This paper presents type classes, a new approach to ad-hoc polymorphism. Type classes permit overloading of arithmetic operators such as multiplication, and generalise the "eqtype variables" of Standard ML. Type classes extend the Hindley/Milner polymorphic type system, and provide a new approach to issues that arise in object-oriented programming, bounded type quantification, and abstract data types. This paper provides an informal introduction to type classes, and defines them formally by means of type inference rules. 1 Introduction Strachey chose the adjectives ad-hoc and parametric to distinguish two varieties of polymorphism [Str67]. Ad-hoc polymorphism occurs when a function is defined over several different types, acting in a different way for each type. A typical example is overloaded multiplication: the same symbol may be used to denote multiplication of integers (as in 3*3) and multiplication of floating point values (as in 3.14*3.14). Parametric polymorphism occurs wh...