ArticlePDF Available

Abstract and Figures

The Cactaceae with c. 1,435 species are the most important plant family of the arid regions of the Americas. Recent revisions and molecular studies resulted in an improved knowledge of the phylogeny and taxonomy of this group. Due to their high value as ornamental plants, countless publications with data on ecological preferences and geographic occurrence of the species are available. In this volume, the distribution areas of all cactus species are mapped. On this basis, we identified and characterized seven geographical centers of cactus diversity. Overall diversity patterns of the family, as well as, diversity patterns of all taxonomic subgroups, growth forms, and pollination syndromes are presented and mapped on the phylogeny of the Cactaceae. More than 50% of the species have extremely small distribution ranges, resulting in potential threat and insufficient coverage by existing protected areas. This volume presents the most comprehensive biogeographical analysis of one of the larger plant families, illustrated by 333 colored maps and c. 60 color figures on c. 200 pages.
Content may be subject to copyright.
The Cactac
plant famil
y
sions and
knowledge
to their hig
h
with data o
of the spec
i
eas of all c
a
fied and c
h
diversity.
O
versity patt
pollination
logeny of t
extremely
threat and
This volum
e
analysis of
o
e
ae with c.
1
y
of the arid
molecular
of the phylo
g
h
value as or
n
n ecological
p
i
es are availa
b
a
ctus species
h
aracterized
s
O
verall diversi
t
e
rns of all ta
x
syndromes a
h
e Cactacea
e
small distrib
insufficient
c
e
presents th
e
o
ne of the lar
g
1
435 species
regions of t
h
studies res
g
eny and tax
o
n
amental pla
n
p
references a
n
b
le. In this vo
are mapped
s
even geogr
a
t
y patterns o
f
x
onomic subg
a
re presented
e
. More than
b
ution range
s
c
overage by
e
most comp
r
g
er plant fam
are the mo
s
h
e Americas.
ulted in a
n
o
nomy of thi
n
ts, countless
n
d geographi
c
lume, the dis
t
. On this basi
a
phical cente
f
the family, a
r
oups, growt
h
and mapped
50% of the
s
s
, resulting
i
e
xisting prot
e
r
ehensive bio
g
ilies.
s
t important
Recent revi-
n
improved
s
group. Due
publications
c
occurrence
t
ribution ar-
s
, we identi-
rs of cactus
s well as, di-
h
forms, and
on the phy-
s
pecies have
i
n potential
e
cted areas.
g
eographical
Text zwei
c. 205 pa
g
all Cactus
c. 60 col
o
habitats
Analyses
a
growth fo
Based on
B
ARTHLOTT
,
K
OROTKOVA
,
J. (2015): B
7. 205 pag
e
x 29.7 cm
1437-2517.
Cactaceae:
Generic diversity (128
g
Genera per 2500 km†
1 - 2
3 - 4
5 - 6
7 - 8
9 - 12
13 - 15
16 - 18
19 - 22
s
prachig Engl
g
es, c. 333 co
species
o
r figures in
c
a
nd diversity
rms, and poll
i
t
he most rec
e
W.,
B
URSTE
N.,
M
IEBACH
,
iogeography
e
s, 333 maps
,
(A4), Hardc
o
Bezugsadres
s
g
en.)
ish und Deut
s
lored maps s
h
c
l. 44 fotos
o
maps for all
ination syndr
o
e
nt phylogen
e
E
DDE
,
K.,
G
E
A.,
R
AFIQPOO
R
and Biodiver
,
ca. 60 phot
o
o
ver – Price:
s
e (to order b
1500km
' Barthlott et al. 2013
Map 26
s
ch
h
owing the d
i
o
f cacti speci
e
tribes and g
e
o
mes
e
tic studies
E
FFERT
,
J.L.,
R
,
M.D.,
S
TEIN
,
sity of Cacti.
o
s and other
39,-€ + tra
n
y): gs@dkg.e
u
stribution of
e
s and their
e
nera, major
I
BISCH
,
P.L.,
A.
&
M
UTKE
,
Schumannia
f
igures. 21.0
n
sport, ISSN
u
Wilhelm Barthlott, Kerstin Burstedde, Jan Laurens Geffert, Pierre L. Ibisch, Nadja Korotkova,
Andrea Miebach, M. Daud Rafiqpoor,Anke Stein & Jens Mutke
Biogeography and biodiversity of cacti
Biogeographie und Biodiversität der Kakteen
Ein Sonderheft der
Deutschen Kakteen-Gesellschaft e.V.
und der Gesellschaft Österreichischer Kakteenfreunde
Schumannia 7
2015
herausgegeben von
Detlev Metzing
Schumannia
Abstract
The Cactaceae with c. 1,435 species are the most important plant family of the arid regions of the Americas. Recent revisions and molecu-
lar studies resulted in an improved knowledge of their phylogeny and taxonomy. Due to their high value as ornamental plants, countless
publications with data on ecological preferences and geographic occurrence of the species are available. In this volume, the distribution ar-
eas of all cactus species are mapped. On this basis, we identified and characterized seven geographical diversity centers. Overall diversity
patterns of the family, as well as, diversity patterns of all taxonomic subgroups, growth forms, and pollination syndromes are presented and
mapped on the phylogeny of the Cactaceae. More than 50% of the species have extremely small distribution ranges, resulting in potential
threat and insufficient coverage by existing protected areas.This volume presents the most comprehensive biogeographical analysis of one
of the larger plant families,illustrated by 333 colored maps and 55 color figures on c. 200 pages.
Kurzfassung
Die Cactaceae sind mit rund 1.435 Arten die bedeutendste Pflanzenfamilie der amerikanischen Trockengebiete. Aktuelle Revisionen und
molekulare Analysen haben das Verständnis von Taxonomie und Phylogenie erheblich verbessert. Aufgrund des weltweiten Interesses an
dieser Zierpflanzengruppe liegen unzählige Publikationen zu den ökologischen Ansprüchen und Standorten vor. In diesem Band wurden
die Verbreitungsmuster aller Arten erfasst und auf farbigen Karten dargestellt. Auf dieser Grundlage wurden sieben Diversitätszentren iden-
tifiziert und näher charakterisiert. Diversitätsmuster der Gesamtfamilie wie auch aller taxonomischen Untergruppen sowie z. B. Wuchsfor-
men und Bestäubungssyndromen werden präsentiert und unter Einbeziehung phylogenetischer Analysen diskutiert. Über 50 % der Kak-
teen haben sehr kleine Verbreitungsareale, womit in vielen Fällen eine potentielle Gefährdung und unzureichende Abdeckung durch exis-
tierende Schutzgebiete einhergeht. Illustriert durch insgesamt 333 farbige Karten und 55 farbige Abbildungen auf ca. 200 Seiten wird die
bisher umfangreichste biogeographische Analyse einer größeren Pflanzenfamilie vorgelegt.
Resumen
Biogeografía y Biodiversidad de las Cactáceas.Cactaceae con aprox.1435 especies, es la familia más importante de plantas en las zonas ári-
das de América.Revisiones y estudios moleculares recientes han mejorado el conocimiento de la taxonomía y filogenia de este grupo. De-
bido a su importancia como plantas ornamentales, están disponibles un sinnúmero de publicaciones sobre las preferencias ecológicas y las
distribuciones geográficas de las especies. En este volumen están representadas gráficamente las áreas de distribución geográfica de todas
las especies de cactos. Con base en esta información hemos identificado siete centros geográficos de diversidaden el grupo. En la filogenia
de Cactaceae se representan los patrones de diversidad general de la familia,al igual que los patrones de diversidad de sus subgrupos taxo-
nómicos, formas de crecimiento y síndromes de polinización. Más del 50% de las especies presentan ámbitos de distribución geográfica muy
restringidos, resultando en una amenaza potencial y presencia insuficiente en las áreas protegidas en existencia. Este volumen presenta el
análisis biogeográfico más comprensivo de una de las familias más grandes de plantas, ilustrado con 55 figuras y 333 mapas a color en aprox.
200 páginas.
