
0.0
23.5
0.6
0.0
22.8
0.6
23.5
Mexico
Mexico
1,654
5.2
28.4
0.2
5.0
28.2
5.2
28.4
1,607
0.0
20.2
0.2
0.0
20.0
0.2
20.2
Mexico
Michoacan
788
2.7
27.3
0.6
2.1
26.7
2.7
27.3
789
0.7
25.9
0.6
0.1
25.2
0.7
25.9
Mexico
Morelos
247
4.4
27.8
0.1
4.3
27.7
4.4
27.8
249
0.0
21.4
0.1
0.0
21.3
0.1
21.4
Mexico
Nayarit
112
2.2
27.6
0.8
1.4
26.7
2.2
27.6
113
2.4
27.7
0.8
1.6
26.9
2.4
27.7
Mexico
Nuevo Leon
234
5.8
32.5
0.2
5.6
32.3
5.8
32.5
231
0.0
26.0
0.2
0.0
25.9
0.2
26.0
Mexico
Oaxaca
1,459
2.0
26.6
0.6
1.4
26.0
2.0
26.6
1,469
2.1
26.7
0.6
1.4
26.1
2.1
26.7
Mexico
Puebla
1,739
4.1
28.2
0.2
3.9
28.0
4.1
28.2
1,743
0.0
23.1
0.2
0.0
22.9
0.2
23.1
Mexico
Queretaro
278
5.0
28.4
0.2
4.7
28.2
5.0
28.4
268
0.0
20.9
0.2
0.0
20.7
0.2
20.9
Mexico
Quintana Roo
125
2.7
29.1
100.0
0.0
0.0
100.0
100.0
126
2.7
29.2
100.0
0.0
0.0
100.0
100.0
Mexico
San Luis Potosi
507
2.7
28.6
0.5
2.2
28.1
2.7
28.6
510
1.9
28.0
0.5
1.4
27.5
1.9
28.0
Mexico
Sinaloa
273
2.2
27.3
0.2
1.9
27.0
2.2
27.3
275
2.3
27.4
0.2
2.0
27.1
2.3
27.4
Mexico
Sonora
160
2.8
29.6
0.1
2.7
29.5
2.8
29.6
161
2.8
29.7
0.1
2.7
29.6
2.8
29.7
Mexico
Tabasco
422
1.8
26.0
3.6
0.0
22.4
3.6
26.0
425
2.0
26.1
3.6
0.0
22.6
3.6
26.1
Mexico
Tamaulipas
171
3.3
29.5
0.6
2.7
29.0
3.3
29.5
173
1.3
28.1
0.5
0.8
27.6
1.3
28.1
Mexico
Tlaxcala
197
4.2
27.4
0.1
4.1
27.3
4.2
27.4
198
0.0
21.3
0.1
0.0
21.2
0.1
21.3
Mexico
Veracruz
2,621
3.3
27.1
0.2
3.1
26.9
3.3
27.1
2,663
0.0
23.5
0.2
0.0
23.3
0.2
23.5
Mexico
Yucatan
708
3.0
28.6
7.4
0.0
21.2
7.4
28.6
711
1.1
27.1
7.3
0.0
19.8
7.3
27.1
Mexico
Zacatecas
143
2.6
28.9
0.2
2.4
28.7
2.6
28.9
143
2.7
29.1
0.2
2.5
28.9
2.7
29.1
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Mexico tot
17,848
3.4
27.9
1.7
2.9
26.7
4.6
28.4
17,848
0.8
24.6
1.7
0.5
23.4
2.2
25.1
Mozambique
Cabo Delgado
791
4.4
30.9
17.9
0.0
12.9
17.9
30.9
791
4.4
30.9
17.9
0.0
12.9
17.9
30.9
Mozambique
Gaza
1,593
25.1
46.4
4.1
21.0
42.3
25.1
46.4
1,593
24.8
46.2
4.1
20.7
42.1
24.8
46.2
Mozambique
Inhambane
1,277
18.8
41.6
13.7
5.0
27.9
18.8
41.6
1,276
18.5
41.5
13.7
4.8
27.8
18.5
41.5
Mozambique
Manica
1,231
22.7
44.5
11.2
11.5
33.2
22.7
44.5
1,229
22.4
44.3
11.2
11.2
33.0
22.4
44.3
Mozambique
Maputo
1,804
32.5
54.8
4.1
28.4
50.7
32.5
54.8
1,802
32.1
54.5
4.1
28.0
50.4
32.1
54.5
Mozambique
Maputo (city)
66
4.9
29.1
0.6
4.3
28.5
4.9
29.1
66
4.9
29.0
0.6
4.3
28.5
4.9
29.0
Mozambique
Nampula
1,963
7.9
31.5
16.3
0.0
15.1
16.3
31.5
1,965
7.9
31.4
16.3
0.0
15.1
16.3
31.4
Mozambique
Niassa
485
5.1
33.6
22.4
0.0
11.2
22.4
33.6
485
5.1
33.6
22.4
0.0
11.2
22.4
33.6
Mozambique
Sofala
1,288
22.0
43.8
14.4
7.5
29.3
22.0
43.8
1,287
21.7
43.6
14.5
7.3
29.1
21.7
43.6
Mozambique
Tete
739
4.7
32.2
12.4
0.0
19.7
12.4
32.2
740
4.7
32.2
12.4
0.0
19.7
12.4
32.2
Mozambique
Zambezia
1,854
4.6
29.3
26.6
0.0
2.7
26.6
29.3
1,856
4.6
29.3
26.6
0.0
2.7
26.6
29.3
Mozambique
Nat. Administration
0
7.7
44.2
1.7
6.0
42.4
7.7
44.2
0
7.7
44.2
1.7
6.0
42.4
7.7
44.2
Mozambique tot
13,092
16.2
39.7
13.7
8.8
26.0
22.5
39.7
13,092
16.1
39.6
13.7
8.6
25.8
22.3
39.6
Myanmar
Rakhine
913
4.2
4.7
100.0
0.0
0.0
100.0
100.0
926
2.5
3.0
100.0
0.0
0.0
100.0
100.0
Myanmar
Chin
241
4.2
4.8
31.7
0.0
0.0
31.7
31.7
241
4.2
4.8
31.7
0.0
0.0
31.7
31.7
Myanmar
Ayeyawaddy
2,054
4.2
4.7
0.8
3.3
3.9
4.2
4.7
2,072
2.1
2.7
0.8
1.3
1.8
2.1
2.7
Myanmar
Kachin
454
4.0
4.5
13.8
0.0
0.0
13.8
13.8
459
4.0
4.6
13.7
0.0
0.0
13.7
13.7
Myanmar
Kayin
1,190
4.8
5.4
4.5
0.3
0.9
4.8
5.4
1,194
0.6
1.2
4.5
0.0
0.0
4.5
4.5
Myanmar
Kayar
115
3.6
4.2
0.1
3.6
4.1
3.6
4.2
117
3.6
4.1
0.1
3.5
4.0
3.6
4.1
Myanmar
Magway
2,957
4.1
4.6
0.1
4.0
4.5
4.1
4.6
2,925
0.0
0.4
0.1
0.0
0.3
0.1
0.4
Myanmar
Mandalay
2,983
5.2
5.8
0.1
5.1
5.7
5.2
5.8
2,959
0.8
1.4
0.1
0.6
1.3
0.8
1.4
Myanmar
Mon
603
3.4
3.9
0.8
2.7
3.2
3.4
3.9
624
1.6
2.1
0.7
0.9
1.4
1.6
2.1
Myanmar
Sagaing
2,132
3.6
4.1
1.3
2.3
2.8
3.6
4.1
2,143
1.8
2.4
1.3
0.5
1.0
1.8
2.4
Myanmar
Taninthayi
383
3.4
3.9
9.0
0.0
0.0
9.0
9.0
387
3.4
3.9
8.9
0.0
0.0
8.9
8.9
Myanmar
Yangon
682
4.2
4.8
0.0
4.2
4.7
4.2
4.8
688
2.0
2.6
0.0
2.0
2.6
2.0
2.6
Myanmar
Bago (E)
2,634
6.7
7.4
1.3
5.5
6.1
6.7
7.4
2,593
0.9
1.7
1.3
0.0
0.4
1.3
1.7
Myanmar
Bago (W)
1,398
5.0
5.6
0.1
4.9
5.5
5.0
5.6
1,371
0.7
1.3
0.1
0.6
1.3
0.7
1.3
Myanmar
Shan (E)
259
3.8
4.4
14.5
0.0
0.0
14.5
14.5
262
3.7
4.3
14.3
0.0
0.0
14.3
14.3
Myanmar
Shan (N)
1,834
5.0
5.6
5.6
0.0
0.1
5.6
5.6
1,850
0.6
1.2
5.5
0.0
0.0
5.5
5.5
Myanmar
Shan (S)
2,030
5.1
5.7
4.3
0.8
1.4
5.1
5.7
2,049
1.2
1.8
4.3
0.0
0.0
4.3
4.3
Myanmar tot
22,862
4.7
5.3
6.4
2.9
3.4
9.3
9.8
22,862
1.2
1.8
6.4
0.4
0.7
6.8
7.2
Namibia
Caprivi
14
7.3
36.7
83.1
0.0
0.0
83.1
83.1
14
7.3
36.7
83.1
0.0
0.0
83.1
83.1
Namibia
Erongo
6
7.5
37.4
5.2
2.3
32.2
7.5
37.4
6
7.5
37.4
5.2
2.3
32.2
7.5
37.4
Namibia
Hardap
8
7.6
37.9
6.3
1.4
31.6
7.6
37.9
8
7.6
37.9
6.3
1.4
31.6
7.6
37.9
Namibia
Karas
11
7.9
38.8
0.1
7.8
38.7
7.9
38.8
11
7.9
38.8
0.1
7.8
38.7
7.9
38.8
Namibia
Kavango
32
8.4
40.7
14.0
0.0
26.7
14.0
40.7
32
8.4
40.7
14.0
0.0
26.7
14.0
40.7
Namibia
Khomas
6
6.9
35.2
18.0
0.0
17.2
18.0
35.2
6
6.9
35.2
18.0
0.0
17.2
18.0
35.2
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Namibia
Kunene
10
8.6
41.4
4.1
4.5
37.3
8.6
41.4
10
8.6
41.4
4.1
4.5
37.3
8.6
41.4
Namibia
Ohangwena
37
5.7
30.5
9.7
0.0
20.7
9.7
30.5
37
5.7
30.5
9.7
0.0
20.7
9.7
30.5
Namibia
Omaheke
12
8.5
41.2
3.8
4.7
37.4
8.5
41.2
12
8.5
41.2
3.8
4.7
37.4
8.5
41.2
Namibia
Omusati
43
5.5
29.9
0.2
5.3
29.6
5.5
29.9
43
5.5
29.9
0.2
5.3
29.6
5.5
29.9
Namibia
Oshana
14
5.5
29.9
0.0
5.5
29.9
5.5
29.9
14
5.5
29.9
0.0
5.5
29.9
5.5
29.9
Namibia
Oshikoto
26
6.9
35.0
7.2
0.0
27.8
7.2
35.0
26
6.9
35.0
7.2
0.0
27.8
7.2
35.0
Namibia
Otjozondjupa
67
69.8
79.5
13.5
56.3
65.9
69.8
79.5
67
69.8
79.5
13.5
56.3
65.9
69.8
79.5
Namibia tot
286
21.5
45.3
11.8
15.0
35.8
26.7
47.6
286
21.5
45.3
11.8
15.0
35.8
26.7
47.6
Nepal
Central
3,770
40.0
49.2
0.0
40.0
49.2
40.0
49.2
3,768
39.1
48.5
0.0
39.1
48.5
39.1
48.5
Nepal
Eastern
3,557
39.8
49.1
0.0
39.8
49.1
39.8
49.1
3,564
39.0
48.4
0.0
39.0
48.4
39.0
48.4
Nepal
Far Western
3,086
49.3
57.7
0.0
49.3
57.7
49.3
57.7
3,067
48.1
56.7
0.0
48.1
56.7
48.1
56.7
Nepal
Mid Western
4,666
48.8
57.0
0.0
48.8
57.0
48.8
57.0
4,671
47.8
56.2
0.0
47.8
56.2
47.8
56.2
Nepal
Western
3,622
41.7
50.8
0.0
41.7
50.8
41.7
50.8
3,629
40.8
50.0
0.0
40.8
50.0
40.8
50.0
Nepal tot
18,700
44.0
52.8
0.0
44.0
52.8
44.0
52.8
18,700
43.1
52.0
0.0
43.1
52.0
43.1
52.0
Nicaragua
Atlantico Norte
151
6.2
34.9
100.0
0.0
0.0
100.0
100.0
151
6.2
34.9
100.0
0.0
0.0
100.0
100.0
Nicaragua
Atlantico Sur
178
6.3
35.2
100.0
0.0
0.0
100.0
100.0
178
6.3
35.2
100.0
0.0
0.0
100.0
100.0
Nicaragua
Boaco
107
6.9
31.5
49.6
0.0
0.0
49.6
49.6
106
6.2
31.0
49.8
0.0
0.0
49.8
49.8
Nicaragua
Carazo
105
14.7
36.4
15.8
0.0
20.6
15.8
36.4
105
11.4
34.0
15.8
0.0
18.2
15.8
34.0
Nicaragua
Chinandega
175
4.8
29.4
34.3
0.0
0.0
34.3
34.3
176
4.8
29.4
34.1
0.0
0.0
34.1
34.1
Nicaragua
Chontales
109
5.1
30.5
59.9
0.0
0.0
59.9
59.9
109
5.1
30.5
59.8
0.0
0.0
59.8
59.8
Nicaragua
Esteli
82
4.8
29.3
34.0
0.0
0.0
34.0
34.0
82
4.8
29.3
33.9
0.0
0.0
33.9
33.9
Nicaragua
Granada
64
15.1
37.6
18.6
0.0
19.0
18.6
37.6
63
11.7
35.1
18.7
0.0
16.4
18.7
35.1
Nicaragua
Jinotega
199
5.1
30.4
88.0
0.0
0.0
88.0
88.0
200
5.1
30.4
87.5
0.0
0.0
87.5
87.5
Nicaragua
Leon
135
5.6
29.8
28.9
0.0
0.9
28.9
29.8
135
5.4
29.6
28.8
0.0
0.8
28.8
29.6
Nicaragua
Madriz
81
4.7
29.0
42.7
0.0
0.0
42.7
42.7
82
4.7
29.0
42.5
0.0
0.0
42.5
42.5
Nicaragua
Managua
244
16.1
38.1
16.7
0.0
21.4
16.7
38.1
239
12.3
35.3
17.0
0.0
18.3
17.0
35.3
Nicaragua
Masaya
44
9.9
32.8
22.7
0.0
10.1
22.7
32.8
44
8.2
31.6
22.5
0.0
9.1
22.5
31.6
Nicaragua
Matagalpa
276
4.9
29.4
63.8
0.0
0.0
63.8
63.8
276
4.8
29.4
63.7
0.0
0.0
63.7
63.7
Nicaragua
Nueva Segovia
106
4.8
29.5
60.2
0.0
0.0
60.2
60.2
107
4.8
29.5
59.9
0.0
0.0
59.9
59.9
Nicaragua
Rio San Juan
63
5.5
31.9
100.0
0.0
0.0
100.0
100.0
63
5.5
31.9
100.0
0.0
0.0
100.0
100.0
Nicaragua
Rivas
85
6.3
30.6