205
© Schumannia 7 2015
Abstract / Kurzfassung / Resumen
Corresponding Author / Korrespondenzautor:
Prof. Dr. Wilhelm Barthlott
Nees Institute for Biodiversity of Plants,University of Bonn
Venusbergwerg 22
53115 Bonn – Germany
e-Mail: barthlott@uni-bonn.de
www.lotus-salvinia.de
Contents/Inhalt
Foreword and acknowledgements ..................................................................... 6
Vorwort und Danksagungen ........................................................................... 7
1
Introduction ........................................................................................ 9
Einleitung .......................................................................................... 12
2
Cactus ecology and biogeography ...................................................................... 13
Ökologie und Biogeographie der Kakteen ............................................................... 17
2.1
Cactiandtheirhabitats ............................................................................... 13
KakteenundihreLebensräume ........................................................................ 17
2.2
Biogeographyandpalaeo-history ...................................................................... 13
BiogeographieundFlorengeschichte ................................................................... 18
3
Phylogeny, evolution and systematics ................................................................... 24
Phylogenie, Evolution und Systematik .................................................................. 27
3.1
Findingtheclosestrelativesofcacti .................................................................... 24
DienächstenVerwandtenderKakteen ................................................................. 27
3.2
AgeestimatesfortheCactaceae ....................................................................... 24
SchätzungendesAltersderCactaceae .................................................................. 27
3.3
Current understanding of phylogenetic relationships within Cactaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Das aktuelle Verständnis der phylogenetischen Beziehungen innerhalb der Cactaceae . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4
Basalcactuslineagesandtheoriginofcacti .............................................................. 24
FrüheKakteen-LinienundderUrsprungderKakteen .................................................... 28
3.5
RelationshipswithinCactoideae ....................................................................... 25
BeziehungeninnerhalbderCactoideae ................................................................. 28
3.6
Concludingremarks ................................................................................. 26
Schlussbemerkungen ................................................................................. 29
4
Mapping the diversity of cacti ......................................................................... 30
Kartographische Darstellung der Kakteen-Diversität ..................................................... 33
4.1
Maindatasources ................................................................................... 30
WichtigeDatenquellen ............................................................................... 33
4.2
Generatingthedistributionmaps ...................................................................... 31
ErstellungderVerbreitungskarten ..................................................................... 35
4.3
Dataanalysis ....................................................................................... 31
Datenanalyse ....................................................................................... 36
4.4
Qualityandreliabilityofdata ......................................................................... 32
QualitätundZuverlässigkeitderDaten ................................................................. 36
4
© Schumannia 7 2015
5
© Schumannia 7 2015
5
Patterns of diversity and endemism .................................................................... 37
Muster von Diversität und Endemismus ................................................................ 51
5.1
Generaloverview ................................................................................... 37
Allgemeineberblick .............................................................................. 51
5.2
Centresofdiversity ................................................................................. 37
Diversitätszentren .................................................................................. 51
5.3
Range-sizesofCacti ................................................................................ 41
ArealgrößenvonKakteen ........................................................................... 56
5.4
Spatialdistributionofgrowthforms ................................................................... 44
RäumlicheVerbreitungderWuchsformen .............................................................. 62
5.5
Spatialdistributionofpollinationsyndromes ........................................................... 47
RäumlicheVerteilungderBestäubungssyndrome ........................................................ 63
5.6
Diversitypatternofgenera,tribesandsubfamilies ....................................................... 48
Diversitätsmuster der Gattungen,Triben und Unterfamilien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.7
Diversitygradients .................................................................................. 50
Diversitätsgradienten ............................................................................... 67
6
Conservation and hotspots: cactus diversity in change .................................................... 68
Kakteen-Diversität im Wandel und Naturschutz ......................................................... 73
6.1
Introduction ....................................................................................... 68
Einleitung ......................................................................................... 73
6.2
ThreatstoCactaceae ................................................................................ 69
GefährdungenderKakteen .......................................................................... 74
6.3
Cactiasthreats ..................................................................................... 73
KakteenalsBedrohung .............................................................................. 81
6.4
Countryprofiles .................................................................................... 73
Länderprofile ...................................................................................... 81
7
Distribution maps of Cactaceae ....................................................................... 82
Verbreitungskarten der Cactaceae .................................................................... 89
7.1
Subfamily:Pereskioideae ............................................................................ 82
Unterfamilie:Pereskioideae .......................................................................... 89
7.2
Subfamily:Maihuenioideae .......................................................................... 82
Unterfamilie:Maihuenioideae ........................................................................ 89
7.3
Subfamily:Opuntioideae ............................................................................ 82
Unterfamilie:Opuntioideae .......................................................................... 89
7.4
Subfamily:Cactoideae ............................................................................... 83
Unterfamilie:Cactoideae ............................................................................ 90
8
References/Literatur ................................................................................ 198
Index ............................................................................................. 202
Abstract .......................................................................................... 205
Kurzfassung ....................................................................................... 205
Resumen .......................................................................................... 205
6
© Schumannia 7 2015
Cacti are, just like bromeliads or humming-
birds, creatures of the New World. About 1440
species populate the Americas; some of them
are globular and about two centimetres small
(Blossfeldia), while others are columnar and
up to 14 metres tall (Carnegiea). Their distri-
bution ranges from the boreal coniferous
forests in the North (south-west Canada) up to
the grasslands of the Pampa in the south.Cacti
inhabit diverse habitats, from the coast to the
high mountains,from deserts up to the rainfor-
est canopy.
The often densely spined succulents (called
“herbal crystals” by the poet Adalbert Stifter)
are characterized by magnificent flowers. Not
only scientists but also plant enthusiasts are fas-
cinated by this plant family.They are covered by
important collections, national and in
terna-
tional cactus and succulent societies, about
a
dozen journals and an enormous amount of lit-
erature. Hence, cacti are one of the most well-
studied major plant families.
The first modern monographs in the new mil-
lennium have been presented by Edward F.An-
derson as “The cactus fanily” (A
NDERSON
2001,
German editions as “Das große Kakteen-
Lexikon”, A
NDERSON
2005, 2011) and David
H
UNT
(2006). The amount of published data is
overwhelming, but a modern biogeographic
overview for the family is still missing. There
are early biogeographic studies based on the
data available at that time. Karl S
CHUMANN
(1899a) published “Die Verbreitung der Cac-
taceae im Verhältnis zu ihrer systematischen
Gliederung” [Distribution of Cactaceae in re-
lation to their systematic classification] in
Berlin, and Curt Backeberg published his „Zur
Geschichte der Kakteen“ [History of the cacti]
(B
ACKEBERG
1942b) and „Verbreitung und
Vorkommen der Cactaceae” [Distribution and
occurrence of Cactaceae] (B
ACKEBERG
1944).
Today, however, these pioneering treatments
are outdated,especially with regard to the pres-
ent state of the knowledge of phylogeny, sys-
tematics, and molecular analyses.
This analysis of biogeography and biodiversity
of the cacti combines current knowledge with a
new objective in the context of modern biodi-
versity research. The family is analysed based
on systematic-taxonomic knowledge incorpo-
rating geographic and phylogenetic data. Ini-
tially, distribution maps were created for 1416 of
the 1438 accepted species. From these maps, di-
versity maps were generated for the relevant
taxonomic levels from genera to the entire fam-
ily, and the different centres of diversity were
circumscribed. At the same time, macroe
colog-
ical relations, distribution of growth forms,
pol-
lination syndromes, and other aspects were
recorded, spatially visualized, and correlated
with general biogeographical patterns and eco-
regions. Issues of conservation were examined
under consideration of land use data and exist-
ing protected areas. This provides an important
foundation for the conservation of Cactaceae
and their habitats.
The plan for this publication emerged in the
early 1990’s. First modern maps of phytodiver-
sity had already been published by BARTHLOTT
(1983) for the Cactaceae–Rhipsalideae. As a
well-known and extensively studied group,
compared to other large families,the Cactaceae
will act as a role-model for the analysis of bio-
diversity and biogeography of a larger an-
giosperm group.
The monograph presented here is thus based
on three decades of preparatory work, as well as
the collaboration of many colleagues and stu-
dents, who are either involved as authors or ac-
knowledged for their contributions. Simone
Strecker (1992) submitted a diploma thesis
(“Arealgeographie der Kakteen”), which was
based on a manual compilation of diversity
maps of all Cactaceae genera. In subsequent
years,the data were complemented and edited
by Pierre Ibisch, utilizing vegetation maps and
his fieldwork in Bolivia. He also supervised pre-
liminary studies and the digital processing of
distribution data by Georg Rauer, which was
supported by a research grant from the
Deutsche Kakteen-Gesellschaft (the “German
Cactus Society“)—at that time still without true
geographic information systems (GIS).As part
of a large collaborative project (BIOTA)
funded by the German Federal Ministry for Ed-
ucation and Research,a working group (“BIO-
MAPS“) has been established in Bonn from
2001 to 2010 to map the global geographic di-
versity of angiosperms.Besides regional analy-
ses, world maps of biodiversity of all land plant
groups were generated (e.g. B
ARTHLOTT
& al.
1996, 2005, K
IER
& al. 2009, K
REFT
& al. 2010,
M
UTKE
& al. 2011). Therefore, the infrastruc-
ture and the aforementioned geographic infor-
mation systems were available for digitization
and spatial analysis of the cactus data. This
started in 2007 and was carried out by two par-
allel diplom theses of Anke Stein and Kirsten
Burstedde (nee Hahne) that were finished in
spring 2009. In 2011 Andrea Miebach com-
pleted a bachelor thesis focusing on the evolu-
tion of functional traits in the Cactaceae. Jens
Mutke coordinated this work since 2007 with
great dedication and expertise.
In preparation for publication, all of the maps
were carefully revised and uniformly laid out
(among others by Laurens Geffert, Andrea
Miebach and Lina Samira Meiling (geb.
Mathar).Boris O.Schlumpberger provided data
on pollination ecology from his on-going re-
search project. Nadja Korotkova analysed the
phylogenies based on molecular data, and ge-
ographer M. Daud Rafiqpoor edited the spa-
tial aspects of the distribution maps.Almost all
of the above collaborators were, at least tem-
porarily, funded by our long-term project „Bio-
diversität im Wandel“ of the Academy of Sci-
ences and Literature in Mainz.
With the financial support of the Academy of Sci-
ences and Literature in Mainz, we established a
small working group of the International Organ-
ization for Succulent Plant Study (IOS) at the
end of our long-term mapping work and met for
the first time in 2009 during the IOS Inter-Con-
gress 2009 in Bonn. The colleagues carefully
checked and revised the distribution maps pro-
vided by us, and our special thanks go to David
Hunt, Nigel Taylor, Martin Lowry, Charles Gra-
ham, Paul Hoxey, and Ralf Bauer.
The list of people who contributed to the pub-
lication presented here is long.We are indebted
to all of them. However, this particularly ap-
plies to the Academy of Sciences and Litera-
ture in Mainz: Without a sustainable institu-
tional framework of our long-term project
„Biodiversität im Wandel„ (1999–2014), the
complex project of mapping the cacti could not
have proceeded.
The most important historical work on bio-
geography of cacti was published in 1899 in
Berlin, written by Professor Karl Moritz Schu-
mann, who founded the German Cactus Soci-
ety (DKG) in 1892. This society has accompa-
nied and supported our project from the be-
ginning, and we are very much obliged to it.
We are especially grateful for the editor Detlev
Metzing, who worked with great competence
and intensity at the completion of this manu-
script. It is a fortunate coincidence that this
work is published in the “Schumannia”, named
after the founder of the DKG.
Bonn, in January 2015
Wilhelm Barthlott
Foreword and acknowledgements
Wilhelm Barthlott
Presumably, cacti (Melocactus) were already
among the curiosities that Christopher Colum-
bus presented as gifts to Queen Isabella of
Castile after his first voyage to the New World
in 1492.Carl Linnaeus (1707–1778) already had
asurprisingly clear picture of the delineation of
this “family”. In his “Species Plantarum”, pub-
lished 1753, he listed 22 cactus species. Based
on his Sexual System of classification, he as-
sumed a close relationship between morpho-
logically very different taxa, such as Melocac-
tus and Opuntia,but also Pereskia, and he com-
bined all these in the genus Cactus. With the
studies ofAdrian Haworth (1768–1833), Joseph
Salm-Dyck Reifferscheidt (1773–1861), Au-
gustin Pyrame de Candolle (1778–1841), and
Ludwig G. K. Pfeiffer (1805–1877), the system-
atic investigation in the middle of the 19th cen-
tury was already far advanced. This was be-
cause these plants had stimulated the interest
of botanists and plant enthusiasts at an early
stage, caused by their “bizarre” and “exotic
appearance,combined with modest cultivation
requirements of many species.
In this era, systematic recording of species was
at the heart of research. This did not only ap-
ply to cacti, but also to all other plant families.
Plant geography (and ecology) started early
with the exceptional singular“Essai sur la Géo-
graphie des Plantes” (Paris 1805) by the vi-
9
© Schumannia 7 2015
1 Introduction
Wilhelm Barthlott
Fig. 1: The overlapping distribution ranges of ten of the Mexican globular cactus genera accepted by Curt BACKEBERG (1944), which he noticeably summari-
zed under the name Boreoechinocacti. The lines are distribution boundaries of the genera. The Chihuahua centre of diversity (cf. Map11) is already clearly
visible, as already in the „Karte der Verdichtung der Kakteenvorkommen“ [map of densification of cactus occurrences ](BACKEBERG 1958: Abb. 4) (from:
BACKEBERG 1944).
Abb. 1: Die überlagerten Areale von zehn der von Curt Backeberg akzeptierten Gattungen mexikanischer Kugelkakteen (BACKEBERG 1944), die er bezeich-
nenderweise unter dem Begriff Boreoechinocacti zusammenfasst. Die Linien sind die Arealgrenzen der Gattungen. Schon deutlich ist auf dieser Karte wie
auch auf der „Karte der Verdichtung der Kakteenvorkommen“ (BACKEBERG 1958: Abb. 4) das Chihuahua-Diversitätszentrum der Familie (vgl. Karte 11)
zu erkennen (aus: BACKEBERG 1944).
2.1 Cacti and their habitats
Cacti are one of the most characteristic plant
groups of the Americas, being almost endemic
to the New World. Only one single epiphytic
species, Rhipsalis baccifera, has disjunct popu-
lations in the Old World.
Latin America stands out for a high diversity
of different landscapes and vegetation zones
(Fig.4).It may seem surprising to the non-spe-
cialist that habitats of cacti represent a large
range of environmental conditions, as well.
They grow from coastal sand dunes up to some
5000 metres elevation in the high Andes, and
from southern Canada to southern Argentina,
spanning a latitudinal range of more than 100
degree. Factors limiting the distribution range
of the family at high latitudes are extreme cold
and in most cases humid conditions with short
days during winter. In addition, more humid
parts of the Mediterranean type winter rainfall
areas in northern California and south-central
Chile are avoided by most cacti. This seems
somewhat surprising, as especially some
species of Opuntia have been widely natural-
ized in the Mediterranean Basin, including
large parts of southern Europe and northern
Africa. One important parameter limiting cac-
tus growth in winter rainfall areas might be the
influence of frequent fires. Fire also limits the
establishment of cacti in many grass lands and
savannah ecosystems.
Even though cacti are an iconic element of
New World deserts, the family inhabits a wide
range of ecosystems (Figs. 5–21); cacti even
grow in humid tropical rainforests. However,
this is more of an exception and mainly true for
epiphytic species, some shrubby or arborescent
Pereskia in south-east Brazil and central Amer-
ica, and the specialists growing on isolated rock
outcrops (inselbergs) representing dry, azonal
habitat islands within rainforests. In general,
cacti are bad competitors under humid, fertile
conditions. Thus, most species are found in
ecosystems with limited water availability at
least during some months of the year, particu-
lar edaphic conditions such as the rock out-
crops, saline, gypsum, serpentine substrates, or
sand fields.This includes open desert to semi-
desert vegetation types, as well as thorny shrub
and deciduous to semi-deciduous dry forests.It
has been demonstrated by several authors that
many cacti species show higher rates of estab-
lishment and survival in the shadow of trees or
shrubs as “nurse plants” in semi-arid habitats
(e.g., L
ARREA
-A
LCÁZAR
& al. 2008, M
ANDUJANO
& al. 2002).
On an ecoregional basis, the Mexican pine-
oak forests of the Sierra Madre Oriental and
Occidental as well as of the Trans-Mexican
Volcanic belt belong to the areas with the
highest Cactus species richness,as well as the
Meseta Central Matorral and the Chihuahua
desert in Mexico, the Central Andean Puna
Ecoregion sensu WWF (O
LSON
& al. 20 01) in
Peru and Bolivia, and the Bolivian montane
dry forests.
2.2 Biogeography and palaeo-history
Apart from the early studies by S
CHUMANN
(1899a) and B
ACKEBERG
(1942) there are few
biogeographic studies for the cactus family
(but compare e.g. H
ERNÁNDEZ
& G
ÓMEZ
-H
I
-
NOSTROSA
2011, T
AYLOR
& Z
APPI
2004, T
HIEDE
1998). Unfortunately, the analysis of biogeo-
graphic patterns of cacti is hampered by the
absence of a fossil record.Not even the age of
the family is known. Recent molecular clock
approaches using fossils of related taxa indi-
cate a relatively short evolutionary history
compared to other flowering plant families
(compare chapter 3.2).
Most cactus diversity today is linked to arid or
semi-arid conditions.The species rich arid re-
gions of western North America (cf. Fig. 22)
and Mexico are dominated by the almost ex-
clusively North American cactus tribes Cac-
teae and Phyllocacteae, as well as many spe-
cies of Opuntioideae.These northern centres
of cactus diversity are separated from the dry
Caribbean Coast of Colombia and Venezuela
by the rainforests of southern CentralAmer-
ica with some linkage through the Caribbean
Islands.
The humid rainforests of the Amazon Basin
and of the Chocó region in western Colombia
separate these northern hemisphere cactus
habitats from suitable areas further south (cf.
Fig. 4). Dry valleys of the Andes in western
South America are to some degree connected
to the more southern regions of the Atacama
Desert at the Peruvian and Chilean Pacific
Coast. However, the geologically relative
young and somewhat wetter Northern Andes
especially in Colombia harbour only very few
cactus species.The Atacama Desert with many
endemic species especially of the tribe Cereeae
is separated from the species rich BolivianAn-
dean dry valleys and the western Chaco by the
high Andes reaching altitudes of more than
5000 m a.s.l. This Bolivian and northern Ar-
gentinian South Central Andes centre of cac-
tus diversity has the highest diversity of differ-
ent tribes and genera, as well as growth forms
of cacti. It is separated from the cactus diver-
sity centre in the Caatinga in eastern Brazil by
the grasslands of the Cerrado, which are rela-
tively poor in cacti, probably due to the fre-
quent occurrence of fires. The high species di-
versity in the south-east Brazilian rainforest of
the Mata Atlantica is a particular case owed
mainly to the presence of many epiphytic spe-
cies of the tribe Rhipsalideae, as well as species
in azonal habitats like rock outcrops or coastal
sand dunes.A detailed description of the main
centres of Cactus diversity is given in chapter
5.2. For an overview on the biogeography and
ecology of cacti of Eastern Brazil see T
AYLOR
&
Z
APPI
(2004).
The lack of data on the evolutionary history
of the Cactaceae makes it difficult to relate
the current distribution patterns to palaeo-
geographic conditions and events. Both B
ACKE
-
BERG
(1942b) as well as L
EUENBERGER
(1986)
conclude an origin of the Cactaceae and of
the most basal taxon in the phylogenetic tree,
the subfamily Pereskoideae with the only
genus Pereskia, in northern South America.