23.9
0.0
6.7
23.9
30.6
85
5.8
30.2
23.8
0.0
6.4
23.8
30.2
Nicaragua tot
2,201
7.4
32.2
53.8
4.4
53.8
58.2
2,201
6.6
31.6
53.8
3.8
53.8
57.6
Niger
Agadez
51
6.5
39.0
10.6
0.0
28.3
10.6
39.0
51
6.5
39.0
10.6
0.0
28.4
10.6
39.0
Niger
Diffa
108
2.8
25.9
0.7
2.0
25.2
2.8
25.9
108
2.8
26.0
0.7
2.1
25.2
2.8
26.0
Niger
Dosso
419
1.7
22.1
3.9
0.0
18.2
3.9
22.1
426
1.7
22.2
3.8
0.0
18.3
3.8
22.2
Niger
Maradi
443
1.7
22.1
0.4
1.3
21.8
1.7
22.1
445
1.7
22.2
0.4
1.3
21.8
1.7
22.2
Niger
Niamey
18
1.7
22.1
0.5
1.2
21.7
1.7
22.1
18
1.7
22.2
0.5
1.2
21.7
1.7
22.2
Niger
Tahoua
422
2.1
23.6
1.7
0.3
21.8
2.1
23.6
431
2.1
23.6
1.7
0.4
21.9
2.1
23.6
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Niger
Tillaberi
486
1.9
23.0
2.9
0.0
20.2
2.9
23.0
489
2.0
23.1
2.9
0.0
20.2
2.9
23.1
Niger
Zinder
456
2.3
24.3
0.4
1.9
23.9
2.3
24.3
457
2.3
24.3
0.4
1.9
23.9
2.3
24.3
Niger tot
2,404
2.1
23.5
2.0
0.8
21.5
2.7
23.5
2,425
2.1
23.5
2.0
0.8
21.6
2.7
23.5
Nigeria
Adamawa
787
2.1
16.9
12.6
0.0
4.2
12.6
16.9
790
2.2
16.9
12.6
0.0
4.3
12.6
16.9
Nigeria
Akwa Ibom
713
3.8
18.4
80.1
0.0
0.0
80.1
80.1
722
2.9
17.7
79.1
0.0
0.0
79.1
79.1
Nigeria
Anambra
481
3.5
18.1
24.4
0.0
0.0
24.4
24.4
482
2.7
17.4
24.4
0.0
0.0
24.4
24.4
Nigeria
Benue
1,601
4.2
18.6
14.2
0.0
4.5
14.2
18.6
1,596
3.0
17.6
14.2
0.0
3.4
14.2
17.6
Nigeria
Borno
954
2.1
16.9
30.3
0.0
0.0
30.3
30.3
956
2.2
17.0
30.2
0.0
0.0
30.2
30.2
Nigeria
Cross River
1,632
6.5
20.8
100.0
0.0
0.0
100.0
100.0
1,624
4.0
18.7
100.0
0.0
0.0
100.0
100.0
Nigeria
Delta
1,775
6.5
20.8
100.0
0.0
0.0
100.0
100.0
1,772
4.0
18.7
100.0
0.0
0.0
100.0
100.0
Nigeria
Edo
1,826
7.1
21.4
77.8
0.0
0.0
77.8
77.8
1,813
4.2
19.0
78.3
0.0
0.0
78.3
78.3
Nigeria
FCT, Abuja
440
7.0
21.0
13.5
0.0
7.5
13.5
21.0
436
4.1
18.5
13.6
0.0
5.0
13.6
18.5
Nigeria
Imo
540
3.4
18.0
63.3
0.0
0.0
63.3
63.3
548
2.7
17.3
62.4
0.0
0.0
62.4
62.4
Nigeria
Jigawa
454
2.1
16.9
8.5
0.0
8.4
8.5
16.9
459
2.2
16.9
8.4
0.0
8.5
8.4
16.9
Nigeria
Kaduna
1,610
4.5
18.9
10.9
0.0
8.0
10.9
18.9
1,622
3.1
17.7
10.8
0.0
6.9
10.8
17.7
Nigeria
Kano
462
2.1
16.9
5.4
0.0
11.4
5.4
16.9
466
2.2
16.9
5.4
0.0
11.5
5.4
16.9
Nigeria
Katsina
501
2.1
16.9
8.8
0.0
8.1
8.8
16.9
509
2.2
16.9
8.7
0.0
8.2
8.7
16.9
Nigeria
Kebbi
684
2.3
17.0
3.9
0.0
13.1
3.9
17.0
689
2.2
17.0
3.8
0.0
13.1
3.8
17.0
Nigeria
Kogi
2,374
6.9
20.9
31.2
0.0
0.0
31.2
31.2
2,333
4.0
18.5
31.7
0.0
0.0
31.7
31.7
Nigeria
Kwara
1,632
7.3
21.7
32.1
0.0
0.0
32.1
32.1
1,606
4.4
19.2
32.6
0.0
0.0
32.6
32.6
Nigeria
Lagos
384
4.2
18.7
69.1
0.0
0.0
69.1
69.1
385
3.0
17.7
68.9
0.0
0.0
68.9
68.9
Nigeria
Niger
2,243
5.8
20.0
12.9
0.0
7.2
12.9
20.0
2,251
3.6
18.2
12.8
0.0
5.4
12.8
18.2
Nigeria
Ogun
1,302
6.0
20.9
88.9
0.0
0.0
88.9
88.9
1,312
3.9
19.1
88.2
0.0
0.0
88.2
88.2
Nigeria
Osun
992
5.7
20.1
97.6
0.0
0.0
97.6
97.6
997
3.6
18.3
97.1
0.0
0.0
97.1
97.1
Nigeria
Oyo
1,821
6.0
20.2
38.7
0.0
0.0
38.7
38.7
1,806
3.7
18.2
39.0
0.0
0.0
39.0
39.0
Nigeria
Taraba
836
2.9
17.6
97.6
0.0
0.0
97.6
97.6
836
2.5
17.3
97.6
0.0
0.0
97.6
97.6
Nigeria
Yobe
565
2.2
16.9
15.1
0.0
1.8
15.1
16.9
567
2.2
17.0
15.0
0.0
1.9
15.0
17.0
Nigeria
Abia
432
4.1
18.6
82.4
0.0
0.0
82.4
82.4
438
3.0
17.6
81.4
0.0
0.0
81.4
81.4
Nigeria
Bauchi
1,118
3.5
18.0
5.6
0.0
12.4
5.6
18.0
1,131
2.7
17.4
5.6
0.0
11.8
5.6
17.4
Nigeria
Bayelsa
1,320
7.6
21.9
100.0
0.0
0.0
100.0
100.0
1,306
4.5
19.3
100.0
0.0
0.0
100.0
100.0
Nigeria
Ebonyi
565
3.2
17.8
14.1
0.0
3.7
14.1
17.8
567
2.6
17.3
14.0
0.0
3.2
14.0
17.3
Nigeria
Ekiti
596
4.5
18.8
96.6
0.0
0.0
96.6
96.6
602
3.1
17.7
95.7
0.0
0.0
95.7
95.7
Nigeria
Enugu
786
4.3
18.8
30.8
0.0
0.0
30.8
30.8
785
3.0
17.6
30.8
0.0
0.0
30.8
30.8
Nigeria
Gombe
503
3.1
17.7
1.8
1.3
15.9
3.1
17.7
507
2.5
17.2
1.8
0.8
15.5
2.5
17.2
Nigeria
Nassarawa
1,169
5.7
19.9
10.2
0.0
9.7
10.2
19.9
1,164
3.6
18.2
10.3
0.0
7.9
10.3
18.2
Nigeria
Ondo
1,648
6.4
21.1
100.0
0.0
0.0
100.0
100.0
1,649
4.0
19.2
100.0
0.0
0.0
100.0
100.0
Nigeria
Plateau
711
2.6
17.3
7.2
0.0
10.1
7.2
17.3
719
2.4
17.1
7.1
0.0
10.0
7.1
17.1
Nigeria
Rivers
1,356
5.9
20.1
100.0
0.0
0.0
100.0
100.0
1,354
3.6
18.2
100.0
0.0
0.0
100.0
100.0
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Nigeria
Sokoto
470
2.1
16.9
8.7
0.0
8.2
8.7
16.9
474
2.2
16.9
8.6
0.0
8.3
8.6
16.9
Nigeria
Zamfara
816
2.8
17.4
4.9
0.0
12.5
4.9
17.4
826
2.4
17.1
4.9
0.0
12.3
4.9
17.1
Nigeria tot
38,098
5.1
19.5
48.0
0.0
3.2
48.0
51.2
38,098
3.4
18.1
47.9
0.0
2.9
48.0
50.9
Pakistan
Balochistan
726
1.5
23.5
19.7
0.0
3.7
19.7
23.5
753
1.6
23.5
19.0
0.0
4.5
19.0
23.5
Pakistan
Fata
554
35.5
48.5
20.1
15.3
28.3
35.5
48.5
661
43.7
55.0
16.9
26.8
38.1
43.7
55.0
Pakistan
Islamabad
516
92.6
94.1
2.4
90.2
91.7
92.6
94.1
493
91.8
93.5
2.5
89.3
91.0
91.8
93.5
Pakistan
Nwfp
23,410
93.0
94.4
4.1
89.0
90.4
93.0
94.4
23,868
92.7
94.2
4.0
88.7
90.2
92.7
94.2
Pakistan
Punjab
11,927
69.1
75.3
2.1
67.0
73.3
69.1
75.3
11,289
66.6
73.4
2.2
64.5
71.2
66.6
73.4
Pakistan
Sind
1,411
1.3
21.3
12.4
0.0
8.9
12.4
21.3
1,480
3.0
22.7
11.8
0.0
10.9
11.8
22.7
Pakistan tot
38,544
79.7
83.8
4.3
76.2
79.6
80.5
83.8
38,544
79.0
83.3
4.3
75.4
79.0
79.7
83.3
Panama
Bocas Del Toro
46
3.9
32.6
100.0
0.0
0.0
100.0
100.0
46
3.6
32.3
100.0
0.0
0.0
100.0
100.0
Panama
Chiriqui
138
2.6
27.6
62.6
0.0
0.0
62.6
62.6
138
2.3
27.3
62.6
0.0
0.0
62.6
62.6
Panama
Cocle
65
2.9
28.6
19.9
0.0
8.7
19.9
28.6
66
2.6
28.3
19.7
0.0
8.5
19.7
28.3
Panama
Colon
53
0.0
17.5
88.4
0.0
0.0
88.4
88.4
42
3.3
30.8
100.0
0.0
0.0
100.0
100.0
Panama
Comarca De San
Blas
15
3.2
30.0
49.9
0.0
0.0
49.9
49.9
15
2.9
29.7
49.9
0.0
0.0
49.9
49.9
Panama
Darien
27
5.2
37.6
54.8
0.0
0.0
54.8
54.8
27
4.9
37.3
54.8
0.0
0.0
54.8
54.8
Panama
Herrera
40
2.6
27.4
24.4
0.0
2.9
24.4
27.4
40
2.3
27.1
24.4
0.0
2.7
24.4
27.1
Panama
Los Santos
40
2.9
28.8
19.2
0.0
9.6
19.2
28.8
40
2.6
28.5
19.2
0.0
9.3
19.2
28.5
Panama
Panama
156
0.0
8.8
31.6
0.0
0.0
31.6
31.6
167
15.9
38.8
29.5
0.0
9.3
29.5
38.8
Panama
Veraguas
116
3.0
28.9
41.9
0.0
0.0
41.9
41.9
116
2.7
28.6
41.9
0.0
0.0
41.9
41.9
Panama tot
696
2.1
23.7
47.4
1.5
47.4
48.9
696
5.9
31.4
46.6
3.7
46.6
50.3
Papua N. G.
Central
915
38.0
55.0
1.7
36.3
53.3
38.0
55.0
904
36.3
53.8
1.7
34.6
52.1
36.3
53.8
Papua N. G.
Chimbu
163
0.0
20.3
14.7
0.0
5.5
14.7
20.3
164
0.0
20.3
14.6
0.0
5.7
14.6
20.3
Papua N. G.
East New Britain
106
0.0
21.2
29.4
0.0
0.0
29.4
29.4
107
0.0
21.2
29.2
0.0
0.0
29.2
29.2
Papua N. G.
East Sepik
233
0.0
25.7
6.5
0.0
19.1
6.5
25.7
233
0.0
25.7
6.5
0.0
19.2
6.5
25.7
Papua N. G.
Eastern Highlands
248
0.0
20.0
5.6
0.0
14.4
5.6
20.0
250
0.0
20.1
5.6
0.0
14.5
5.6
20.1
Papua N. G.
Enga
206
0.0
20.5
2.3
0.0
18.2
2.3
20.5
206
0.0
20.6
2.3
0.0
18.3
2.3
20.6
Papua N. G.
Gulf
60
0.0
28.3
100.0
0.0
0.0
100.0
100.0
60
0.0
28.4
100.0
0.0
0.0
100.0
100.0
Papua N. G.
Madang
229
0.0
23.8
57.3
0.0
0.0
57.3
57.3
229
0.0
23.9
57.2
0.0
0.0
57.2
57.2
Papua N. G.
Manus
18
0.0
23.7
1.9
0.0
21.9
1.9
23.7
18
0.0
23.8
1.9
0.0
21.9
1.9
23.8
Papua N. G.
Milne Bay
124
0.0
22.3
2.2
0.0
20.1
2.2
22.3
124
0.0
22.3
2.2
0.0
20.2
2.2
22.3
Papua N. G.
Morobe
306
6.9
30.5
8.4
0.0
22.1
8.4
30.5
306
6.4
30.1
8.4
0.0
21.8
8.4
30.1
Papua N. G.
National Capital
District
15
5.3
27.5
0.0
5.3
27.5
5.3
27.5
15
4.9
27.2
0.0
4.9
27.1
4.9
27.2
Papua N. G.
New Ireland
51
0.0
22.7
2.6
0.0
20.1
2.6
22.7
51
0.0
22.8
2.6
0.0
20.2
2.6
22.8
Papua N. G.
Northern
81
0.0
28.4
100.0
0.0
0.0
100.0
100.0
81
0.0
28.4
100.0
0.0
0.0
100.0
100.0
Papua N. G.
Northern Solomons
75
0.0
23.0
2.1
0.0
20.9
2.1
23.0
75
0.0
23.1
2.1
0.0
21.0
2.1
23.1
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Papua N. G.
Southern Highlands
332
0.0
21.0
38.8
0.0
0.0
38.8
38.8
333
0.0
21.1
38.7
0.0
0.0
38.7
38.7
Papua N. G.
West New Britain
95
0.0
24.8
43.5
0.0
0.0
43.5
43.5
95
0.0
24.8
43.4
0.0
0.0
43.4
43.4
Papua N. G.
West Sepik
88
0.0
29.7
3.6
0.0
26.1
3.6
29.7
88
0.0
29.7
3.6
0.0
26.1
3.6
29.7
Papua N. G.
Western
110
0.0
32.5
100.0
0.0
0.0
100.0
100.0
110
0.0
32.6
100.0
0.0
0.0
100.0
100.0
Papua N. G.