According to recent molecular studies this
genus is a grade with two clades at the basis
of the cactus phylogeny (compare N
YFFELER
&
E
GGLI
2010b and Fig. 23).Today, the cladisti-
cally basalmost clade of Pereskia species oc-
cur in northern Venezuela, the Caribbean Is-
lands, and Central America—only P. aureifo-
lia occurs in south-east Brazil. In contrast, the
second clade of Pereskia species is almost re-
stricted to south-east Brazil and the central
Andes of Bolivia and Peru—with P. aculeata
having a disjunct distribution area in the Car-
ribean, as well.
13
© Schumannia 7 2015
2 Cactus ecology and biogeography
Jens Mutke
3.1 Finding the closest relatives of cacti
The Cactaceae belong to the order Caryo-
phyllales in which they are part of a group that
contains most of the succulent families of the
order:Cactaceae,Anacampserotaceae,Basella-
ceae, Didiereaceae, Halophytaceae, Montia-
ceae, Portulacaceae, and Talinaceae (C
UENOUD
& al. 20 02, S
CHÄFERHOFF
& al. 20 09).The place-
ment of Cactaceae within the Caryophyllales
(or in the former Centrospermae) dates back
to the 19
th
century, and molecular phylogenetic
studies have undoubtedly confirmed that
Cactaceae are part of the Caryophyllales.Nev-
ertheless, the closest relatives of cacti have
been identified with confidence only recently.
A first hypothesis on the putative close relatives
of the cacti was suggested by T
HORNE
(1976),
who assumed a close relationship of Cactaceae
and Didiereaceae, Basellaceae and Portula-
caceae and created the suborder Portulacinae
for this alliance.Recent studies have confirmed
that Cactaceae are closely associated with the
Portulacaceae, and even nested within them
(A
PPLEQUIST
& W
ALLACE
2001, C
UENOUD
& al.
2002, H
ERSHKOVITZ
& Z
IMMER
1997). N
YFFELER
(2007) could finally identify the Portulacaceae
tribe Anacampseroteae as the closest relatives
of cacti. The Portulacaceae were found to be
polyphyletic and several nomenclatural changes
became necessary. As one result, the Ana-
campserotae are now treated as the family
Anacampserotaceae and are the sister family of
the Cactaceae (N
YFFELER
& E
GGLI
2010a).
3.2 Age estimates for the Cactaceae
Since Cactaceae are a New World family, ab-
sent from Africa despite of suitable habitats
(besides one Rhipsalis species and introduced
Opuntias), it is generally assumed that they
evolved in South America after the break-up of
Gondwana during the late Jurassic and early
Cretaceous. This suggests a limiting age of
100–90 million years when South America and
Africa were already separated (M
AUSETH
1990).
An immediate age estimate for the Cactaceae
is not possible since no fossils are known.
The most comprehensive hypothesis on the
evolutionary history of the Cactaceae was
linked to the geological history of South Amer-
ica and was proposed by B
ACKEBERG
(1942b).
He assumed an origin of the family in the trop-
ical zone of Mesoamerica during the Creta-
ceous, app. 130 million years, thus suggesting
that the Cactaceae are a rather ancient group.
Much later, H
ERSHKOVITZ
& Z
IMMER
(1997) sug-
gested the Cactaceae being a young group of
only 30 million years of age. Still, they did not
provide any plausible basis for this estimate.
The most recent evidence for the age of the
Cactaceae comes from molecular dating of the
Caryophyllales, yielding timeframes of 116–104
million years (A
NDERSON
& al. 20 05, W
IKSTROM
& al. 2001). No age estimates using a molecu-
lar clock particularly for the Cactaceae were
available until recently, due to the lack of fos-
sils, which are used as calibration points in such
analyses. Age estimates for Cactaceae there-
fore still have to rely on known fossils of more
distantly related taxa.Thus, the molecular clock
calibrations only allow just setting an approxi-
mate timeframe when the family evolved.Two
studies using this approach yielded different
results: the age of the cacti was inferred as
19.1–3.1 million years (O
CAMPO
& C
OLUMBUS
2010) or 35 million years (A
RAKAKI
& al. 2011).
3.3 Current understanding of
phylogenetic relationships
within Cactaceae
The Cactaceae as a family were never seriously
questioned, but hypotheses on relationships
within the family were always troublesome.
Convergent evolution is frequent in this fam-
ily (W
ALLACE
& G
IBSON
2002), making inter-
pretation of morphological features challeng-
ing. Columnar cacti, small globular cacti, and
epiphytes, as well as adaptations to major
pollinator groups (bats, birds) have evolved
several times independently and the flower
morphology is rather uniform, providing few
valuable characters. Furthermore, due to phe-
notypic plasticity as a response of the environ-
mental conditions, individual taxa are mor-
phologically variable,making interpretation of
morphological characters troublesome.
Molecular phylogenetic methods contributed
much to the understanding of flowering plant
evolution and phylogenetics.But the relation-
ships within the Cactaceae are still insuffi-
ciently understood, and few molecular phylo-
genetic studies have been conducted compared
to other popular plant families such as Orchi-
daceae or Bromeliaceae.
The first DNA sequence data for Cactaceae
were published by W
ALLACE
(1995). A more
comprehensive phylogenetic tree derived from
the chloroplast marker rbcL was provided by
W
ALLACE
& G
IBSON
(2002). The first compre-
hensive molecular phylogenetic study for the
Cactaceae was done by N
YFFELER
(2002) and
was based on datasets of the chloroplast re-
gions trnK/matK and trnL-F. This study could
not entirely clarify relationships within the
family but identified major groups and fur-
thermore revealed the para- or polyphyly of some
tribes and genera, e.g. Pereskia, Notocacteae,
Browningieae, Hylocereeae and Lepismium.
The most comprehensive phylogenetic hy-
potheses for the Cactaceae at present are based
on datasets of the plastid regions trnK/matK,
the rpl16 intron and trnL-F and the nuclear
gene ppc (H
ERNÁNDEZ
-H
ERNÁNDEZ
& al. 2011)
or on trnK/matK (B
ÁRCENAS
& al. 2011). To
date, the study of B
ÁRCENAS
& al. (2011) is the
Cactaceae study with the most species included
(666 species).The results of these studies are an
improvement compared to the previous ones,
but the results are still not satisfactory and the
relationships within Cactaceae remain partly
unresolved.
3.4 Basal cactus lineages and the
origin of cacti
In the following, the relationships are sum-
marised as currently understood based on the
aforementioned studies and further studies of
single tribes and genera.The first branching is
the subfamily Pereskioideae (only Pereskia,
Fig. 26). As revealed by molecular data, Pere-
skia is not a monophyletic group but forms a
grade in the Cactaceae phylogeny (Figs. 24 &
25) with Mesoamerican and Caribbean Pere-
skia species as the first branching group fol-
lowed by the Andean Pereskia, which is sister
to the rest of the family (B
UTTERWORTH
& W
AL
-
LACE
2005, E
DWARDS
& al. 2005).
Pereskia has traditionally been interpreted as
the most ancestral cactus since the works of
S
CHUMANN
(1899b) and many of the Pereskia
characters, which have been regarded as ple-
siomorhic within Cactaceae. These are the
woody stem,the presence of leaves (in contrast
24
© Schumannia 7 2015
3 Phylogeny, evolution, and systematics
Nadja Korotkova
26
© Schumannia 7 2015
Fig. 25: Phylogenetic tree of the Cactaceae showing relationships bet-
ween all Cactaceae genera based on the phylogenetic studies available
so far. The topology is based on HERNANDEZ-HERNAN DEZ & al. (2011), NYFFELER
(2002), GRIFFITH & PORTER (2009) (Opuntioideae), BUT TERWORTH & al. (2002)
(Cacteae), KOROTKOVA & al. (2010, 2011) (Lymanbensonieae and Rhipsali-
deae), RITZ & al. (2012) (Tephrocacteae) and SCHLUMPBERGER & REN NER (2012)
for Echinopsis and allies. The suprageneric classification and the genera
follow NYFFELER & EGGLI (2012), with modifications based on KOROTKOVA & al.
(2010, 2011), RITZ & al. (2012) and SCHLUMPB ERGER & RENNER (2012). Statistical
support for the main clades on tribal level is indicated with *** for maxi-
mum support and ** for low support. Support for the higher nodes is
not shown for better readability of the tree. Genera with (?) have so far
not been sampled in a phylogenetic analysis.
Abb. 25: Stammbaum der Cactaceae, gezeigt sind verwandtschaftliche
Beziehungen zwischen allen Cactaceae-Gattungen, basierend auf allen
bisher verfügbaren phylogenetischen Studien. Die Topologie basiert auf
HERNANDEZ-HERNANDEZ & al. (2011), NYFFELE R (2002), GRIFFITH & PORTER (2009)
(Opuntioideae), BUTTERWORTH & al. (2002) (Cacteae), KOROTKOVA & al. (2010,
2011) (Lymanbensonieae und Rhipsalideae), RITZ & al. (2012) (Tephroca-
cteae) und SCHLUMPBERG ER & RENNER (2012) für Echinopsis und Verwandte.
Die supragenerische Klassifizierung und die Gattungen folgen NYFFELER &
EGGLI (2012), mit Änderungen basierend auf KOROTKOVA & al. (2010), RITZ &
al. (2012) und SCHLUMPBER GER & RENNER (2012). Die statistische Unterstüt-
zung für die wichtigsten Gruppen auf Tribus-Ebene wird mit *** für
maximale Unterstützung und ** für geringe Unterstützung angegeben.
Unterstützung für die höheren Knoten wird zur besseren Lesbarkeit des
Baumes nicht gezeigt. Gattungen mit (?) wurden bisher in keiner phylo-
genetischen Analyse untersucht.
4.1 Main data sources
Given the fact that cacti have always fascinated
a large number of scientists, gardeners, and
plant enthusiasts,the taxonomic concepts used
vary a lot. Already Karl S
CHUMANN
in (1899a)
starts his work on the “Verbreitung der Cac-
taceae” with a discussion on the problem of a
high degree of synonomy, nomina nuda, etc.
Around 14,000 species names of cacti had al-
ready been published in the 1970ies (B
ARTH
-
LOTT
1977). These included a vast amount of
synonyms. Recent compilations of accepted
species for the family list between 1,431 species
in 124 genera (H
UNT
2006) and 1,896 species in
127 genera (A
NDERSON
2001, 2005). For our
database,we used a slightly updated version of
the “New Cactus Lexicon” species list (Hunt,
pers.comm.). This list includes a few additional
names compared to the “New Cactus Lexicon.
Distribution maps are presented in this volume
for only 1,416 species, since some species on
the original list are now regarded as synonyms
in our current database and since the natural
range of some widely naturalized taxa is insuf-
ficiently known (e.g.,Opuntia ficus-indica). In-
fraspecific taxa are not considered and are all
included in the respective species distribution
maps.
Infrafamilial classification follows the tribes
and subfamilies of N
YFFELER
& E
GGLI
(2010b),
with minor modifications for the epiphytic Ly-
manbensonieae based on the results of K
O
-
ROTKOVA
& al. 2010 (cf. Figs. 24–25).
For our analyses, we used additional data re-
garding pollination syndromes (Schlumpber-
30
© Schumannia 7 2015
4 Mapping the diversity of cacti
Jens Mutke, Kirsten Burstedde, Jan Laurens Geffert, Andrea Miebach, M. Daud Rafiqpoor,
Anke Stein & Wilhelm Barthlott
Fig. 32: Comparison of the diversity maps of Rhipsalinae from BARTHLOTT (1983) and Rhipsalideae from this work. The basic outline of the diversity
pattern was already published in 1983 based on a very limited database.
Abb. 32: Vergleich der Diversitätskarten der Rhipsalinae aus BARTHLOTT (1983) und Rhipsalideae aus dieser Arbeit. Das Grundmuster der Diversitäts-
verteilung wurde schon 1983 basierend auf relativ wenigen Daten erkannt.
lie im Zentrum des Interesses einer ganzenAn-
zahl von Fachbotanikern, aber noch mehr von
Pflanzenliebhabern (siehe Kap. 1) steht: Es liegt
eine beinahe unüberschaubare Fülle von pu-
blizierten Daten zu Fundorten in Fachpublika-
tionen vor, vorbildhaft sei “Mapping the Cacti
of Mexico“ (HERNÁNDEZ & GÓMEZ-HINOSTROSA
2011) genannt. Zudem liegen für beinahe alle
größeren Gattungen moderne Revisionen und
taxonomische Bearbeitungen bis hin zu mo-
dernen Gesamtbearbeitungen der Familie
(HUNT 2006) vor.Darüber hinaus werden in den
zahlreichen nationalen Fachzeitschriften (z. B.
in der Bundesrepublik Deutschland „Kakteen
und andere Sukkulenten“ und den USA „Ca-
ctus and Succulent Journal“) beinahe monat-
lich ergänzende Fundortdaten publiziert. Es soll
aber angemerkt werden, dass die Datenlage im
Detail doch heterogen ist. Gattungen, die kei-
nen hohen Sammlerwert besitzen (z. B. Opun-
tia), sind schlechter erfasst als ausgesprochene
Liebhaber-Gruppen (z. B. Mammillaria). Viel-
leicht eher politisch bedingt ist die Datenlage
für unterschiedliche geographische Regionen
ebenfalls heterogen: Südostbrasilien und Me-
xiko sind hervorragend bearbeitet,für Kuba ist
die Datenlage eher spärlich.
In noch höherem Maße gilt dies für die Erstel-
lung der Diversitätskarten, bei denen sich klei-
nere Fehler innerhalb der Arten-Arealkarten
der erfassten Arten aufheben. Zum Vergleich
haben wir in Abb. 32 unsere, auf einer relativ
engen Datenbasis beruhende Diversitätskarte
der Rhipsalideen von 1983 der jetzt erarbeite-
ten Karte gegenübergestellt. Wenn man die
durch die unterschiedliche Projektion beding-
ten verschiedenen Umrisslinien der Kontinen-
te herausrechnet, sind die Karten beinahe
deckungsgleich.Insofern ist voraussehbar, dass
es z. B. an der Biodiversitätskarte der gesamten
Familie (Karte 7) auch bei sich zunehmend ver-
besserter Datenlage in den nächsten Jahrzehn-
ten kaum eine Änderung mehr ergeben wird.
Zusammenfassend lässt sich feststellen, dass
die Familie der Cactaceae durch die vorlie-
genden publizierten Daten ein herausragendes
Beispiel für die Analyse der Biogeographie
und Biodiversität einer größeren Pflanzenfa-
milie überhaupt darstellen. Es gibt wohl keine
zweite Familie entsprechender Größe inner-
halb des ganzen Pflanzenreiches,die eine ver-
gleichbare Analyse erlauben würde.
36
© Schumannia 7 2015
1 - 2
3 - 5
6-12
13 - 22
23 - 73
© Barthlott et al. 2013
Diversity centres of Cactaceae
Species per 2500 km²
Map 8
1500 km
(defined as the top 5%
most species rich areas)
94
44
40
27
17
Mammillaria
Echinocereus
Coryphantha
Opuntia
Cylindropuntia
Species rich genera:
367 species, 43 genera
Chihuahua centre
28
10
6
6
6
Mammillaria
Opuntia
Ferocactus
Pachycereus
Selenicereus
Species rich genera:
107 species, 27 genera
PueblD-Oaxaca centre
Jalisco centre
6
5
4
Mammillaria
Stenocereus
Opuntia
Species rich genera:
35 species, 17 genera
6
5
4
3
3
3
Mammillaria
Echinocereus
Ferocactus
Cylindropuntia
Opuntia
Stenocereus
Species rich genera:
33 species, 13 genera
Sonora-Sinaloan centre
16
8
7
5
5
5
Melocactus
Pilosocereus
Rhipsalis
Arrojadoa
Micranthocereus
Pereskia
Species rich genera:
74 species, 23 genera
Caatinga centre
24
5
3
3
Rhipsalis
Schlumbergera
Lepismium
Pilosocereus
Species rich genera:
47 species, 13 genera
Mata Atlantica centre
59
28
23
19
14
Echinopsis
Rebutia
Parodia
Gymnocalycium
Cleistocactus
Species rich genera:
214 species, 37 genera
Southern Central Andes centre
Map 8: Diversity centres of Cactaceae.
Karte 8: Diversitätszentren der Cactaceae (definiert als die oberen 5 % artenreichsten Gebiete; Arten pro 2500 km²; species rich genera = artenreiche Gattungen).
5.1 General overview
Except for the high latitude boreal forests and
Tundra vegetation of North America and the
temperate rain forests of southern Chile, at
least some cactus species can be found any-
where in theAmericas (Map 7). Rhispsalis bac-
cifera is the only species naturally found also in
the Old World, ranging from tropical West
Africa via Madagascar,Mauritius,and Réunion
to Sri Lanka.
Highest species richness of cacti (≥ 23 species
per 2,500 km², the 5% most species rich areas;
Maps 8 & 9) can be found in seven distinct cen-
tres in Mexico, Brazil, Argentina, and Bolivia.
At the genus level, additional centres are located
in Peru and in northern Venezuela (Map 10)—
these are covered more in detail in chapter 5.6.
The four North American centres of high
species richness in Mexico and the southern
USA are located in dry ecoregions (Table 1,
Map 11): 1) the Chihuahua and the Meseta
Central Matorral,2) the Puebla-Oaxaca centre
with a diversity of different climates and habi-
tats, as well as two minor areas 3) near the Pa-
cific coast of Jalisco (Jalisco centre), and 4) at
the border of the southern Sonora desert to the
Sinaloan dry forests (Sonora-Sinaloan centre).
In South America, there are three main cen-
tres of cactus species richness in 1) the south-
ern central Andes in Bolivia and northernAr-
gentina, 2) the Caatinga, and 3) the coastal for-
est area of south-east Brazil.The latter centre
is mainly dominated by epiphytic species of the
Rhipsalideae (compare Table 2, Map 12).
Intermediate species richness can be found all
over south-east Brazil, which is linked via a cor-
ridor of intermediate species richness in
Uruguay and Paraguay to the Bolivian centre
of diversity. Coastal Peru and parts of the cen-
tral Andean dry valleys show intermediate
species richness, but an especially high con-
centration of species with extremely restricted
distribution ranges. Northern Venezuela and
most parts of the Caribbean also show inter-
mediate levels of species richness.