Western Highlands
283
0.0
20.0
21.0
0.0
0.0
21.0
21.0
285
0.0
20.1
20.8
0.0
0.0
20.8
20.8
Papua N. G. tot
3,736
9.9
31.4
20.1
8.9
20.5
29.0
40.5
3,736
9.3
31.1
20.1
8.4
20.0
28.5
40.1
Paraguay
Alto Paraguay
33
2.3
37.3
0.0
2.3
37.3
2.3
37.3
33
2.3
37.3
0.0
2.3
37.3
2.3
37.3
Paraguay
Alto Parana
541
0.0
27.2
9.4
0.0
17.8
9.4
27.2
541
0.0
27.1
9.4
0.0
17.7
9.4
27.1
Paraguay
Amambay
141
2.3
37.3
16.2
0.0
21.2
16.2
37.3
141
2.3
37.3
16.1
0.0
21.2
16.1
37.3
Paraguay
Boqueron
77
2.4
37.8
0.0
2.4
37.7
2.4
37.8
77
2.4
37.8
0.0
2.4
37.8
2.4
37.8
Paraguay
Caaguazu
821
0.0
24.9
15.5
0.0
9.4
15.5
24.9
823
0.0
24.7
15.5
0.0
9.2
15.5
24.7
Paraguay
Caazapa
622
0.0
27.7
7.3
0.0
20.4
7.3
27.7
621
0.0
27.1
7.3
0.0
19.8
7.3
27.1
Paraguay
Canindeyu
314
0.9
31.6
57.7
0.0
0.0
57.7
57.7
314
0.9
31.7
57.7
0.0
0.0
57.7
57.7
Paraguay
Central
180
0.0
24.2
0.0
0.0
24.2
0.0
24.2
181
0.0
24.1
0.0
0.0
24.1
0.0
24.1
Paraguay
Concepcion
294
0.7
30.8
16.6
0.0
14.2
16.6
30.8
294
0.8
30.8
16.6
0.0
14.3
16.6
30.8
Paraguay
Cordillera
435
0.0
25.8
0.0
0.0
25.8
0.0
25.8
436
0.0
25.4
0.0
0.0
25.4
0.0
25.4
Paraguay
Guaira
307
0.0
23.3
1.0
0.0
22.3
1.0
23.3
308
0.0
23.0
1.0
0.0
22.0
1.0
23.0
Paraguay
Itapua
889
0.0
26.4
4.5
0.0
21.9
4.5
26.4
890
0.0
26.2
4.5
0.0
21.7
4.5
26.2
Paraguay
Misiones
319
0.0
32.0
0.0
0.0
32.0
0.0
32.0
319
0.0
31.5
0.0
0.0
31.5
0.0
31.5
Paraguay
Neembucu
142
1.3
37.1
0.0
1.3
37.1
1.3
37.1
142
1.0
37.0
0.0
1.0
37.0
1.0
37.0
Paraguay
Paraguari
569
0.0
25.8
0.1
0.0
25.8
0.1
25.8
570
0.0
25.4
0.1
0.0
25.3
0.1
25.4
Paraguay
Presidente Hayes
922
0.0
40.0
0.0
0.0
39.9
0.0
40.0
914
0.0
39.1
0.0
0.0
39.1
0.0
39.1
Paraguay
San Pedro
853
0.0
28.8
100.0
0.0
0.0
100.0
100.0
853
0.0
28.6
100.0
0.0
0.0
100.0
100.0
Paraguay tot
7,458
0.2
29.3
18.4
0.1
20.1
18.5
38.5
7,458
0.2
29.0
18.4
0.1
19.8
18.5
38.2
Peru
Amazonas
107
2.1
5.0
0.2
1.8
4.8
2.1
5.0
107
2.1
5.0
0.2
1.9
4.8
2.1
5.0
Peru
Ancash
205
9.4
12.0
0.0
9.4
11.9
9.4
12.0
206
9.1
11.7
0.0
9.1
11.7
9.1
11.7
Peru
Apurimac
122
1.5
4.3
0.0
1.5
4.3
1.5
4.3
123
1.6
4.4
0.0
1.6
4.4
1.6
4.4
Peru
Arequipa
96
16.6
19.6
0.0
16.6
19.6
16.6
19.6
99
17.5
20.5
0.0
17.5
20.5
17.5
20.5
Peru
Ayacucho
122
2.3
5.4
0.1
2.3
5.3
2.3
5.4
123
2.4
5.4
0.1
2.3
5.4
2.4
5.4
Peru
Cajamarca
421
0.8
3.3
0.1
0.7
3.2
0.8
3.3
421
0.8
3.4
0.1
0.7
3.3
0.8
3.4
Peru
Callao, Provincia
Constitucion
19
9.8
12.2
0.0
9.8
12.2
9.8
12.2
19
10.7
13.1
0.0
10.7
13.1
10.7
13.1
Peru
Cusco
256
1.7
4.6
0.1
1.6
4.5
1.7
4.6
257
1.8
4.6
0.1
1.7
4.5
1.8
4.6
Peru
Huancavelica
106
1.4
4.1
0.0
1.4
4.1
1.4
4.1
107
1.4
4.2
0.0
1.4
4.1
1.4
4.2
Peru
Huanuco
148
1.5
4.2
3.4
0.0
0.9
3.4
4.2
149
1.5
4.3
3.4
0.0
0.9
3.4
4.3
Peru
Ica
51
16.1
18.7
0.0
16.1
18.7
16.1
18.7
53
16.4
19.1
0.0
16.4
19.0
16.4
19.1
Peru
Junin
204
1.3
4.1
0.2
1.2
3.9
1.3
4.1
206
1.4
4.1
0.2
1.2
3.9
1.4
4.1
Peru
La Libertad
193
1.2
3.9
0.0
1.2
3.9
1.2
3.9
193
1.2
3.9
0.0
1.2
3.9
1.2
3.9
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Peru
Lambayeque
107
1.0
3.7
0.0
1.0
3.6
1.0
3.7
108
1.1
3.7
0.0
1.0
3.7
1.1
3.7
Peru
Lima
1,334
74.1
74.9
0.0
74.1
74.9
74.1
74.9
1,316
72.6
73.4
0.0
72.6
73.4
72.6
73.4
Peru
Loreto
112
3.5
6.8
78.1
0.0
0.0
78.1
78.1
112
3.5
6.8
77.6
0.0
0.0
77.6
77.6
Peru
Madre De Dios
8
2.7
5.9
33.5
0.0
0.0
33.5
33.5
8
2.7
5.9
33.5
0.0
0.0
33.5
33.5
Peru
Moquegua
17
8.0
10.9
0.0
8.0
10.9
8.0
10.9
18
13.5
16.3
0.0
13.5
16.2
13.5
16.3
Peru
Pasco
43
2.7
5.8
0.2
2.5
5.6
2.7
5.8
43
2.7
5.9
0.2
2.5
5.6
2.7
5.9
Peru
Piura
316
0.9
3.5
0.1
0.9
3.5
0.9
3.5
317
1.0
3.6
0.1
0.9
3.5
1.0
3.6
Peru
Puno
281
1.5
4.3
0.1
1.4
4.2
1.5
4.3
282
1.5
4.3
0.1
1.5
4.2
1.5
4.3
Peru
San Martin
106
2.4
5.5
100.0
0.0
0.0
100.0
100.0
106
2.5
5.6
100.0
0.0
0.0
100.0
100.0
Peru
Tacna
15
4.4
8.0
0.0
4.4
8.0
4.4
8.0
15
4.4
8.0
0.0
4.4
8.0
4.4
8.0
Peru
Tumbes
28
1.8
4.6
0.1
1.7
4.5
1.8
4.6
29
1.8
4.7
0.1
1.7
4.5
1.8
4.7
Peru
Ucayali
31
2.9
6.1
100.0
0.0
0.0
100.0
100.0
32
2.9
6.1
100.0
0.0
0.0
100.0
100.0
Peru tot
4,449
24.2
26.4
5.3
23.9
25.9
29.2
31.2
4,449
23.5
25.7
5.3
23.3
25.2
28.5
30.5
Philippines
Cordillera
Administrative region
709
6.4
23.4
-0.9
5.5
22.5
5.5
22.5
485
11.0
27.1
-1.3
9.7
25.8
9.7
25.8
Philippines
National Capital
region
62
1.5
19.2
-0.1
1.4
19.1
1.4
19.1
62
1.4
19.1
-0.1
1.3
19.0
1.3
19.0
Philippines
Region I
919
5.1
22.3
-0.5
4.5
21.8
4.5
21.8
909
11.0
27.0
-0.5
10.4
26.5
10.4
26.5
Philippines
Region II
678
3.6
21.1
-0.8
2.8
20.3
2.8
20.3
653
6.5
23.4
-0.8
5.7
22.6
5.7
22.6
Philippines
Region V
929
2.2
19.8
-0.9
1.4
19.0
1.4
19.0
879
2.1
19.7
-0.9
1.1
18.8
1.1
18.8
Philippines
Region VI
952
1.5
19.3
-0.8
0.7
18.5
0.7
18.5
966
1.5
19.2
-0.8
0.7
18.4
0.7
18.4
Philippines
Region VII
794
2.3
19.9
-0.7
1.6
19.2
1.6
19.2
783
3.2
20.7
-0.7
2.5
19.9
2.5
19.9
Philippines
Region VIII
805
1.5
19.2
-1.5
0.0
17.8
0.0
17.8
808
1.4
19.1
-1.4
0.0
17.7
0.0
17.7
Philippines
Region XIII
451
1.5
19.3
-2.0
0.0
17.3
0.0
17.3
453
1.4
19.2
-2.0
0.0
17.2
0.0
17.2
Philippines
Autonomous region in
Muslim Mindanao
656
1.5
19.2
-1.0
0.5
18.3
0.5
18.3
664
1.4
19.1
-1.0
0.4
18.2
0.4
18.2
Philippines
Reg.IX
542
1.5
19.3
-1.3
0.3
18.0
0.3
18.0
545
1.4
19.2
-1.2
0.2
17.9
0.2
17.9
Philippines
Region X
560
1.6
19.3
-1.4
0.2
18.0
0.2
18.0
559
1.5
19.2
-1.4
0.1
17.9
0.1
17.9
Philippines
Region XI
459
2.0
19.7
-1.6
0.3
18.0
0.3
18.0
457
2.3
19.9
-1.7
0.7
18.3
0.7
18.3
Philippines
Region XI
522
1.7
19.4
-1.3
0.4
18.1
0.4
18.1
527
1.7
19.4
-1.3
0.4
18.2
0.4
18.2
Philippines
Region III
1,421
5.9
23.5
-0.5
5.5
23.1
5.5
23.1
1,501
13.7
29.7
-0.4
13.2
29.3
13.2
29.3
Philippines
Region IV-A
1,737
6.4
23.3
-0.4
5.9
22.9
5.9
22.9
1,938
15.8
31.0
-0.4
15.4
30.6
15.4
30.6
Philippines
Region IV-B
368
1.5
19.4
-1.4
0.2
18.0
0.2
18.0
372
1.4
19.2
-1.3
0.1
17.9
0.1
17.9
Philippines tot
12,563
3.5
21.0
-0.9
2.6
20.1
2.6
20.1
12,563
6.6
23.5
-0.9
5.8
22.6
5.8
22.6
Rwanda
Butare
141
3.6
7.1
-2.3
1.3
4.9
1.3
4.9
201
4.0
7.5
-1.6
2.4
5.9
2.4
5.9
Rwanda
Byumba
120
3.6
7.1
-2.3
1.2
4.8
1.2
4.8
246
35.9
38.2
-1.1
34.7
37.1
34.7
37.1
Rwanda
Cyangugu
289
54.8
56.4
-1.0
53.8
55.4
53.8
55.4
468
63.4
64.7
-0.6
62.7
64.1
62.7
64.1
Rwanda
Gikongoro
128
3.6
7.1
-2.3
1.3
4.9
1.3
4.9
173
4.0
7.5
-1.7
2.3
5.9
2.3
5.9
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Rwanda
Gisenyi
141
3.6
7.1
-1.8
1.8
5.3
1.8
5.3
188
4.0
7.5
-1.4
2.6
6.2
2.6
6.2
Rwanda
Gitarama
164
3.6
7.1
-2.3
1.3
4.9
1.3
4.9
238
4.0
7.5
-1.6
2.4
6.0
2.4
6.0
Rwanda
Kibungo
975
81.0
81.7
-0.5
80.5
81.2
80.5
81.2
866
71.5
72.6
-0.6
70.9
72.0
70.9
72.0
Rwanda
Kibuye
112
3.6
7.1
-2.2
1.3
4.9
1.3
4.9
156
4.0
7.5
-1.6
2.4
5.9
2.4
5.9
Rwanda
Kigali-ngali
388
49.5
51.4
-1.3
48.3
50.1
48.3
50.1
486
45.6
47.6
-1.0
44.6
46.6
44.6
46.6
Rwanda
Ville De Kigali
8
3.6
7.1
-2.0
1.6
5.1
1.6
5.1
10
4.0
7.5
-1.5
2.5
6.0
2.5
6.0
Rwanda
Ruhengeri
119
3.6
7.1
-2.2
1.4
4.9
1.4
4.9
169
4.0
7.5
-1.6
2.4
6.0
2.4
6.0
Rwanda
Umutara
1,728
92.6
92.9
-0.3
92.4
92.6
92.4
92.6
1,110
84.8
85.4
-0.4
84.4
85.0
84.4
85.0
Rwanda tot
4,313
64.3
65.6
-0.9
63.4
64.7
63.4
64.7
4,313
51.3
53.1
-0.9
50.4
52.2
50.4
52.2
Senegal
Dakar
19
3.0
26.4
1.0
2.0
25.4
3.0
26.4
20
3.2
26.6
0.9
2.2
25.7
3.2
26.6
Senegal
Kaolack
368
4.2
27.5
1.5
2.7
26.0
4.2
27.5
390
3.8
27.3
1.4
2.5
25.9
3.8
27.3
Senegal
Kolda
1,807
20.4
39.7
8.2
12.2
31.5
20.4
39.7
1,777
10.4
32.2
8.4
2.0
23.8
10.4
32.2
Senegal
Tambacounda
1,357
23.7
48.8
7.2
16.4
41.6
23.7
48.8
1,302
13.2
41.7
7.5
5.6
34.1
13.2
41.7
Senegal
Thies
175
3.0
26.4
3.0
0.0
23.4
3.0
26.4
188
3.2
26.6
2.8
0.4
23.8
3.2
26.6
Senegal
Ziguinchor
566
19.7
39.5
31.8
0.0
7.7
31.8
39.5
578
10.2
32.4
31.2
0.0
1.2
31.2
32.4
Senegal
Diourbel
88
3.0
26.4
0.8
2.2
25.7
3.0
26.4
91
3.2
26.6
0.8
2.4
25.9
3.2
26.6
Senegal
Fatick
205
7.2
30.3
13.0
0.0
17.3
13.0
30.3
215
5.2
28.9
12.3
0.0
16.6
12.3
28.9
Senegal
Louga
242
4.2
29.0
10.3
0.0
18.7
10.3
29.0
248
4.0
28.9
10.1
0.0
18.9
10.1
28.9
Senegal
Matam
190
6.6
31.8
15.0
0.0
16.9
15.0
31.8
199
5.4
31.1
14.3
0.0
16.8
14.3
31.1
Senegal
Saint-Louis
224
3.1
26.8
8.6
0.0
18.2
8.6
26.8
231
3.3
27.0
8.4
0.0
18.6
8.4
27.0
Senegal tot
5,239
16.6
38.8
10.3
8.7
28.5
19.0
38.8
5,239
9.1
33.3
10.3
2.3
23.0
12.6
33.3
Sierra Leone
Eastern
698
0.0
25.0
13.2
0.0
11.7
13.2
25.0
698
0.0
24.8
13.2
0.0
11.5
13.2
24.8
Sierra Leone
Northern
1,407
0.0
21.9
10.1
0.0
11.8
10.1
21.9
1,406
0.0
21.6
10.1
0.0
11.5
10.1
21.6
Sierra Leone
Southern
1,028
0.0
19.7
7.7
0.0
12.0
7.7
19.7
1,027
0.0
19.2
7.7
0.0
11.5
7.7
19.2
Sierra Leone
Western Area
132
1.7
26.8
1.7
0.0
25.1
1.7
26.8
132
1.6
26.7
1.7
0.0
25.0
1.7
26.7
Sierra Leone tot
3,264
0.1
22.1
9.7
0.0
12.4
9.7
22.1
3,264
0.1
21.7
9.7
12.0
9.7
21.7
Singapore
Ang Mo Kio-cheng
San
2
5.0
30.0
0.0
5.0
30.0
5.0
30.0
2
5.0
30.0
0.0
5.0
30.0
5.0
30.0
Singapore
Bukit Timah
3
5.0
30.0
0.0
5.0
30.0
5.0
30.0
3
5.0
30.0
0.0
5.0
30.0
5.0
30.0
Singapore
Central Singapore
2
5.0
30.0
0.0
5.0
30.0
5.0
30.0
2
5.0
30.0
0.0
5.0
30.0
5.0
30.0
Singapore
Hougang
0
5.0
30.0
0.0
5.0
30.0
5.0
30.0
0
5.0
30.0
0.0
5.0
30.0
5.0
30.0
Singapore
Marine Parade
3
5.0
30.1
0.0
5.0
30.1
5.0
30.1
3
5.0
30.1
0.0
5.0
30.1
5.0
30.1
Singapore
Northeast
1
5.0
30.0
0.0
5.0
30.0
5.0
30.0
1
5.0
30.0
0.0
5.0
30.0
5.0
30.0
Singapore
Potong Pasir
0
5.0
30.0
0.0
5.0
30.0
5.0
30.0
0
5.0
30.0
0.0
5.0
30.0
5.0
30.0
Singapore
Sembawang-hong
Kah
52
81.2
86.1
0.0
81.2
86.1
81.2
86.1
52
80.9
86.0
0.0
80.9
86.0
80.9
86.0
Singapore
Tanjong Pagar
1
5.0
30.0
0.0
5.0
30.0
5.0
30.0
1
5.0
30.0
0.0
5.0
30.0
5.0
30.0
Singapore tot
64
66.8
75.6
0.0
66.8
75.6
66.8
75.6
64
66.6
75.4
0.0
66.6
75.4
66.6
75.4
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Solomon Isl.
not available
73
0.0
0.0
100.0
0.0
0.0
100.0
100.0
73
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Solomon Isl. tot
73
100.0
100.0
100.0
73
100.0
100.0
100.0
Somalia
Awdal
88
5.6
33.2
1.1
4.6
32.1
5.6
33.2
88
5.6
33.2
1.1
4.6
32.1
5.6
33.2
Somalia
Bakool
197
18.7
48.2
13.4
5.3
34.8
18.7
48.2
197
18.7
48.2
13.4
5.3
34.8
18.7
48.2
Somalia
Bari
194
8.5
44.6
0.9
7.6
43.7
8.5
44.6
194
8.5
44.6
0.9
7.6
43.7
8.5
44.6
Somalia
Bay
1,325
33.3
57.5
7.8
25.5
49.8
33.3
57.5
1,325
33.2
57.5
7.8
25.5
49.7
33.2
57.5
Somalia
Banadir
93
4.8
29.8
0.1
4.7
29.7
4.8
29.8
93
4.8
29.8
0.1
4.7
29.7
4.8
29.8
Somalia
Galgaduud
254
8.2
43.0
4.5
3.7
38.5
8.2
43.0
254
8.2
43.0
4.5
3.7
38.5
8.2
43.0
Somalia
Gedo
224
8.4
43.3
5.9
2.4
37.4
8.4
43.3
224
8.4
43.3
5.9
2.4
37.4
8.4
43.3
Somalia
Hiraan
198
8.1
42.2
13.0
0.0
29.2
13.0
42.2
198
8.1
42.2
13.0
0.0
29.2
13.0
42.2
Somalia
Juba Hoose
1,766
41.8
66.8
6.6
35.2
60.2
41.8
66.8
1,766
41.7
66.8
6.6
35.1
60.2
41.7
66.8
Somalia
Shabelle Hoose
750
28.3
51.8
8.9
19.4
42.9
28.3
51.8
750
28.3
51.7
8.9
19.3
42.8
28.3
51.7
Somalia
Juba Dhexe
508
33.0
55.4
7.2
25.8
48.2
33.0
55.4
508
33.0
55.4
7.2
25.8
48.2
33.0
55.4
Somalia
Shabelle Dhexe
284
8.9
34.3
3.8
5.1
30.5
8.9
34.3
284
8.9
34.3
3.8
5.1
30.5
8.9
34.3
Somalia
Mudug
285
7.5
40.7
7.3
0.2
33.4
7.5
40.7
285
7.5
40.7
7.3
0.2
33.4
7.5
40.7
Somalia
Nugaal
69
9.4
48.2
2.5
6.8
45.7
9.4
48.2
69
9.4
48.2
2.5
6.8
45.7
9.4
48.2
Somalia
Sanaag
192
8.7
42.7
0.9
7.8
41.8
8.7
42.7
192
8.7
42.7
0.9
7.8
41.8
8.7
42.7
Somalia
Sool
107
7.4
40.3
0.9
6.5
39.4
7.4
40.3
107
7.4
40.3
0.9
6.5
39.4
7.4
40.3
Somalia
Togdheer
282
6.5
35.3
3.3
3.2
32.0
6.5
35.3
282
6.5
35.3
3.3
3.2
32.0
6.5
35.3
Somalia
Woqooyi Galbeed
203
5.7
33.5
2.5
3.2
31.0
5.7
33.5
203
5.7
33.5
2.5
3.2
31.0
5.7
33.5
Somalia tot
7,019
25.4
52.4
6.5
19.1
46.0
25.6
52.4
7,019
25.4
52.4
6.5
19.1
45.9
25.5
52.4
South Africa
Eastern Cape
3,789
0.0
18.5
0.0
0.0
18.5
0.0
18.5
3,467
0.0
16.3
0.0
0.0
16.3
0.0
16.3
South Africa
Free State
2,244
5.8
28.6
0.0
5.8
28.6
5.8
28.6
2,457
4.5
27.5
0.0
4.5
27.5
4.5
27.5
South Africa
Gauteng
669
2.5
21.8
0.0
2.5
21.8
2.5
21.8
778
2.1
21.5
0.0
2.1
21.5
2.1
21.5
South Africa
Kwazulu-natal
5,313
3.7
22.4
0.0
3.7
22.4
3.7
22.4
5,428
1.6
20.5
0.0
1.6
20.5
1.6
20.5
South Africa
Mpumalanga
4,279
10.5
30.9
0.0
10.5
30.9
10.5
30.9
4,070
6.6
26.9
0.0
6.6
26.9
6.6
26.9
South Africa
North-west
2,540
4.5
24.8
0.0
4.5
24.8
4.5
24.8
2,636
2.7
23.3
0.0
2.7
23.3
2.7
23.3
South Africa
Northern Cape
555
1.5
27.8
0.0
1.5
27.8
1.5
27.8
498
0.0
25.9
0.0
0.0
25.9
0.0
25.9
South Africa
Northern Province
3,462
5.0
26.6
0.0
5.0
26.6
5.0
26.6
3,533
2.8
24.8
0.0
2.8
24.8
2.8
24.8
South Africa
Western Cape
1,060
0.0
21.3
0.0
0.0
21.3
0.0
21.3
1,045
0.0
20.0
0.0
0.0
20.0
0.0
20.0
South Africa tot
23,911
4.6
24.8
0.0
4.6
24.8
4.6
24.8
23,911
2.7
22.8
0.0
2.7
22.8
2.7
22.8
Sri Lanka
Central
892
0.0
22.1
2.0
0.0
20.2
2.0
22.1
1,008
4.7
27.1
1.7
3.0
25.3
4.7
27.1
Sri Lanka
Eastern
466
0.0
23.3
1.9
0.0
21.4
1.9
23.3
362
4.1
26.7
2.5
1.7
24.2
4.1
26.7
Sri Lanka
North Central
834
0.0
19.9
1.6
0.0
18.3
1.6
19.9
615
4.8
27.3
2.1
2.7
25.1
4.8
27.3
Sri Lanka
North Western
1,052
0.0
22.0
1.5
0.0
20.5
1.5
22.0
1,205
4.8
27.1
1.3
3.5
25.8
4.8
27.1
Sri Lanka
Northern
475
0.0
22.2
2.7
0.0
19.6
2.7
22.2
276
4.0
26.7
4.6
0.0
22.1
4.6
26.7
Sri Lanka
Sabaragamuwa
897
0.0
21.3
2.0
0.0
19.4
2.0
21.3
1,054
4.9
27.2
1.7
3.2
25.5
4.9
27.2
Sri Lanka
Southern
788
0.0
22.7
1.2
0.0
21.6
1.2
22.7
862
4.6
27.0
1.1
3.5
25.9
4.6
27.0
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Sri Lanka
Uva
747
0.0
20.8
1.8
0.0
19.0
1.8
20.8
655
4.7
27.1
2.0
2.7
25.0
4.7
27.1
Sri Lanka
Western
678
0.0
23.3
1.8
0.0
21.5
1.8
23.3
793
4.6
27.0
1.5
3.1
25.4
4.6
27.0
Sri Lanka tot
6,831
21.8
1.7
20.1
1.7
21.8
6,831
4.7
27.0
1.7
2.9
25.3
4.7
27.0
Sudan
Al Jazeera
465
3.3
23.0
0.1
3.2
22.9
3.3
23.0
488
3.3
23.0
0.1
3.2
22.9
3.3
23.0
Sudan
El Buheyrat
325
3.4
23.3
2.9
0.4
20.4
3.4
23.3
326
3.4
23.3
2.9
0.4
20.4
3.4
23.3
Sudan
Unity
329
26.7
45.6
1.0
25.8
44.7
26.7
45.6
248
20.8
41.4
1.3
19.5
40.1
20.8
41.4
Sudan
Central Equatoria
444
19.2
38.3
3.1
16.1
35.2
19.2
38.3
343
10.8
30.9
4.0
6.7
26.9
10.8
30.9
Sudan
Blue Nile
521
20.2
37.8
3.0
17.2
34.8
20.2
37.8
622
25.5
42.0
2.5
22.9
39.4
25.5
42.0
Sudan
Eastern Equatoria
247
5.9
31.9
2.6
3.3
29.3
5.9
31.9
247
5.9
31.9
2.6
3.3
29.3
5.9
31.9
Sudan
Jonglei
1,202
35.1
52.2
0.5
34.6
51.7
35.1
52.2
849
31.2
49.2
0.7
30.5
48.5
31.2
49.2
Sudan
Khartoum
250
3.7
24.3
0.0
3.6
24.3
3.7
24.3
258
3.7
24.3
0.0
3.6
24.2
3.7
24.3
Sudan
Northern Bahr El
Ghazal
628
39.3
55.8
0.4
38.8
55.3
39.3
55.8
146
10.4
33.2
1.9
8.5
31.3
10.4
33.2
Sudan
Northern
63
4.5
27.2
0.0
4.5
27.2
4.5
27.2
66
4.5
27.1
0.0
4.5
27.1
4.5
27.1
Sudan
Northern Darfur
574
4.1
25.7
0.2
3.8
25.5
4.1
25.7
578
4.1
25.7
0.2
3.8
25.4
4.1
25.7
Sudan
Nile
148
4.9
28.5
0.1
4.8
28.5
4.9
28.5
156
4.8
28.3
0.1
4.8
28.2
4.8
28.3
Sudan
Sennar
970
26.8
44.4
0.7
26.2
43.7
26.8
44.4
1,246
31.8
48.3
0.5
31.2
47.8
31.8
48.3
Sudan
Southern Darfur
1,195
4.4
24.9
0.7
3.6
24.2
4.4
24.9
1,216
4.5
25.0
0.7
3.8
24.3
4.5
25.0
Sudan
Warab
848
20.9
37.4
0.5
20.4
36.9
20.9
37.4
617
11.0
29.5
0.7
10.2
28.7
11.0
29.5
Sudan
Western Bahr El
Ghazal
562
40.3
57.1
0.4
39.9
56.7
40.3
57.1
316
35.3
52.8
0.7
34.6
52.1
35.3
52.8
Sudan
Western Equatoria
175
6.1
32.6
9.3
0.0
23.4
9.3
32.6
175
6.1
32.6
9.3
0.0
23.4
9.3
32.6
Sudan
Western Darfur
693
3.3
23.2
0.6
2.7
22.6
3.3
23.2
721
3.3
23.1
0.6
2.8
22.6
3.3
23.1
Sudan
White Nile
693
9.6
28.7
0.4
9.2
28.4
9.6
28.7
764
12.2
30.9
0.3
11.9
30.6
12.2
30.9
Sudan
Upper Nile
1,522
41.2
58.5
0.9
40.3
57.5
41.2
58.5
1,529
43.2
60.3
0.9
42.2
59.4
43.2
60.3
Sudan
Red Sea
124
8.4
32.4
0.2
8.2
32.3
8.4
32.4
137
10.7
33.8
0.1
10.5
33.7
10.7
33.8
Sudan
Kassala
510
10.8
29.7
0.3
10.5
29.3
10.8
29.7
584
14.2
32.3
0.3
13.9
32.0
14.2
32.3
Sudan
Northern Kordofan
1,078
6.8
27.4
0.3
6.5
27.1
6.8
27.4
1,119
8.0
28.4
0.3
7.7
28.1
8.0
28.4
Sudan
Southern Kordofan
3,149
36.5
53.1
0.8
35.7
52.3
36.5
53.1
3,557
39.2
54.9
0.7
38.5
54.2
39.2
54.9
Sudan
Gadaref
1,121
26.0
41.4
0.8
25.2
40.6
26.0
41.4
1,528
32.5
46.6
0.6
31.9
46.0
32.5
46.6
Sudan tot
17,836
22.7
41.0
0.9
21.9
40.2
22.7
41.0
17,836
23.0
41.1
0.9
22.2
40.2
23.1
41.1
Suriname
Brokopondo
6
0.0
15.0
61.8
0.0
0.0
61.8
61.8
6
0.0
15.1
61.8
0.0
0.0
61.8
61.8
Suriname
Commewijne
9
0.0
10.9
3.2
0.0
7.6
3.2
10.9
9
0.0
10.3
3.2
0.0
7.1
3.2
10.3
Suriname
Coronie
3
0.0
18.9
0.6
0.0
18.3
0.6
18.9
3
0.0
19.0
0.6
0.0
18.4
0.6
19.0
Suriname
Marowijne
9
0.0
13.7
2.2
0.0
11.5
2.2
13.7
9
0.0
13.8
2.2
0.0
11.6
2.2
13.8
Suriname
Nickerie
18
0.0
14.0
1.8
0.0
12.2
1.8
14.0
18
0.0
14.1
1.8
0.0
12.3
1.8
14.1
Suriname
Para
12
0.0
14.4
42.6
0.0
0.0
42.6
42.6
12
0.0
14.3
42.7
0.0
0.0
42.7
42.7
Suriname
Paramaribo
10
0.0
7.6
0.5
0.0
7.1
0.5
7.6
10
0.0
7.4
0.5
0.0
6.9
0.5
7.4
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Suriname
Saramacca
10
0.0
15.2
2.6
0.0
12.6
2.6
15.2
10
0.0
15.0
2.6
0.0
12.5
2.6
15.0
Suriname
Sipaliwini
18
0.0
26.1
4.7
0.0
21.4
4.7
26.1
18
0.0
26.2
4.7
0.0
21.5
4.7
26.2
Suriname
Wanica
24
0.0
0.0
1.7
0.0
0.0
1.7
1.7
24
0.0
0.0
1.7
0.0
0.0
1.7
1.7
Suriname tot
121
12.5
9.5
8.6
9.5
18.1
121
12.5
9.5
8.6
9.5
18.1
Swaziland
Hhohho
143
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
152
0.0
12.8
-0.4
0.0
12.4
0.0
12.4
Swaziland
Lubombo
170
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
145
0.0
15.9
-0.6
0.0
15.3
0.0
15.3
Swaziland
Manzini
161
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
179
0.0
9.8
-0.4
0.0
9.4
0.0
9.4
Swaziland
Shiselweni
161
0.0
5.8
-0.4
0.0
5.4
0.0
5.4
158
0.0
16.6
-0.4
0.0
16.2
0.0
16.2
Swaziland tot
634
1.5
-0.5
1.4
1.4
634
13.6
-0.5
13.1
13.1
Thailand
Amnat Charoen
90
0.5
4.0
-0.1
0.4
3.9
0.4
3.9
87
0.8
4.3
-0.1
0.7
4.2
0.7
4.2
Thailand
Ang Thong
45
0.5
3.9
0.0
0.4
3.9
0.4
3.9
48
0.7
4.2
0.0
0.7
4.2
0.7
4.2
Thailand
Bangkok
120
0.5
4.0
0.0
0.4
3.9
0.4
3.9
152
0.6
4.1
0.0
0.5
4.0
0.5
4.0
Thailand
Buriram
402
0.7
4.2
0.0
0.7
4.2
0.7
4.2
410
0.0
2.2
0.0
0.0
2.1
0.0
2.1
Thailand
Chachoengsao
278
1.4
4.9
0.0
1.4
4.8
1.4
4.8
316
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Chainat
146
1.2
4.7
0.0
1.2
4.7
1.2
4.7
155
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Chaiyaphum
542
1.5
4.9
0.0
1.4
4.9
1.4
4.9
535
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Chanthaburi
460
2.1
5.7
-0.1
2.0
5.6
2.0
5.6
492
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Thailand
Chiang Mai
478
2.1
5.8
-0.1
2.0
5.7
2.0
5.7
430
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Thailand
Chiang Rai
403
1.6
5.2
-0.2
1.4
5.1
1.4
5.1
351
0.0
1.2
-0.2
0.0
1.0
0.0
1.0
Thailand
Chonburi
308
1.2
4.7
0.0
1.2
4.7
1.2
4.7
366
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Chumphon
485
2.6
6.3
0.0
2.5
6.2
2.5
6.2
579
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Kalasin
337
1.2
4.6
0.0
1.1
4.6
1.1
4.6
285
0.0
1.2
0.0
0.0
1.2
0.0
1.2
Thailand
Kampaeng Phet
472
1.8
5.2
0.0
1.7
5.2
1.7
5.2
539
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Kanchanaburi
492
1.9
5.4
0.0
1.9
5.4
1.9
5.4
539
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Khon Kaen
563
1.2
4.7
0.0
1.1
4.6
1.1
4.6
562
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Krabi