Low species richness (≤ 5 species per 2,500
km²) occur in large parts of the Amazon Basin,
many fire-prone habitats, e.g., of the Brazilian
Cerrado, the Llanos Savannah of Colombia
and Venezuela, Mediterranean climate areas in
California and Chile,and in the temperate east-
ern USA.
5.2 Centres of diversity
For the delineation of the centres of cactus
species richness (Map 8,Tables 1 & 2), we used
the top 5% areas with highest species numbers
(≥ 23 species per 2,500 km²). To qualify as one
of the centres listed below, at least four adja-
cent grid cells of 50 x 50 km² have to fulfil this
criterion.We distinguish seven diversity centres.
The four north/central American centres
Chihuahua centre: The Mexican centre of di-
versity with the largest area and by far the high-
est species numbers is the large complex of
deserts and xeric shrublands of the Chihuahua
desert, including the Mexican Meseta Central
Matorral (compare Table 1). It includes parts of
the north-eastern Sonora desert as well. High-
est species richness can be found in the south-
eastern part of the centre with a diverse mosaic
of Matorral and, e.g., the Sierra Madre Orien-
tal Pine-Oak Forests. Map 11 shows the fine
scale patterns of species richness within the
Mexican centres in smaller grid cells of 10 x 10
km.The centre is characterized especially by a
high diversity of globular species of the tribe
Cacteae and is the main centre of species rich-
ness of the Opuntioideae. Most other tribes are
absent or poorly represented. The growth
forms of shrubby and arborescent cacti also
have their centres of species richness in the
Chihuahua, whereas columnar cacti are almost
absent.
Puebla-Oaxaca centre: This Mexican centre
mainly includes theTehuacán-Cuicatlán valley.
It is geographically isolated from the nearby
and much larger Chihuahua centre by theTrans
-
Mexican volcanic mountain belt. Its topogra-
phic diversity (geodiversity in a wider sense)
results in a variety of vegetation types such as
tropical dry forests, xeric shrublands, thorn
shrubs,and deserts.The Puebla-Oaxaca centre
has the highest concentration of columnar
species of the tribe Cacteae in Mexico.In con-
trast to the Chihuahua centre, this centre is
home to a high number of cacti pollinated by
bats, most of them columnar. The mean range
size of the species occurring in this region is much
smaller compared to the Chihuahua centre. Many
of the species are restricted to this region.
Sonora-Sinaloan centre: This centre comprises
a small area of high species richness at the
southern transition of the Sonora desert to the
Sinaloan dry forest dominated by deciduous
thorn forest. The species rich north-eastern
part of the Sonora desert, in contrast, is in-
cluded in our larger Chihuahua centre (see
above). Unlike the situation in those northern
parts of the Sonoran desert, frost is rare in the
southern Sonora-Sinaloan centre. The region
is characterised by a mixture of temperate and
tropical species.The growth forms of cacti pres-
ent in the southern Sonora include globose
species (e.g. Mammillaria,Ferocactus) and co-
lumnar species (e.g. Stenocereus) of the Cacte-
ae, columnar species of the Phyllocacteae sub-
tribus Echinocereinae and shrubby Opuntia.
Jalisco centre: This small centre of high cactus
diversity at the pacific coast of the Mexican state
Jalisco has a more humid climate compared to
the other northern diversity centres resulting in
tropical dry forest vegetation. As a result, this
centre is home not only to globular Mammilaria
species and abundant columnar and arborescent
cacti like Stenocereus,Cephalocereus (all Cac-
teae), and Opuntia, but also epiphytic species of
Epiphyllum and Selenicereus.
The three South American centres
Southern central Andes centre: The largest
South American centre of diversity also har-
bours the highest species number in South
America and is characterized by the highest
phylogenetic and morphological diversity. 10
out of the 11 tribes of cacti accepted here oc-
cur in the southern central Andes centre.With
eight tribes occurring per 2,500 km² grid cell in
large parts of this centre,this is twice the num-
ber found in most parts of the Chihuahua cen-
tre. The centre is located in the Semiarid and
arid valleys of central and southern Bolivia and
northernArgentina. In the northern part of the
37
© Schumannia 7 2015
5 Patterns of diversity and endemism
Jens Mutke, Kirsten Burstedde, Jan Laurens Geffert, Andrea Miebach,
M. Daud Rafiqpoor, Anke Stein & Wilhelm Barthlott
39
© Schumannia 7 2015
Map 10: Generic diversity centres of Cactaceae (highlighting the 5% most genus rich areas, compare map 26)
Karte 10: Diversitätszentren der Cactaceae, Gattungen (definiert als die oberen 5 % gattungsreichsten Gebiete; Arten pro 2500 km²).
1500 km
©Barthlott et al. 2013
Diversity centres of Cactaceae: genera
Genera per 2500 km²
1 - 2
3 - 5
6 - 8
9 - 12
13 - 22
Map 10
(defined as the top 5% most JHQXV rich areas)
centre, original vegetation comprises decidu-
ous forests with scattered naturally forest free
steep slopes with rock outcrops. In the south,
in the prepuna ecoregion,Andean shrublands
and semideserts are found. This centre har-
bours the highest number of globular cacti in
South America, but is also a centre of colum-
nar cacti. It is the only South American region
with significant numbers of cushion forming
cacti. In addition to mainly bee-pollinated
species,it has a considerable number of sphin-
gophilous species. Especially the western An-
dean part of the Bolivian province Tarija and
neighbouring areas of Salta and Jujuy in north-
ern Argentina are extremely diverse when
looking at fine scale patterns of species richness
in 10 x 10 km grid cells (Map 12).
Caatinga centre: This Brazilian centre is lo-
cated in the southern part of the Caatinga
ecoregion and the Campos Rupestres linked to
mountain ranges of the Serra Espinhaco and
Chapada Diamantina.While the dominant veg-
etation types of the Caatinga region are xeric
shrubland and thorn forest, highest species di-
versity of cacti can be found in azonal habitat
islands such as rock outcrops (“inselbergs”) or
nutrient poor sandy soils.Although species di-
versity is much lower compared to the Chi-
huahua or the southern central Andes centre,
the Caatinga centre is home to a high number
of genera—especially of the tribe Cereeae.Ac-
cordingly, this centre is characterized by only
moderate species numbers of globose cacti,but
a high diversity of columnar species. The Caa-
tinga centre has the highest numbers of cacti
pollinated by bats and birds and only low num-
bers of bee-pollinated species.
Mata Atlântica centre: This centre in south-
east Brazil is ecologically quite different from
all the others, as it is characterized by humid,
evergreen rain forest.Important taxa here are
the arborescent species Pereskia grandifolia,
and particularly a large number of epiphytic
species of Rhipsalis and related genera. Some
other species in this centre grow in isolated
azonal habitats such as coastal sand dunes or
rock outcrops (“inselbergs”, Figs.5 & 6) (mostly
Cereeae, same genera as in the Caatinga cen-
tre). Only small patches of the original vegeta-
tion of the south-east BrazilAtlantic rainforest
are left today.
40
© Schumannia 7 2015
Centre Chihuahua Puebla-Oaxaca Sonora-Sinaloan Jalisco
area size (km²) 1,020,000 47,500 12,500 12,500
vegetation deserts and xeric tropical dry forests, transition of Sonoran tropical dry forest
shrublands deserts and xeric desert and Sinaloan
shrublands dry forests
main WWF Chihuahuan desert (NA1303); Tehuacán valley Sonoran-Sinaloan Jalisco dry forests
ecoregions Central Mexican matorral matorral (NT1316), transition subtropical (NT0217)
(NA1302); Sierra Madre Balsas dry forests dry forest (NA0201)
Oriental pine-oak forests (NT0205)
(NA0303)
dominating Cacteae Cacteae Phyllocacteae – Phyllocacteae –
taxa Echinocereinae, Cacteae, Echinocereinae &
Opuntia Hylocereinae, Cacteae,
Opuntia
most species globular globular globular globular, epiphytic
rich growth form
dominating bee pollination bee pollination bee pollination bee pollination
pollination syndrome
Table 1: The North/Central American diversity centres
Centre Southern Central Andes Caatinga Mata Atlântica
area size (km²) 297,500 157,500 40,000
vegetation inter-Andean dry forests and xeric shrubland and thorn atlantic rain forests,coastal
shrublands with steep rocky forest with rock outcrops sand dunes,granit rock
slopes outcrops
main WWF ecoregions Bolivian montane dry forests Caatinga (NT1304),Campos Serra do Mar coastal forests
(NT0206), central Andean puna Rupestres montane savanna (NT0160); Bahia coastal
(NT1002), southern Andean (NT0703),Atlantic dry forests forests (NT0103)
Yungas (NT0165) (NT0202)
dominating taxa Trichocereinae Cereinae Rhipsalideae
most species rich growth form globular columnar epiphytic
dominating pollination syndrome bee pollination bird pollination, bat pollination bee pollination
Table 2: The South American diversity centres
In addition to those seven centres presented
above, very small areas in Rio Grande do Sul
(south-east Brazil) and in south-east Paraguay
reach more than 23 species per 2,50 0 km². Es-
pecially south-east Paraguay is an important
area with high genus diversity (Map 10, see
chapter 5.6 for a more detailed discussion of di-
versity patterns at higher taxonomic level).