89
0.5
4.0
-0.4
0.1
3.6
0.1
3.6
96
0.8
4.3
-0.3
0.5
4.0
0.5
4.0
Thailand
Lampang
929
3.5
7.6
-0.1
3.4
7.4
3.4
7.4
691
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Thailand
Lamphun
347
2.4
6.1
-0.1
2.4
6.1
2.4
6.1
324
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Thailand
Loei
330
1.6
5.1
-0.1
1.5
5.0
1.5
5.0
260
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Thailand
Lopburi
407
1.6
5.1
0.0
1.6
5.0
1.6
5.0
506
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Mae Hong Son
51
1.4
5.3
-0.2
1.2
5.1
1.2
5.1
52
1.7
5.6
-0.2
1.5
5.4
1.5
5.4
Thailand
Maha Sarakham
230
0.6
4.1
0.0
0.5
4.0
0.5
4.0
237
0.0
3.2
0.0
0.0
3.1
0.0
3.1
Thailand
Mukdahan
96
1.3
4.9
-0.1
1.3
4.8
1.3
4.8
63
0.0
3.4
-0.1
0.0
3.3
0.0
3.3
Thailand
Nakhon Nayok
79
1.3
4.8
0.0
1.3
4.8
1.3
4.8
99
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Nakhon Pathom
122
0.6
4.1
0.0
0.6
4.0
0.6
4.0
144
0.0
2.7
0.0
0.0
2.7
0.0
2.7
Thailand
Nakhon Phanom
216
0.6
4.0
-0.1
0.5
4.0
0.5
4.0
210
0.7
4.2
-0.1
0.6
4.1
0.6
4.1
Thailand
Nakhon Ratchasima
1,116
1.7
5.2
0.0
1.6
5.1
1.6
5.1
1,173
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Nakhon Sawan
493
1.4
4.8
-0.1
1.3
4.7
1.3
4.7
601
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Thailand
Nakhon Si
Thammarat
361
1.0
4.4
-0.7
0.3
3.7
0.3
3.7
327
0.0
3.6
-0.8
0.0
2.8
0.0
2.8
Thailand
Nan
121
0.9
4.5
-1.0
0.0
3.5
0.0
3.5
116
1.1
4.7
-1.1
0.0
3.6
0.0
3.6
Thailand
Narathiwat
118
0.5
4.0
-1.0
0.0
3.1
0.0
3.1
127
0.6
4.1
-0.9
0.0
3.2
0.0
3.2
Thailand
Nong Bua Lamphu
330
1.7
5.2
0.0
1.7
5.2
1.7
5.2
325
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Nong Khai
333
0.9
4.4
0.0
0.9
4.4
0.9
4.4
307
0.0
1.8
0.0
0.0
1.8
0.0
1.8
Thailand
Nonthaburi
47
0.4
3.9
0.0
0.4
3.9
0.4
3.9
54
0.7
4.2
0.0
0.7
4.2
0.7
4.2
Thailand
Pathum Thani
96
0.8
4.3
0.0
0.8
4.2
0.8
4.2
113
0.0
1.8
0.0
0.0
1.8
0.0
1.8
Thailand
Pattani
93
0.5
4.0
-0.1
0.4
3.9
0.4
3.9
107
0.1
3.6
-0.1
0.0
3.5
0.0
3.5
Thailand
Phachinburi
190
1.4
4.9
0.0
1.4
4.8
1.4
4.8
242
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Phangnga
65
0.5
4.0
-0.2
0.3
3.8
0.3
3.8
66
0.8
4.4
-0.2
0.6
4.1
0.6
4.1
Thailand
Phatthalung
112
0.5
4.0
-0.1
0.3
3.8
0.3
3.8
123
0.8
4.3
-0.1
0.7
4.2
0.7
4.2
Thailand
Phayao
162
1.2
4.7
-0.1
1.1
4.7
1.1
4.7
130
0.7
4.2
-0.1
0.6
4.2
0.6
4.2
Thailand
Phetchabun
600
1.8
5.3
0.0
1.8
5.3
1.8
5.3
717
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Phetchaburi
275
2.3
6.0
0.0
2.3
6.0
2.3
6.0
344
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Phichit
238
1.2
4.7
0.0
1.2
4.6
1.2
4.6
283
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Phitsanulok
549
1.9
5.3
-0.2
1.7
5.2
1.7
5.2
463
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Thailand
Phra Nakhon Si
Ayudhya
123
0.8
4.2
0.0
0.7
4.2
0.7
4.2
158
0.0
1.6
0.0
0.0
1.6
0.0
1.6
Thailand
Phrae
426
3.1
7.1
-0.1
3.0
7.0
3.0
7.0
232
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Thailand
Phuket
40
0.5
4.0
0.0
0.5
4.0
0.5
4.0
48
0.2
3.7
0.0
0.2
3.7
0.2
3.7
Thailand
Prachuap Khilikhan
280
2.4
6.1
-0.3
2.1
5.8
2.1
5.8
387
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Thailand
Ranong
64
2.3
6.2
-0.1
2.3
6.1
2.3
6.1
58
0.0
0.2
-0.1
0.0
0.1
0.0
0.1
Thailand
Ratchaburi
351
2.3
6.0
-0.1
2.1
5.8
2.1
5.8
402
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Thailand
Rayong
420
2.4
6.0
0.0
2.3
6.0
2.3
6.0
576
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Roi Et
344
0.8
4.3
0.0
0.8
4.3
0.8
4.3
313
0.0
3.1
0.0
0.0
3.1
0.0
3.1
Thailand
Sa Kaeo
200
1.3
4.8
-0.1
1.3
4.7
1.3
4.7
139
0.0
2.1
-0.1
0.0
2.1
0.0
2.1
Thailand
Sakon Nakhon
422
1.2
4.7
0.0
1.2
4.7
1.2
4.7
306
0.0
2.3
-0.1
0.0
2.2
0.0
2.2
Thailand
Samut Prakarn
91
0.4
3.9
0.0
0.4
3.9
0.4
3.9
109
0.7
4.2
0.0
0.7
4.2
0.7
4.2
Thailand
Samut Sakhon
68
0.9
4.4
0.0
0.9
4.4
0.9
4.4
83
0.0
1.0
0.0
0.0
1.0
0.0
1.0
Thailand
Samut Songkham
54
1.1
4.6
0.0
1.1
4.6
1.1
4.6
56
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Saraburi
265
1.8
5.4
0.0
1.8
5.4
1.8
5.4
342
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Satun
61
0.5
4.0
-0.1
0.4
3.9
0.4
3.9
70
0.8
4.3
-0.1
0.7
4.2
0.7
4.2
Thailand
Si Saket
315
0.5
4.0
0.0
0.4
3.9
0.4
3.9
316
0.7
4.2
0.0
0.7
4.2
0.7
4.2
Thailand
Singburi
41
0.4
3.9
0.0
0.4
3.9
0.4
3.9
43
0.7
4.2
0.0
0.7
4.2
0.7
4.2
Thailand
Songkhla
200
0.7
4.2
-0.1
0.7
4.2
0.7
4.2
216
0.1
3.7
-0.1
0.1
3.6
0.1
3.6
Thailand
Sukhothai
421
2.3
6.0
-0.1
2.2
5.9
2.2
5.9
376
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Thailand
Suphanburi
220
0.8
4.3
0.0
0.8
4.3
0.8
4.3
231
0.0
1.1
0.0
0.0
1.1
0.0
1.1
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Thailand
Surat Thani
537
1.9
5.4
-0.4
1.4
4.9
1.4
4.9
435
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
Thailand
Surin
337
0.6
4.1
0.0
0.6
4.1
0.6
4.1
336
0.0
3.3
0.0
0.0
3.3
0.0
3.3
Thailand
Tak
414
2.0
5.6
-0.2
1.9
5.4
1.9
5.4
465
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Thailand
Trad
188
1.8
5.3
-0.1
1.7
5.2
1.7
5.2
64
0.8
4.3
-0.2
0.7
4.2
0.7
4.2
Thailand
Trang
223
1.5
5.0
-0.1
1.5
4.9
1.5
4.9
200
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Thailand
Ubon Ratchathani
418
0.6
4.1
-0.1
0.6
4.1
0.6
4.1
403
0.0
3.5
-0.1
0.0
3.4
0.0
3.4
Thailand
Udon Thani
768
1.7
5.2
-0.1
1.6
5.1
1.6
5.1
649
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Thailand
Uthai Thani
215
1.7
5.1
0.0
1.6
5.1
1.6
5.1
226
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Uttaradit
392
2.8
6.6
0.0
2.7
6.6
2.7
6.6
320
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Thailand
Yala
74
0.6
4.1
-0.2
0.4
3.9
0.4
3.9
82
0.9
4.4
-0.1
0.7
4.3
0.7
4.3
Thailand
Yasothon
137
0.5
4.0
0.0
0.4
3.9
0.4
3.9
134
0.8
4.3
0.0
0.7
4.2
0.7
4.2
Thailand tot
21,924
1.6
5.2
-0.1
1.5
5.1
1.5
5.1
21,924
0.1
0.9
-0.1
0.1
0.9
0.1
0.9
Timor-Leste
Aileu
7
5.0
28.6
100.0
0.0
0.0
100.0
100.0
7
5.0
28.6
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Ainaro
5
5.0
28.6
100.0
0.0
0.0
100.0
100.0
5
5.0
28.6
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Baucau
5
5.1
29.0
100.0
0.0
0.0
100.0
100.0
5
5.1
29.0
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Bobonaro
13
5.0
28.6
100.0
0.0
0.0
100.0
100.0
13
5.0
28.6
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Cova Lima
8
5.1
28.8
100.0
0.0
0.0
100.0
100.0
8
5.1
28.8
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Dili
4
5.0
28.6
100.0
0.0
0.0
100.0
100.0
4
5.0
28.6
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Ermera
5
5.0
28.6
100.0
0.0
0.0
100.0
100.0
5
5.0
28.6
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Lautem
7
5.1
28.9
100.0
0.0
0.0
100.0
100.0
7
5.1
28.9
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Liquica
2
5.2
29.2
100.0
0.0
0.0
100.0
100.0
2
5.2
29.2
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Manatuto
15
0.0
16.7
100.0
0.0
0.0
100.0
100.0
15
0.0
13.7
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Manufahi
5
5.1
29.0
100.0
0.0
0.0
100.0
100.0
5
5.1
29.0
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Oecussi
10
0.0
1.2
100.0
0.0
0.0
100.0
100.0
10
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Timor-Leste
Viqueque
8
5.1
28.9
100.0
0.0
0.0
100.0
100.0
8
5.1
28.9
100.0
0.0
0.0
100.0
100.0
Timor-Leste tot
95
3.7
24.0
100.0
100.0
100.0
95
3.7
23.4
100.0
100.0
100.0
Togo
Centrale
738
38.0
51.8
10.6
27.3
41.2
38.0
51.8
727
34.8
49.4
10.8
24.0
38.6
34.8
49.4
Togo
Kara
477
20.1
37.9
5.2
14.9
32.7
20.1
37.9
475
18.4
36.6
5.2
13.3
31.5
18.4
36.6
Togo
Maritime
608
17.2
35.7
11.0
6.2
24.7
17.2
35.7
624
16.3
35.0
10.7
5.6
24.3
16.3
35.0
Togo
Plateaux
1,721
34.6
49.2
11.6
23.0
37.6
34.6
49.2
1,710
31.9
47.1
11.7
20.2
35.4
31.9
47.1
Togo
Savanes
234
9.3
29.6
5.4
3.9
24.1
9.3
29.6
243
9.5
29.7
5.2
4.2
24.4
9.5
29.7
Togo tot
3,778
29.1
44.9
10.1
18.9
34.8
29.1
44.9
3,778
26.8
43.1
10.1
16.6
33.0
26.8
43.1
Trinidad & Tobago
Arima
1
0.0
2.1
3.4
0.0
0.0
3.4
3.4
1
0.0
2.4
3.4
0.0
0.0
3.4
3.4
Trinidad & Tobago
Chaguanas
2
0.0
2.1
4.5
0.0
0.0
4.5
4.5
2
0.0
2.4
4.5
0.0
0.0
4.5
4.5
Trinidad & Tobago
Couva/Tabaquite
7
0.0
0.0
71.5
0.0
0.0
71.5
71.5
7
0.0
0.0
72.0
0.0
0.0
72.0
72.0
Trinidad & Tobago
Diego Martin
4
0.0
2.1
18.8
0.0
0.0
18.8
18.8
4
0.0
2.4
18.8
0.0
0.0
18.8
18.8
Trinidad & Tobago
Penal/Debe
3
0.0
0.0
28.6
0.0
0.0
28.6
28.6
3
0.0
0.0
28.2
0.0
0.0
28.2
28.2
Trinidad & Tobago
Point Fortin
0
0.0
2.1
42.2
0.0
0.0
42.2
42.2
0
0.0
2.4
42.2
0.0
0.0
42.2
42.2
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Trinidad & Tobago
Port Of Spain
1
0.0
2.1
0.1
0.0
1.9
0.1
2.1
1
0.0
2.4
0.1
0.0
2.3
0.1
2.4
Trinidad & Tobago
Princes Town
3
0.0
0.0
100.0
0.0
0.0
100.0
100.0
3
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Trinidad & Tobago
Rio Claro/Mayaro
1
0.0
2.1
100.0
0.0
0.0
100.0
100.0
1
0.0
2.4
100.0
0.0
0.0
100.0
100.0
Trinidad & Tobago
San Fernando
2
0.0
0.2
0.5
0.0
0.0
0.5
0.5
2
0.0
0.1
0.5
0.0
0.0
0.5
0.5
Trinidad & Tobago
San Juan/Laventille
4
0.0
2.1
27.7
0.0
0.0
27.7
27.7
4
0.0
2.4
27.7
0.0
0.0
27.7
27.7
Trinidad & Tobago
Sangre Grande
2
0.0
2.2
100.0
0.0
0.0
100.0
100.0
2
0.0
2.6
100.0
0.0
0.0
100.0
100.0
Trinidad & Tobago
Siparia
3
0.0
0.0
100.0
0.0
0.0
100.0
100.0
3
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Trinidad & Tobago
Tobago
2
0.0
2.1
100.0
0.0
0.0
100.0
100.0
2
0.0
2.4
100.0
0.0
0.0
100.0
100.0
Trinidad & Tobago
Tunapuna/Piarco
4
0.0
2.1
52.4
0.0
0.0
52.4
52.4
4
0.0
2.5
52.4
0.0
0.0
52.4
52.4
Trinidad &
Tobago tot
39
1.2
55.5
0.1
55.5
55.6
39
1.4
55.2
0.1
55.2
55.2
Uganda
Adjumani
100
3.3
27.5
8.9
0.0
18.6
8.9
27.5
101
3.6
27.6
8.8
0.0
18.8
8.8
27.6
Uganda
Apac
670
31.1
48.2
6.4
24.7
41.8
31.1
48.2
672
30.8
48.0
6.4
24.4
41.6
30.8
48.0
Uganda
Bugiri
127
11.0
33.2
7.3
3.8
26.0
11.0
33.2
129
11.1
33.3
7.2
4.0
26.1
11.1
33.3
Uganda
Bundibugyo
91
6.2
29.6
15.1
0.0
14.5
15.1
29.6
92
6.7
29.9
14.9
0.0
15.0
14.9
29.9
Uganda
Bushenyi
440
50.3
63.5
7.4
43.0
56.1
50.3
63.5
435
49.6
62.9
7.4
42.1
55.5
49.6
62.9
Uganda
Busia
54
4.3
28.1
7.9
0.0
20.1
7.9
28.1
55
4.7
28.4
7.8
0.0
20.6
7.8
28.4
Uganda
Gulu
1,674
66.7
75.3
3.7
63.0
71.6
66.7
75.3
1,658
66.1
74.8
3.7
62.3
71.1
66.1
74.8
Uganda
Hoima
939
62.8
72.2
9.6
53.2
62.6
62.8
72.2
935
62.2
71.7
9.7
52.5
62.1
62.2
71.7
Uganda
Jinja
108
2.5
26.8
5.0
0.0
21.7
5.0
26.8
109
2.7
27.0
5.0
0.0
22.0
5.0
27.0
Uganda
Kabale
104
1.3
25.9
11.9
0.0
13.9
11.9
25.9
107
1.3
25.9
11.6
0.0
14.3
11.6
25.9
Uganda
Kalangala
66
47.5
60.5
12.4
35.0
48.1
47.5
60.5
66
47.1
60.3
12.5
34.6
47.8
47.1
60.3
Uganda
Kasese
106
17.0
37.8
11.4
5.6
26.4
17.0
37.8
106
16.7
37.6
11.4
5.3
26.2
16.7
37.6
Uganda
Kibaale
1,452
68.2
76.2
8.7
59.6
67.5
68.2
76.2
1,443
67.7
75.7
8.7
59.0
67.0
67.7
75.7
Uganda
Kiboga
766
60.5
70.4
7.3
53.2
63.1
60.5
70.4
770
60.2
70.1
7.3
52.9
62.9
60.2
70.1
Uganda
Kisoro
46
1.3
25.9
16.6
0.0
9.3
16.6
25.9
48
1.6
26.1
16.2
0.0
10.0
16.2
26.1
Uganda
Kumi
182
16.1
37.2
1.8
14.4
35.4
16.1
37.2
183
15.9
37.0
1.7
14.1
35.2
15.9
37.0
Uganda
Masaka
326
20.9
40.8
12.3
8.6
28.5
20.9
40.8
328
20.7
40.6
12.2
8.5
28.4
20.7
40.6
Uganda
Moyo
110
12.0
33.9
7.3
4.7
26.6
12.0
33.9
113
13.3
34.9
7.1
6.2
27.8
13.3
34.9
Uganda
Nebbi
187
9.4
31.9
7.6
1.8
24.3
9.4
31.9
190
10.0
32.4
7.5
2.5
24.9
10.0
32.4
Uganda
Ntungamo
124
3.1
27.2
9.9
0.0
17.3
9.9
27.2
126
3.3
27.4
9.8
0.0
17.6
9.8
27.4
Uganda
Pallisa
176
22.1
41.9
2.4
19.8
39.6
22.1
41.9
176
21.7
41.6
2.4
19.3
39.2
21.7
41.6
Uganda
Rakai
474
42.9
57.2
8.9
34.0
48.3
42.9
57.2
475
42.5
56.9
8.9
33.6
48.0
42.5
56.9
Uganda
Sembabule
315
50.0
62.4
7.8
42.1
54.6
50.0
62.4
315
49.5
62.1
7.8
41.7
54.2
49.5
62.1
Uganda
Iganga
204
11.4
33.4
6.7
4.7
26.7
11.4
33.4
206
11.2
33.3
6.7
4.6
26.7
11.2
33.3
Uganda
Kabarole
107
14.5
35.8
15.1
0.0
20.7
15.1
35.8
108
14.4
35.7
14.9
0.0
20.7
14.9
35.7
Uganda
Kaberamaido
131
30.9
48.1
2.3
28.6
45.8
30.9
48.1
133
31.2
48.3
2.3
28.9
46.1
31.2
48.3
Uganda
Kampala
12
1.3
25.9
3.7
0.0
22.1
3.7
25.9
12
1.3
25.9
3.7
0.0
22.2
3.7
25.9
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Uganda
Kamwenge
209
40.9
55.6
8.6
32.4
47.1
40.9
55.6
211
40.9
55.6
8.5
32.4
47.2
40.9
55.6
Uganda
Kanungu
68
11.0
33.2
14.9
0.0
18.3
14.9
33.2
68
11.2
33.4
14.8
0.0
18.6
14.8
33.4
Uganda
Kayunga
155
25.9
44.3
12.0
13.9
32.4
25.9
44.3
156
25.7
44.2
11.9
13.8
32.3
25.7
44.2
Uganda
Kitgum
1,077
64.0
73.1
4.9
59.0
68.1
64.0
73.1
1,069
63.4
72.6
5.0
58.4
67.6
63.4
72.6
Uganda
Kyenjojo
1,099
63.4
72.5
9.1
54.3
63.4
63.4
72.5
1,099
62.9
72.2
9.1
53.8
63.0
62.9
72.2
Uganda
Masindi
1,059
60.3
70.5
6.6
53.7
63.8
60.3
70.5
1,055
59.8
70.1
6.7
53.1
63.4
59.8
70.1
Uganda
Mayuge
126
31.5
48.7
8.1
23.4
40.6
31.5
48.7
127
31.0
48.4
8.0
23.0
40.3
31.0
48.4
Uganda
Moroto
197
45.1
59.3
10.3
34.8
49.0
45.1
59.3
200
45.3
59.4
10.2
35.1
49.3
45.3
59.4
Uganda
Mpigi
426
39.8
54.8
10.9
28.9
43.9
39.8
54.8
431
39.7
54.8
10.8
28.9
44.0
39.7
54.8
Uganda
Mukono
584
43.4
57.6
11.5
31.9
46.1
43.4
57.6
584
42.9
57.2
11.5
31.4
45.8
42.9
57.2
Uganda
Nakapiripirit
183
38.9
54.5
8.2
30.7
46.3
38.9
54.5
186
39.3
54.9
8.1
31.3
46.8
39.3
54.9
Uganda
Nakasongola
940
70.5
77.9
1.7
68.8
76.2
70.5
77.9
932
70.0
77.5
1.8
68.2
75.7
70.0
77.5
Uganda
Pader
1,111
64.3
73.2
3.3
61.0
69.9
64.3
73.2
1,101
63.7
72.7
3.4
60.3
69.4
63.7
72.7
Uganda
Rukungiri
64
1.3
25.9
10.1
0.0
15.8
10.1
25.9
64
1.3
26.0
10.0
0.0
15.9
10.0
26.0
Uganda
Sironko
104
43.4
58.0
8.3
35.1
49.8
43.4
58.0
104
43.0
57.7
8.2
34.8
49.5
43.0
57.7
Uganda
Soroti
204
14.9
36.2
1.7
13.2
34.5
14.9
36.2
208
15.7
36.8
1.7
14.0
35.1
15.7
36.8
Uganda
Wakiso
239
17.8
38.2
9.3
8.5
29.0
17.8
38.2
241
17.8
38.3
9.2
8.6
29.1
17.8
38.3
Uganda
Yumbe
155
10.7
32.9
6.6
4.1
26.3
10.7
32.9
155
10.6
32.9
6.6
4.1
26.3
10.6
32.9
Uganda
Amolatar
58
4.1
28.2
5.0
0.0
23.2
5.0
28.2
59
4.7
28.7
4.9
0.0
23.8
4.9
28.7
Uganda
Amuria
238
38.4
53.7
2.8
35.6
51.0
38.4
53.7
238
38.1
53.5
2.7
35.4
50.8
38.1
53.5
Uganda
Arua
346
23.8
42.8
6.2
17.7
36.6
23.8
42.8
351
24.1
43.0
6.1
18.0
37.0
24.1
43.0
Uganda
Bukwa
16
1.3
25.9
14.2
0.0
11.6
14.2
25.9
16
1.3
25.9
14.1
0.0
11.8
14.1
25.9
Uganda
Butaleja
54
13.7
35.2
5.0
8.7
30.2
13.7
35.2
54
13.7
35.2
5.0
8.7
30.2
13.7
35.2
Uganda
Ibanda
88
31.0
48.6
5.6
25.4
43.0
31.0
48.6
87
30.3
48.1
5.6
24.7
42.5
30.3
48.1
Uganda
Isingiro
178
14.8
36.1
9.0
5.8
27.1
14.8
36.1
181
15.1
36.3
8.9
6.2
27.4
15.1
36.3
Uganda
Kaabong
602
54.8
66.2
8.4
46.4
57.8
54.8
66.2
600
54.3
65.8
8.5
45.8
57.3
54.3
65.8
Uganda
Kaliro
71
17.3
38.1
3.9
13.4
34.1
17.3
38.1
72
17.4
38.2
3.9
13.5
34.3
17.4
38.2
Uganda
Kamuli
236
14.0
35.4
9.3
4.7
26.1
14.0
35.4
238
14.0
35.5
9.2
4.8
26.3
14.0
35.5
Uganda
Kapchorwa
54
2.1
26.5
8.7
0.0
17.8
8.7
26.5
55
2.1
26.5
8.7
0.0
17.9
8.7
26.5
Uganda
Katakwi
225
45.3
59.0
4.9
40.4
54.1
45.3
59.0
226
45.1
58.8
4.9
40.2
53.9
45.1
58.8
Uganda
Kiruhura
497
53.2
64.9
6.0
47.3
58.9
53.2
64.9
498
52.9
64.6
6.0
46.9
58.7
52.9
64.6
Uganda
Koboko
72
21.0
40.7
8.3
12.7
32.3
21.0
40.7
73
21.3
40.9
8.2
13.1
32.7
21.3
40.9
Uganda
Kotido
333
46.2
59.7
8.5
37.7
51.2
46.2
59.7
331
45.6
59.3
8.5
37.0
50.7
45.6
59.3
Uganda
Lira
575
39.8
54.8
2.8
37.0
52.0
39.8
54.8
574
39.3
54.5
2.8
36.5
51.6
39.3
54.5
Uganda
Luweero
291
37.4
53.0
10.5
26.9
42.5
37.4
53.0
292
37.0
52.7
10.5
26.5
42.2
37.0
52.7
Uganda
Manafwa
43
1.7
26.2
7.9
0.0
18.2
7.9
26.2
44
1.7
26.2
7.9
0.0
18.3
7.9
26.2
Uganda
Mbale
33
3.1
27.3
5.4
0.0
21.9
5.4
27.3
33
3.5
27.6
5.3
0.0
22.3
5.3
27.6
Uganda
Mbarara
108
2.4
26.7
9.8
0.0
16.9
9.8
26.7
110
2.6
26.9
9.7
0.0
17.2
9.7
26.9
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Uganda
Mityana
129
6.5
29.8
17.7
0.0
12.1
17.7
29.8
131
6.8
30.0
17.5
0.0
12.5
17.5
30.0
Uganda
Mubende
926
58.8
69.1
8.4
50.4
60.6
58.8
69.1
929
58.4
68.7
8.4
50.0
60.4
58.4
68.7
Uganda
Nakaseke
1,089
70.9
78.1
3.7
67.2
74.4
70.9
78.1
1,080
70.3
77.7
3.8
66.5
73.9
70.3
77.7
Uganda
Tororo
78
1.3
25.9
1.7
0.0
24.2
1.7
25.9
79
1.3
25.9
1.6
0.0
24.3
1.6
25.9
Uganda tot
23,431
48.6
61.5
6.9
42.1
54.6
49.0
61.5
23,431
48.1
61.1
6.9
41.5
54.2
48.5
61.1
Un. Rep. Tanzania
Arusha
719
10.9
14.9
5.0
5.9
9.8
10.9
14.9
719
10.3
14.3
5.0
5.3
9.3
10.3
14.3
Un. Rep. Tanzania
Dar es Salaam
93
11.7
15.2
5.4
6.4
9.8
11.7
15.2
94
11.1
14.6
5.3
5.8
9.3
11.1
14.6
Un. Rep. Tanzania
Dodoma
2,522
16.3
19.6
5.9
10.4
13.7
16.3
19.6
2,516
15.1
18.4
5.9
9.2
12.5
15.1
18.4
Un. Rep. Tanzania
Iringa
2,240
16.0
19.4
49.8
0.0
0.0
49.8
49.8
2,241
14.8
18.2
49.8
0.0
0.0
49.8
49.8
Un. Rep. Tanzania
Kagera
1,337
4.9
8.6
8.7
0.0
0.0
8.7
8.7
1,349
4.9
8.6
8.6
0.0
0.0
8.6
8.6
Un. Rep. Tanzania
Kigoma
979
4.1
7.9
14.3
0.0
0.0
14.3
14.3
983
4.1
7.9
14.2
0.0
0.0
14.2
14.2
Un. Rep. Tanzania
Kilimanjaro
480
6.5
10.2
6.7
0.0
3.5
6.7
10.2
485
6.3
10.0
6.6
0.0
3.4
6.6
10.0
Un. Rep. Tanzania
Lindi
1,709
18.6
22.0
9.5
9.1
12.5
18.6
22.0
1,704
17.2
20.7
9.5
7.7
11.1
17.2
20.7
Un. Rep. Tanzania
Manyara
3,139
23.4
27.4
6.6
16.8
20.8
23.4
27.4
3,114
21.7
25.8
6.7
15.0
19.1
21.7
25.8
Un. Rep. Tanzania
Mara
947
10.9
14.5
6.0
5.0
8.6
10.9
14.5
952
10.2
13.9
5.9
4.3
7.9
10.2
13.9
Un. Rep. Tanzania
Mbeya
1,703
11.6
15.4
8.0
3.6
7.4
11.6
15.4
1,709
10.9
14.7
8.0
2.9
6.7
10.9
14.7
Un. Rep. Tanzania
Morogoro
2,007
15.5
19.0
68.9
0.0
0.0
68.9
68.9
2,005
14.4
17.9
69.0
0.0
0.0
69.0
69.0
Un. Rep. Tanzania
Mtwara
962
7.6
11.3
8.9
0.0
2.4
8.9
11.3
972
7.4
11.0
8.8
0.0
2.2
8.8
11.0
Un. Rep. Tanzania
Mwanza
1,206
4.3
8.0
4.7
0.0
3.3
4.7
8.0
1,219
4.3
8.0
4.6
0.0
3.4
4.6
8.0
Un. Rep. Tanzania
Pemba North
30
4.1
7.9
7.1
0.0
0.7
7.1
7.9
31
4.1
7.9
7.0
0.0
0.8
7.0
7.9
Un. Rep. Tanzania
Unguja North
31
4.1
7.9
5.8
0.0
2.0
5.8
7.9
32
4.1
7.9
5.8
0.0
2.1
5.8
7.9
Un. Rep. Tanzania
Pwani
2,459
20.7
24.0
8.2
12.5
15.8
20.7
24.0
2,446
19.1
22.4
8.3
10.8
14.2
19.1
22.4
Un. Rep. Tanzania
Rukwa
867
5.1
9.1
14.6
0.0
0.0
14.6
14.6
869
5.1
9.1
14.6
0.0
0.0
14.6
14.6
Un. Rep. Tanzania
Ruvuma
855
5.6
9.7
20.6
0.0
0.0
20.6
20.6
858
5.6
9.7
20.5
0.0
0.0
20.5
20.5
Un. Rep. Tanzania
Shinyanga
1,501
4.6
8.3
4.8
0.0
3.5
4.8
8.3
1,513
4.6
8.3
4.7
0.0
3.6
4.7
8.3
Un. Rep. Tanzania
Singida
2,618
21.3
25.0
5.5
15.8
19.5
21.3
25.0
2,596
19.7
23.4
5.5
14.2
17.9
19.7
23.4
Un. Rep. Tanzania
Pemba South
35
4.1
7.9
8.0
0.0
0.0
8.0
8.0
36
4.1
7.9
7.9
0.0
0.0
7.9
7.9
Un. Rep. Tanzania
Unguja South
61
7.9
11.5
14.6
0.0
0.0
14.6
14.6
61
7.5
11.2
14.5
0.0
0.0
14.5
14.5
Un. Rep. Tanzania
Tabora
2,338
17.0
20.7
5.9
11.1
14.9
17.0
20.7
2,335
15.8
19.6
5.9
9.9
13.7
15.8
19.6
Un. Rep. Tanzania
Tanga
1,987
16.8
20.2
13.5
3.3
6.7
16.8
20.2
1,985
15.5
19.0
13.5
2.0
5.4
15.5
19.0
Un. Rep. Tanzania
Unguja Urban West
36
4.1
7.9
2.6
1.5
5.3
4.1
7.9
37
4.1
7.9
2.6
1.6
5.3
4.1
7.9
Un. Rep.