Even though the Atacama Desert and the
western slopes of the Andes in Peru harbour
only moderate species diversity, they are home
to a) a high diversity of species with extremely
small distribution ranges (compare chapter 5.3)
and b) intermediate to high numbers of genera
(compare chapter 5.6).The Andes of northern
Peru are one of the few regions were at least 7
out of the 11 tribes of the cacti occur (Map 27).
Additional centres of high taxonomic diversity
are the coastal mountains of northern Vene-
zuela with high numbers of genera and tribes,
and parts of the Greater Antilles, especially
south-east Cuba and the islands of Hispaniola
and Puerto Rico (Maps 26 & 27).
5.3 Range-sizes of Cacti
Most species of cacti have extremely small dis-
tribution ranges. As a comparison: whereas
“Birdlife International” uses a threshold of
50,000 km² range size for the definition of en-
demic bird areas, almost half of the cactus
species have range sizes smaller than 10,000
km² (Map 13). More than 300 species have
ranges even smaller than 2,000 km². Examples
of species with extremely small ranges, re-
stricted to one or a few populations, are Dis-
cocactus horstii in Minas Gerais (Brazil),
Aztekium ritteri and Geohintonia mexicana in
the Sierra Madre Oriental in Nuevo Leon
(Mexico),and Cereus insularis on the islands of
Fernando de Noronha (Brazil) (compare Figs.
35–37).
Looking at the distribution patterns of the
range-restricted species (“narrow endemics”
with range sizes smaller than 10,000 km², Map
13), only some of them occur in one of the
seven diversity centres listed above. Narrow
endemic species are found only in the southern
central Andes centre (e.g. species of Cleisto-
cactus,Parodia,Rebutia), the Puebla-Oaxaca
centre (many Mammillaria species) as well as
in the (south-)eastern parts of the Chihuahua
centre (many species of Mammillaria,Thelo-
cactus,Turbinicarpus, and others). Additional
‘centres’ of range-restricted cacti are parts of
the coastal Atacama Desert and the western
slopes of theAndes,especially in northern Peru
(e.g. Espostoa,Haageocereus,Matucana, and
many smaller genera), and the northern parts
of the Chilean Matorral (mainly Copiapoa,
Eriosyce). Small numbers of range-restricted
species occur all over south-east Brazil, north-
ern and central Argentina and Chile, and large
areas of Mexico and Costa Rica.
At least some widespread species occur in al-
most all parts of the overall distribution range
of the Cactaceae.As a result, the median range
sizes for the species of a given place is higher
than 100,000 km² in most grid cells (Map 14)—
even though most cactus species have distri-
bution ranges of less than 10,000 km²! How-
ever, those 50% species with small ranges are
scattered over many places and only few of
them co-occur in one place.
The species with the largest range size within
the Cactaceae is the tricontinental Rhipsalis
baccifera. Also within the Americas, Rhipsalis
baccifera has the largest distribution range of
all cacti species. Many species with very large
range sizes are either epiphytic Rhipsalideae
or Hylocereinae (e.g., Hylocereus,Lepismium)
or shrubby Opuntioideae. Nevertheless, even
within the epiphytic growth form, most species
of the genera Weberocereus in Central Amer-
ica or Schlumbergera in south-east Brazil have
very small known distribution ranges. In the
41
© Schumannia 7 2015
250 km
Species per 100 km²
Diversity centres in Central America
1 - 10
11 - 23
24 - 28
29 - 35
36 - 40
41 - 50
51 - 60
61 - 73
Diversity centres
Map 11
©Barthlott et al. 2013
(defined as the top 5% most species rich areas)
Map 11: Diversity centres in Central America.
Karte 11: Diversitätszentren in MIttelamerika (definiert als die
oberen 5 % artenreichsten Gebiete; Arten pro 100 km²).
500 km
Diversity centres
in South America
Species per 100 km²
1 - 10
11 - 23
24 - 28
29 - 35
36 - 40
41 - 45
46 - 50
51 - 73
Diversity centres
Map 12
©Barthlott et al. 2013
(defined as the top
5% most species
rich areas)
Map 12: Diversity centres in South America.
Karte 12: Diversitätszentren in Südamerika (definiert als die
oberen 5 % artenreichsten Gebiete; Arten pro 100 km²).
42
© Schumannia 7 2015
1500 km
Range-restricted species
('endemics')
Species per 2500 k
with ranges under 10,000 km²
©Barthlott et al. 2013
1
2
3 - 4
5 - 6
7 - 8
9 - 10
11 - 15
16 - 25
Map 13
Map 13: Range-restricted species (‘endemics’).
Karte 13: Arten mit kleinem Areal (‚Endemiten’; Arten pro 2500 km² mit Arealen kleiner als 10.000 km²).
Range-restricted species
('endemics')
Species per 2500 km²
with ranges under 10,000 km²
©
1
2
3 - 4
5 - 6
7 - 8
9 - 10
11 - 15
16 - 25
M
genus Rhipsalis, more than one third of the
species have distribution ranges smaller than
10,000 km². Looking at the largest genera of
the family, the range size distribution is very
uneven. In the large genus Mammillaria, which
is mostly restricted to Mexico and southern
USA, more than half of the species have dis-
tribution ranges smaller than 2,000 km² (2/3
less than 10,000 km²),whereas some taxa such
as M. heyderi,M. lasiacantha, or M. grahamii
are really widespread. A similar situation is
found in Parodia,where 70% of the species—
mainly in Rio Grande do Sul (Brazil) and Uru-
guay on the one hand and the southern central
Andes centre in Bolivia and Argentina on the
other hand—have range sizes smaller than
10,000 km². In contrast, most species of the
genus Opuntia are widespread, and only a few
have restricted ranges of less than 10,000 km².
Echinopsis,which as a genus is restricted main-
ly to the (southern) central Andes, has species
of all range sizes, similar to Echinocereus in
Mexico and the southern USA. Gymnocaly-
cium, which is mainly from Argentina, is an ex-
ample for a genus where most species have
very small range sizes—similar,e.g.,to Eriosyce
in Chile.
There are other genera, which as a genus have
large ranges, but include many restricted range
species. In the genus Pilosocereus, which oc-
curs from south-east Brazil to northern Mex-
ico, almost half of the species have distribution
ranges smaller than 10,000 km², and only few
have ranges of several hundred thousand km².
A somewhat similar situation can be found in
the genus Melocactus, which has many re-
stricted range species especially in south-east
Brazil but can be found even in Mexico and
the Caribbean.
5.4 Spatial distribution of growth
forms
There is a strong difference in the diversity pat-
terns of the two most species rich growth forms
within cacti: the globular and the columnar
species (Maps 15 & 16). By far the highest
species numbers of globular cacti occur in the
Chihuahua centre (almost exclusively tribe
Cacteae). Only moderate species numbers are
found in the southern central Andes centre
(mainly Cereeae subtribes Trichocereinae and
Notocacteae), and in Rio Grande do Sul
44
© Schumannia 7 2015
Fig. 33: An extraordinary life-form within the
Opuntieae: liana Tacinga braunii at its type
locality in Brazil (near Itaobim, state Minas
Gerais). Photo: W. Barthlott.
Abb. 33: Eine außergewöhnliche Lebensform
innerhalb der Opuntieae: die Liane Tacinga
braunii an ihrem Typfundort in Brasilien
(bei Itaobim, Staat Minas Gerais).
1500 km
Growth form Globular:
Species diversity (692 sp.)
Species per 2500 km²
1 - 2
3- 5
6 - 10
11 - 15
16 - 25
26 - 35
36 - 45
46 - 56
Map 15
©Barthlott et al. 2013
1500 km
Growth form Columnar:
Species diversity (205 sp.)
Species per 2500 km²
1 - 2
3- 4
5 - 6
7 - 8
9 - 10
11 - 12
13 - 14
15 - 16
Map 16
©Barthlott et al. 2013
Map 15: Growth form globular, species diversity (692 sp).
Karte 15: Wuchsform kugelig, Artendiversität (692 Arten;
Arten pro 2500 km²).
Map 16: Growth form columnar, species diversity (205 sp).
Karte 16: Wuchsform säulig, Artendiversität (205 Arten;
Arten pro 2500 km²).
46
© Schumannia 7 2015
Fig. 35: Discocactus horstii, extremely
range-restricted species (near Diamantina,
Minas Gerais, Brazil). Photo: W. Barthlott.
Abb. 35: Discocactus horstii, eine Art mit
extrem kleinem Verbreitungsgebiet
(bei Diamantina, Minas Gerais, Brasilien).
Fig. 36: Highly endemic Pelecyphora asellifor-
mis in the Mexican state San Luis Potosí. Photo:
W. Barthlott.
Abb. 36: Pelecyphora aselliformis ist im mexi-
kanischen Staat San Luis Potosí endemisch.
Fig. 37: Highly endemic Geohintonia mexicana
in Nuevo León, Mexico. Photo: W. Barthlott.
Abb. 37: Geohintonia Mexicana, endemisch in
Nuevo León, Mexiko.