Tanzania tot
32,861
14.5
18.1
14.7
6.5
9.2
21.2
23.9
32,861
13.5
17.1
14.7
5.7
8.3
20.4
23.0
Uruguay
Artigas
41
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
42
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Uruguay
Canelones
237
0.0
0.0
-0.6
0.0
0.0
0.0
0.0
267
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
Uruguay
Cerro Largo
30
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
31
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
Uruguay
Colonia
114
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
114
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
Uruguay
Durazno
31
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
32
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Uruguay
Flores
13
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
13
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
Uruguay
Florida
162
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
135
0.0
0.0
-0.7
0.0
0.0
0.0
0.0
Uruguay
Lavalleja
61
0.0
0.0
-0.6
0.0
0.0
0.0
0.0
54
0.0
0.0
-0.6
0.0
0.0
0.0
0.0
Uruguay
Maldonado
74
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
75
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
Uruguay
Montevideo
43
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
49
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
Uruguay
Paysandu
47
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
48
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
Uruguay
Rio Negro
34
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
35
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
Uruguay
Rivera
39
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
39
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
Uruguay
Rocha
48
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
49
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
Uruguay
Salto
51
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
52
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Uruguay
San Jose
167
0.0
0.0
-0.6
0.0
0.0
0.0
0.0
157
0.0
0.0
-0.6
0.0
0.0
0.0
0.0
Uruguay
Soriano
41
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
42
0.0
0.0
-0.3
0.0
0.0
0.0
0.0
Uruguay
Tacuarembo
59
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
60
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Uruguay
Treinta Y Tres
33
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
34
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
Uruguay tot
1,326
-0.4
1,326
-0.4
Venezuela
Amazonas
13
0.0
36.7
100.0
0.0
0.0
100.0
100.0
13
0.0
36.7
100.0
0.0
0.0
100.0
100.0
Venezuela
Anzoategui
165
0.0
30.0
7.1
0.0
22.9
7.1
30.0
165
0.0
30.0
7.1
0.0
22.9
7.1
30.0
Venezuela
Apure
128
0.0
37.3
1.3
0.0
36.0
1.3
37.3
128
0.0
37.3
1.3
0.0
36.0
1.3
37.3
Venezuela
Aragua
141
0.0
0.0
12.4
0.0
0.0
12.4
12.4
141
0.0
0.0
12.4
0.0
0.0
12.4
12.4
Venezuela
Barinas
164
0.0
30.1
3.3
0.0
26.8
3.3
30.1
164
0.0
30.1
3.3
0.0
26.8
3.3
30.1
Venezuela
Bolivar
128
0.0
35.4
100.0
0.0
0.0
100.0
100.0
128
0.0
35.4
100.0
0.0
0.0
100.0
100.0
Venezuela
Carabobo
61
0.0
12.0
54.7
0.0
0.0
54.7
54.7
61
0.0
12.0
54.7
0.0
0.0
54.7
54.7
Venezuela
Cojedes
44
0.0
34.3
43.6
0.0
0.0
43.6
43.6
44
0.0
34.3
43.6
0.0
0.0
43.6
43.6
Venezuela
Delta Amacuro
22
0.0
37.9
100.0
0.0
0.0
100.0
100.0
22
0.0
37.9
100.0
0.0
0.0
100.0
100.0
Venezuela
Dependencias
Federales
0
0.3
42.0
0.0
0.3
42.0
0.3
42.0
0
0.3
42.0
0.0
0.3
42.0
0.3
42.0
Venezuela
Falcon
137
0.0
30.3
2.5
0.0
27.8
2.5
30.3
137
0.0
30.3
2.5
0.0
27.8
2.5
30.3
Venezuela
Guarico
193
0.0
33.4
11.9
0.0
21.6
11.9
33.4
193
0.0
33.4
11.9
0.0
21.6
11.9
33.4
Venezuela
Lara
143
0.0
10.0
10.7
0.0
0.0
10.7
10.7
143
0.0
10.0
10.7
0.0
0.0
10.7
10.7
Venezuela
Merida
57
0.0
22.5
21.1
0.0
1.5
21.1
22.5
57
0.0
22.5
21.1
0.0
1.5
21.1
22.5
Venezuela
Miranda
183
0.0
0.0
100.0
0.0
0.0
100.0
100.0
183
0.0
0.0
100.0
0.0
0.0
100.0
100.0
Venezuela
Monagas
95
0.0
28.6
100.0
0.0
0.0
100.0
100.0
95
0.0
28.6
100.0
0.0
0.0
100.0
100.0
Venezuela
Nueva Esparta
18
0.0
21.3
1.6
0.0
19.6
1.6
21.3
18
0.0
21.3
1.6
0.0
19.6
1.6
21.3
Venezuela
Portuguesa
119
0.0
18.4
7.8
0.0
10.6
7.8
18.4
119
0.0
18.4
7.8
0.0
10.6
7.8
18.4
Venezuela
Sucre
94
0.0
24.4
100.0
0.0
0.0
100.0
100.0
94
0.0
24.4
100.0
0.0
0.0
100.0
100.0
Venezuela
Tachira
87
0.0
22.9
9.2
0.0
13.7
9.2
22.9
87
0.0
22.9
9.2
0.0
13.7
9.2
22.9
Venezuela
Trujillo
54
0.0
20.6
12.8
0.0
7.9
12.8
20.6
54
0.0
20.6
12.8
0.0
7.9
12.8
20.6
Venezuela
Yaracuy
38
0.0
14.2
100.0
0.0
0.0
100.0
100.0
38
0.0
14.2
100.0
0.0
0.0
100.0
100.0
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Venezuela
Zulia
293
0.0
15.5
100.0
0.0
0.0
100.0
100.0
293
0.0
15.5
100.0
0.0
0.0
100.0
100.0
Venezuela
Vargas
27
0.0
0.0
4.4
0.0
0.0
4.4
4.4
27
0.0
0.0
4.4
0.0
0.0
4.4
4.4
Venezuela
Distrito Capital
16
0.0
7.0
5.2
0.0
1.7
5.2
7.0
16
0.0
7.0
5.2
0.0
1.7
5.2
7.0
Venezuela tot
2,421
0.0
21.5
42.7
0.0
10.0
42.7
52.7
2,421
0.0
21.5
42.7
0.0
10.0
42.7
52.7
Viet Nam
An Giang
297
2.0
20.7
-0.1
1.9
20.6
1.9
20.6
296
1.7
20.6
-0.1
1.7
20.5
1.7
20.5
Viet Nam
Ba Ria-Vung Tau
216
0.0
16.2
-0.1
0.0
16.0
0.0
16.0
242
0.0
4.1
-0.1
0.0
4.0
0.0
4.0
Viet Nam
Bac Kan
354
0.0
13.1
-0.4
0.0
12.7
0.0
12.7
277
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
Viet Nam
Bac Giang
494
0.0
16.5
-0.1
0.0
16.3
0.0
16.3
607
0.0
2.8
-0.1
0.0
2.6
0.0
2.6
Viet Nam
Bac Lieu
169
0.9
19.8
-0.2
0.7
19.6
0.7
19.6
202
0.0
14.7
-0.1
0.0
14.5
0.0
14.5
Viet Nam
Bac Ninh
73
2.5
21.1
-0.1
2.4
21.0
2.4
21.0
99
2.8
21.4
-0.1
2.8
21.4
2.8
21.4
Viet Nam
Ben Tre
226
1.8
20.5
-0.1
1.7
20.4
1.7
20.4
241
0.9
19.9
-0.1
0.8
19.8
0.8
19.8
Viet Nam
Binh Dinh
599
0.0
17.9
-0.2
0.0
17.7
0.0
17.7
586
0.0
5.3
-0.2
0.0
5.2
0.0
5.2
Viet Nam
Binh Duong
363
0.0
14.8
-0.1
0.0
14.7
0.0
14.7
405
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Viet Nam
Binh Phuoc
760
0.0
14.7
-0.2
0.0
14.5
0.0
14.5
842
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Viet Nam
Binh Thuan
632
0.0
18.3
-0.1
0.0
18.2
0.0
18.2
586
0.0
2.2
-0.2
0.0
2.1
0.0
2.1
Viet Nam
Cao Bang
180
0.7
19.8
-0.8
0.0
19.1
0.0
19.1
191
0.0
16.4
-0.7
0.0
15.6
0.0
15.6
Viet Nam
Ca Mau
341
0.0
18.9
-0.3
0.0
18.5
0.0
18.5
353
0.0
15.6
-0.3
0.0
15.3
0.0
15.3
Viet Nam
Da Nang City
81
0.0
20.2
-0.1
0.0
20.1
0.0
20.1
85
0.0
13.2
-0.1
0.0
13.1
0.0
13.1
Viet Nam
Dong Nai
693
0.0
17.2
-0.2
0.0
17.0
0.0
17.0
805
0.0
4.9
-0.1
0.0
4.8
0.0
4.8
Viet Nam
Dong Thap
308
1.0
19.9
-0.1
0.9
19.8
0.9
19.8
299
0.0
18.6
-0.1
0.0
18.5
0.0
18.5
Viet Nam
Gia Lai
889
0.0
16.6
-2.3
0.0
14.3
0.0
14.3
542
0.0
6.6
-3.7
0.0
2.9
0.0
2.9
Viet Nam
Ha Giang
445
0.0
15.3
-0.4
0.0
14.9
0.0
14.9
320
0.0
6.9
-0.6
0.0
6.4
0.0
6.4
Viet Nam
Ha Nam
85
1.0
19.9
-0.1
0.9
19.8
0.9
19.8
112
0.0
17.1
-0.1
0.0
17.0
0.0
17.0
Viet Nam
Ha Noi City
125
2.4
21.0
-0.1
2.4
21.0
2.4
21.0
147
2.2
20.9
-0.1
2.1
20.9
2.1
20.9
Viet Nam
Ha Tay
199
2.0
20.7
-0.1
1.9
20.6
1.9
20.6
271
0.8
19.8
-0.1
0.7
19.7
0.7
19.7
Viet Nam
Ha Tinh
508
0.0
17.7
-0.5
0.0
17.3
0.0
17.3
590
0.0
2.7
-0.4
0.0
2.2
0.0
2.2
Viet Nam
Hai Duong
130
1.7
20.4
-0.1
1.6
20.3
1.6
20.3
165
0.0
19.1
-0.1
0.0
19.0
0.0
19.0
Viet Nam
Hai Phong City
92
2.5
21.1
-0.1
2.4
21.0
2.4
21.0
104
2.8
21.4
-0.1
2.7
21.3
2.7
21.3
Viet Nam
Ho Chi Minh City
199
1.0
20.6
-0.1
0.8
20.5
0.8
20.5
242
0.0
17.0
-0.1
0.0
16.9
0.0
16.9
Viet Nam
Hoa Binh
610
0.0
15.6
-0.2
0.0
15.3
0.0
15.3
682
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Viet Nam
Hung Yen
88
2.5
21.1
-0.1
2.4
21.0
2.4
21.0
122
2.8
21.4
-0.1
2.7
21.4
2.7
21.4
Viet Nam
Khanh Hoa
235
0.0
18.1
-0.2
0.0
18.0
0.0
18.0
213
0.0
10.4
-0.2
0.0
10.2
0.0
10.2
Viet Nam
Kien Giang
373
0.9
19.8
-0.2
0.7
19.6
0.7
19.6
368
0.0
18.5
-0.2
0.0
18.3
0.0
18.3
Viet Nam
Kon Tum
484
0.0
23.6
-1.3
0.0
22.4
0.0
22.4
211
0.0
10.2
-2.9
0.0
7.2
0.0
7.2
Viet Nam
Lam Dong
821
0.0
15.5
-1.1
0.0
14.3
0.0
14.3
750
0.0
0.0
-1.2
0.0
0.0
0.0
0.0
Viet Nam
Lang Son
1,127
0.0
13.5
-0.2
0.0
13.3
0.0
13.3
1,161
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Viet Nam
Long An
458
0.0
18.2
-0.1
0.0
18.0
0.0
18.0
465
0.0
12.6
-0.1
0.0
12.4
0.0
12.4
Viet Nam
Nam Dinh
134
2.5
21.1
-0.1
2.4
21.0
2.4
21.0
149
2.8
21.4
-0.1
2.8
21.4
2.8
21.4
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Viet Nam
Nghe An
1,105
0.0
19.0
-1.0
0.0
18.0
0.0
18.0
1,193
0.0
4.5
-1.0
0.0
3.5
0.0
3.5
Viet Nam
Ninh Binh
138
0.0
19.9
-0.1
0.0
19.8
0.0
19.8
171
0.0
12.8
-0.1
0.0
12.7
0.0
12.7
Viet Nam
Ninh Thuan
208
0.0
17.8
-0.1
0.0
17.6
0.0
17.6
174
0.0
3.7
-0.2
0.0
3.6
0.0
3.6
Viet Nam
Phu Tho
471
0.0
17.8
-0.1
0.0
17.7
0.0
17.7
579
0.0
6.5
-0.1
0.0
6.4
0.0
6.4
Viet Nam
Phu Yen
326
0.0
16.5
-0.2
0.0
16.2
0.0
16.2
295
0.0
6.7
-0.3
0.0
6.5
0.0
6.5
Viet Nam
Quang Binh
536
0.0
15.9
-0.7
0.0
15.2
0.0
15.2
475
0.0
0.3
-0.8
0.0
0.0
0.0
0.0
Viet Nam
Quang Nam
863
0.0
17.6
-0.2
0.0
17.4
0.0
17.4
764
0.0
0.6
-0.3
0.0
0.3
0.0
0.3
Viet Nam
Quang Ngai
525
0.0
17.5
-0.2
0.0
17.3
0.0
17.3
526
0.0
4.6
-0.2
0.0
4.5
0.0
4.5
Viet Nam
Quang Ninh
468
0.0
16.3
-0.2
0.0
16.1
0.0
16.1
466
0.0
2.1
-0.2
0.0
1.9
0.0
1.9
Viet Nam
Quang Tri
185
0.0
17.8
-0.6
0.0
17.2
0.0
17.2
166
0.0
15.8
-0.7
0.0
15.1
0.0
15.1
Viet Nam
Soc Trang
221
2.0
20.7
-0.1
1.9
20.6
1.9
20.6
236
1.3
20.2
-0.1
1.2
20.1
1.2
20.1
Viet Nam
Son La
339
0.0
19.4
-1.8
0.0
17.6
0.0
17.6
332
0.0
16.3
-1.8
0.0
14.5
0.0
14.5
Viet Nam
Tay Ninh
378
0.0
17.3
-0.1
0.0
17.2
0.0
17.2
429
0.0
7.9
-0.1
0.0
7.7
0.0
7.7
Viet Nam
Thai Binh
135
2.5
21.1
-0.1
2.4
21.0
2.4
21.0
153
2.8
21.4
-0.1
2.8
21.4
2.8
21.4
Viet Nam
Thai Nguyen
525
0.0
14.6
-0.1
0.0
14.5
0.0
14.5
632
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
Viet Nam
Thanh Hoa
1,188
0.0
18.1
-0.6
0.0
17.4
0.0
17.4
1,324
0.0
2.8
-0.5
0.0
2.3
0.0
2.3
Viet Nam
Thua Thien - Hue
288
0.0
19.5
-0.5
0.0
19.0
0.0
19.0
287
0.0
9.9
-0.5
0.0
9.4
0.0
9.4
Viet Nam
Tien Giang
235
1.4
20.2
-0.1
1.3
20.1
1.3
20.1
235
0.0
19.0
-0.1
0.0
19.0
0.0
19.0
Viet Nam
Tra Vinh
183
1.9
20.6
-0.1
1.8
20.5
1.8
20.5
196
0.0
19.1
-0.1
0.0
19.0
0.0
19.0
Viet Nam
Tuyen Quang
698
0.0
15.9
-0.2
0.0
15.7
0.0
15.7
708
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Viet Nam
Vinh Long
136
2.4
21.0
-0.1
2.3
20.9
2.3
20.9
139
2.5
21.2
-0.1
2.4
21.1
2.4
21.1
Viet Nam
Vinh Phuc
105
1.2
20.1
-0.1
1.1
20.0
1.1
20.0
139
0.0
17.6
-0.1
0.0
17.5
0.0
17.5
Viet Nam
Yen Bai
551
0.0
14.8
-0.2
0.0
14.5
0.0
14.5
553
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
Viet Nam
Can Tho city
103
2.5
21.1
-0.1
2.4
21.0
2.4
21.0
104
2.8
21.4
-0.1
2.7
21.3
2.7
21.3
Viet Nam
Dak Lak
1,076
0.0
14.5
-1.5
0.0
13.0
0.0
13.0
933
0.0
1.9
-1.7
0.0
0.2
0.0
0.2
Viet Nam
Dak Nong
657
0.0
15.5
-0.7
0.0
14.8
0.0
14.8
582
0.0
0.0
-0.8
0.0
0.0
0.0
0.0
Viet Nam
Dien Bien
116
2.7
21.8
-2.0
0.8
19.8
0.8
19.8
122
3.0
22.1
-1.9
1.2
20.2
1.2
20.2
Viet Nam
Hau Giang
148
2.3
20.9
-0.1
2.2
20.8
2.2
20.8
149
2.2
20.9
-0.1
2.1
20.8
2.1
20.8
Viet Nam
Lai Chau
100
2.8
21.9
-2.2
0.6
19.7
0.6
19.7
103
3.1
22.2
-2.1
0.9
20.1
0.9
20.1
Viet Nam
Lao Cai
309
0.0
16.0
-0.4
0.0
15.6
0.0
15.6
210
0.0
12.3
-0.7
0.0
11.6
0.0
11.6
Viet Nam tot
25,105
0.3
17.3
-0.5
0.2
16.8
0.2
16.8
25,105
0.2
6.6
-0.5
0.2
6.2
0.2
6.2
Zambia
Central
2,522
19.4
39.2
7.2
12.2
32.0
19.4
39.2
2,520
19.0
38.9
7.2
11.8
31.7
19.0
38.9
Zambia
Copperbelt
1,834
22.1
42.0
8.7
13.4
33.3
22.1
42.0
1,831
21.7
41.7
8.7
13.0
33.0
21.7
41.7
Zambia
Eastern
1,184
4.2
25.0
12.2
0.0
12.8
12.2
25.0
1,185
4.2
25.0
12.1
0.0
12.8
12.1
25.0
Zambia
Luapula
694
4.3
25.1
26.9
0.0
0.0
26.9
26.9
694
4.3
25.1
26.8
0.0
0.0
26.8
26.8
Zambia
Lusaka
582
17.8
38.0
7.1
10.8
31.0
17.8
38.0
581
17.5
37.7
7.1
10.4
30.7
17.5
37.7
Zambia
North-Western
645
8.1
34.3
20.7
0.0
13.6
20.7
34.3
645
8.1
34.3
20.7
0.0
13.6
20.7
34.3
Zambia
Northern
1,542
4.9
27.0
24.4
0.0
2.6
24.4
27.0
1,543
4.9
27.0
24.4
0.0
2.6
24.4
27.0
Low plantation productivity variant
High plantation productivity variant
Wf
NRBA
NRBB2
NRBB1+NRBB2
Wf
NRBA
NRBB2
NRBB1+NRBB2
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
harvest
Min
Exp
NRBB1
Min
Exp
Min
Exp
Country
Admin unit
Kt
%
%
%
%
%
%
%
Kt
%
%
%
%
%
%
%
Zambia
Southern
1,783
12.9
32.5
7.4
5.5
25.1
12.9
32.5
1,786
12.7
32.3
7.3
5.3
25.0
12.7
32.3
Zambia
Western
784
6.7
33.2
7.4
0.0
25.8
7.4
33.2
785
6.7
33.2
7.4
0.0
25.8
7.4
33.2
Zambia tot
11,569
12.9
33.9
12.2
6.2
21.9
18.4
34.0
11,569
12.6
33.8
12.2
6.0
21.7
18.2
33.9
Zimbabwe
Bulawayo
19
7.8
30.7
14.7
0.0
16.0
14.7
30.7
19
7.2
30.3
14.7
0.0
15.6
14.7
30.3
Zimbabwe
Harare
40
5.4
28.6
12.4
0.0
16.3
12.4
28.6
40
5.3
28.5
12.3
0.0
16.2
12.3
28.5
Zimbabwe
Manicaland
1,172
5.4
29.0
51.0
0.0
0.0
51.0
51.0
1,177
5.2
28.9
50.7
0.0
0.0
50.7
50.7
Zimbabwe
Mashonaland Central
1,135
6.5
29.6
35.6
0.0
0.0
35.6
35.6
1,141
6.2
29.4
35.3
0.0
0.0
35.3
35.3
Zimbabwe
Mashonaland West
1,728
10.8
34.3
30.9
0.0
3.4
30.9
34.3
1,724
9.9
33.6
30.9
0.0
2.6
30.9
33.6
Zimbabwe
Masvingo
1,240
5.5
30.1
40.5
0.0
0.0
40.5
40.5
1,244
5.4
30.0
40.4
0.0
0.0
40.4
40.4
Zimbabwe
Matabeleland South
1,029
11.3
37.2
33.6
0.0
3.7
33.6
37.2
1,025
10.4
36.6
33.7
0.0
2.9
33.7
36.6
Zimbabwe
Midlands
1,857
11.4
35.2
31.7
0.0
3.5
31.7
35.2
1,853
10.4
34.4
31.8
0.0
2.6
31.8
34.4
Zimbabwe
Matabeleland North
1,168
13.9
40.5
42.5
0.0
0.0
42.5
42.5
1,158
12.6
39.7
42.8
0.0
0.0
42.8
42.8
Zimbabwe
Mashonaland East
1,199
6.9
30.1
24.6
0.0
5.5
24.6
30.1
1,204
6.6
29.8
24.5
0.0
5.3
24.5
29.8
Zimbabwe tot
10,584
9.2
33.3
35.6
2.2
35.6
37.8
10,584
8.5
32.8
35.6
1.9
35.6
37.5
Total Africa
441,321
19.5
35.4
15.0
15.8
26.4
30.8
41.4
441,321
18.5
34.5
15.0
15.1
25.6
30.1
40.6
Total Americas
188,549
4.7
23.7
15.8
3.5
15.0
19.4
30.9
188,549
3.0
20.8
15.8
2.1
12.2
17.9
28.1
Total Asia &
Oceania
729,112
17.8
29.2
2.4
16.2
26.7
19.1
29.6
729,112
12.8
24.1
2.2
11.4
21.9
14.2
24.6
Total Pan-tropics
1,358,982
16.6
30.4
8.3
14.3
25.0
22.9
33.6
1,358,982
13.3
27.0
8.3
11.3
21.8
19.9
30.3
Supplemental Information: The Carbon Footprint of Traditional Woodfuels
Authors: Robert Bailis1*, Rudi Drigo2, Adrian Ghilardi3, Omar Masera4
Affiliations:
1 Yale School of Forestry and Environmental Studies
2 Independent Consultant
3 Center for Environmental Geography Research, National Autonomous University of Mexico (UNAM)
4 Center for Ecosystems Research, National Autonomous University of Mexico (UNAM)
*Correspondence to: robert.bailis@yale.edu
1.!The WISDOM method ........................................................................................................... 2!
Sources of Data and Analysis of Woodfuel Demand .................................................................................................. 9!
Population distribution data sources: ........................................................................................................................... 9!
Woodfuel use data sources: ......................................................................................................................................... 9!
Accounting for non-energy uses of harvested wood .................................................................................................. 13!
Sources of Data and Analysis of Woodfuel Supply ................................................................................................... 14!
Pan-tropical Supply Module ....................................................................................................................................... 14!
Biomass Productivity .................................................................................................................................................... 21!
Contributions from Plantations ................................................................................................................................... 23!
Accessibility .................................................................................................................................................................. 25!
Legal accessibility ...................................................................................................................................................... 25!
Physical accessibility ................................................................................................................................................... 25!
Considering National Borders .................................................................................................................................... 27!
Elevation factor ........................................................................................................................................................... 27!
Slope factor ................................................................................................................................................................ 28!
Cost-distance analysis ............................................................................................................................................... 29!
Accounting for industrial roundwood ......................................................................................................................... 32!
2.!Integrating Supply and Demand Modules ........................................................................ 32!
Pixel-level balance ........................................................................................................................................................ 32!
Local Balance ................................................................................................................................................................ 32!
Non-local or “Commercial” balance ............................................................................................................................ 33!
Woodshed analysis ....................................................................................................................................................... 33!
Transport time threshold ............................................................................................................................................ 34!
3.!Estimating the expected range of subnational and national NRB ................................. 37!
Potential Renewable Biomass fraction (pRBf) ........................................................................................................... 37!
Minimum fraction of Non-Renewable Biomass (mfNRB) .......................................................................................... 37!
Sustainable Increment Exploitation Fraction (SIEF) ................................................................................................. 38!
Expected Renewable Biomass fraction (eRBf) .......................................................................................................... 38!
Expected Fraction of Non-Rene wable Biomass (efNRB) .......................................................................................... 39!
Accounting for woody biomass from deforestation and afforestation ......................................................................... 39!
4.!Determining GHG emissions from traditional woodfuels ............................................... 40!
5.!Results ................................................................................................................................. 41!
Defining GACC scenarios ............................................................................................................................................ 42!
Other Estimates of fNRB .............................................................................................................................................. 42!
6.!Sensitivities ......................................................................................................................... 43!
Minimum vs. Expected values of NRB ........................................................................................................................ 43!
Stove type ...................................................................................................................................................................... 44!
Fuel savings .................................................................................................................................................................. 44!
7.!References for Supplementary Information .................................................................... 44!
1. The WISDOM method
This study is based on “Woodfuels Integrated Supply/Demand Overview Mapping” (WISDOM), a
spatially explicit analytic method developed to identify priority areas of intervention and supporting
biomass energy planning and policy formulation. WISDOM is the fruit of a collaborative effort
between the Wood Energy Program of FAO and the Centro de Investigaciones en Ecosistemas
(CIECO) of the National Autonomous University of Mexico (UNAM)1-4 and has been implemented
in over 25 countries5.
WISDOM presents a flexible approach that is adaptable to local conditions and available
information, which allows it to cope with heterogeneity. The approach utilizes seven steps (Figure