Fig. 39: Cereus jamacaru, an example for an arborescent growth form
with columnar branches, with Werner Rauh (right) and Diedrich J. Supthut
(left) in the Brazilian state Bahia. Photo: W. Barthlott
Abb. 39: Ein Beispiel für eine baumartige Wuchsform mit säuligen Ästen:
Cereus jamacaru, mit Werner Rauh (rechts) und Diedrich J. Supthut (links)
im brasilianischen Staat Bahia.
Fig. 38: Micranthocereus polyanthus in a field of white quartz sand near
Caetité (Bahia, Brazil). Photo: W. Barthlott.
Abb. 38: Micranthocereus polyanthus in weißem Quarzsand bei Caetité
(Bahia, Brasilien).
pischen Trockenwaldvegetation. In der Folge
ist dieses Zentrum nicht nur Heimat kugeliger
Mammillaria-Arten und häufiger säuliger und
baumförmiger Kakteen wie Stenocereus, Ce-
phalocereus (alle Cacteae) und Opuntia, son-
dern auch von epiphytischen Arten der Gat-
tungen Epiphyllum und Selenicereus.
Die drei südamerikanischen Zentren
Südliches Zentralanden-Zentrum: Das größte
südamerikanische Diversitätszentrum beher-
bergt auch die höchste Artenanzahl in Süd-
amerika und ist durch die höchste phylo-
genetische und morphologische Diversität ge-
kennzeichnet. Zehn der hier akzeptierten elf
Kakteen-Triben kommen in dem südlichen
Zentralanden-Zentrum vor.Mit in großenTei-
len dieses Zentrums acht vorkommenden Tri-
ben pro 2.500-km²-Rasterfeld ist die Anzahl
doppelt so groß wie in den meisten Gebieten
des Chihuahua-Zentrums. Das Zentrum be-
findet sich in den semiariden und aridenTälern
des zentralen und südlichen Boliviens sowie
des nördlichen Argentiniens. Im nördlichen
Teil des Zentrums umfasst die Vegetation laub-
werfende Wälder mit dispersen, natürlich
waldfreien Steilhängen und felsigen Lichtun-
gen. Im Süden, der Präpuna-Ökoregion, domi-
nieren Andenbuschländer und Halbwüsten.
Dieses Zentrum beherbergt die höchste An-
zahl kugeliger Kakteen in Südamerika,ist aber
auch ein Zentrum der Säulenkakteen. Es ist
die einzige südamerikanische Region mit einer
signifikanten Anzahl polsterbildender Kak-
teen. Zusätzlich zu den vorwiegend bienen-
bestäubten Arten hat es eine beachtliche An-
zahl schwärmerblütiger Arten. Besonders der
westliche Teil der bolivianischen Provinz Ta-
rija und die benachbarten Gebiete Saltas und
Jujuys in Nordargentinien sind extrem vielfäl-
tig, wenn man den Artenreichtum in einer fei-
nen Skala von 10 x 10 km-Rasterzellen be-
trachtet (Karte 12).
Caatinga-Zentrum: Dieses brasilianische Zen-
trum liegt im südlichen Teil der Caatinga-Öko-
region und den Campos Rupestres, die an die
Bergketten der Serra Espinhaço und Chapada
Diamantina anknüpfen. Während trockenes
Buschland und Dornwald die vorherrschenden
Vegetationstypen der Caatinga-Region sind, ist
die höchste Kakteenartendiversität in azona-
len Habitaten wie Felskuppen (sog. Inselberge)
oder auf nährstoffarmen sandigen Böden zu
finden. Obwohl die Artenvielfalt im Vergleich
zu dem Chihuahua- oder südlichem Zentra-
landen-Zentrum viel niedriger ist, kommt hier
eine hohe Anzahl von Gattungen – besonders
der Tribus Cereeae – vor.Dementsprechend ist
dieses Zentrum durch eine mittlereArtenzahl
kugeliger Kakteen, aber eine hohe Diversität
säuliger Arten charakterisiert. Das Caatinga-
Zentrum hat die höchsten Zahlen von durch
Fledermäuse und Vögel bestäubtenArten und
nur geringe Zahlen bienenbestäubter Arten.
Mata Atlântica-Zentrum: Dieses Zentrum in
Südostbrasilien ist von allen anderen Zentren
ökologisch recht deutlich unterschieden,da es
durch feuchten, immergrünen Regenwald ge-
kennzeichnet ist. Wichtige Taxa sind hier die
baumförmige Art Pereskia grandifolia und be-
sonders eine hohe Anzahl epiphytischerArten
von Rhipsalis und verwandten Gattungen. Ei-
nige andere Arten dieses Zentrums wachsen
in isolierten azonalen Habitaten wie Küsten-
dünen oder Felskuppen (Inselberge, Abb. 5 &
6) (meist Cereeae,die gleichen Gattungen wie
im Caatinga-Zentrum). Nur kleine Flecken der
ursprünglichen Vegetation des südostbrasilia-
nischen Regenwaldes sind heute noch übrig.
Außer den sieben,oben vorgestellten Zentren
erreichen sehr kleine Gebiete in Rio Grande
56
© Schumannia 7 2015
Fig. 43: Growth forms of cacti plotted on the phylogenetic tree of Fig. 25 (comp. the generic names).
Abb. 43: Wuchsformen der Kakteeen, in den phylogenetischen Stammbaum der Abb. 25 übertragen
(vgl. dort die Gattungsnamen). [Legende von oben nach unten: kugelig, säulig, säulig-baumförmig,
strauchig, baumförmig, epiphytisch, polsterförmig.]
meter große Verbreitungsgebiete. Eine etwas
ähnliche Situation ist in der Gattung Meloca-
ctus zu finden, die viele kleinräumig verbreitete
Arten besonders in Südostbrasilien hat, aber
sogar in Mexiko und der Karibik vorkommt.
5.4 Räumliche Verbreitung der
Wuchsformen
Die Verbreitungsmuster der zwei artenreich-
sten Wuchsformen innerhalb der Kakteen (die
kugeligen und die säuligenArten) zeigen deut-
liche Unterschiede (Karten 15 & 16).Bei wei-
tem die höchsten Artenzahlen der Kugelkak-
teen kommen im Chihuahua-Zentrum vor
(fast ausschließlich der Tribus Cacteae). Nur
mittlere Artenzahlen findet man im südlichen
Zentralanden-Zentrum (vorwiegend Cereeae
der Subtriben Trichocereinae und Notoca-
cteae) und in Rio Grande do Sul (Südost-Bra-
silien). Geringe Artenzahlen findet man in der
Caatinga (vorwiegend Melocactus). Im Gegen-
satz dazu gibt es fast keine Säulenkakteen im
zentralenTeil des Chihuahua-Zentrums; deren
höchste Diversität ist in der Caatinga zu finden
(besonders Cereeae Subtribus Cereinae,Abb.
39), im südlichen Zentralanden-Zentrum (be-
sonders Cereeae Subtribus Trichocereinae)
und in der Atacama-Wüste und den westlichen
Hängen der Anden in Peru (Cereeae Subtri-
bus Trichocereinae). Das kleine Puebla-Oa-
xaca-Zentrum in Mexiko hat, im Gegensatz zu
dem benachbarten Chihuahua-Zentrum,eben-
falls eine signifikante Anzahl säuliger Kakteen,
hauptsächlich aus der Phyllocacteae Subtribus
Echinocereinae.
Die strauchigen und baumförmigen Arten von
Pereskia und den Opuntioideae (Karten 18 &
19,Abb. 40) weisen ihre höchstenArtenzahlen
im Chihuahua-Zentrum und dem Puebla-Oa-
xaca-Zentrum auf, und nur eine geringe Ar-
tenvielfalt in Südamerika.
Epiphytische Kakteen haben, verglichen mit
dem Rest der Familie, deutlich verschiedene
ökologische Präferenzen (Karte 20). Die epi-
phytischen Rhipsalideae (Abb.41, vorwiegend
südamerikanisch, besonders Südost-Brasilien)
und Hylocereinae (vorwiegend Mittelamerika)
sind am artenreichsten in den Tieflandregen-
wäldern der Mata Atlântica und Mittelameri-
kas. Jedoch kommen nur wenige Arten beider
Triben (z. B. Disocactus amazonicus und Stro-
phocactus witii) in dem großen Regenwaldge-
biet des Amazonasbeckens vor – vorwiegend
im westlichen Amazonien.
Polsterbildende Kakteen (Abb. 42, hauptsäch-
lich Phyllocacteae-Echinocereinae und -Cylin-
dropuntieae, sowie Maihuenia) sind an speziel-
len Standorten mit Frost oder stark trocknen-
den Winden, wie in den Hochanden Süd-
62
© Schumannia 7 2015
Fig. 45: Convergent evolution of red hummingbird flowers in South and North America in unrelated
genera of small globular cacti: Mammillaria poselgeri from Mexico (Baja California) (left), Matucana
formosa from N-Peru (right). It is almost typical that a different flower syndrome within the predo-
minantly entomophilous genus Mammillaria led to creation of a separate genus (Cochemiea posel-
geri) in the past. Photos: W. Rauh.
Abb. 45: Konvergente Entstehung roter Kolibriblumen in Süd- und Nordamerika bei nicht verwand-
ten Gattungen kleiner Kugelkakteen: links Mammillaria poselgeri aus Mexiko (Baja California),
rechts Matucana formosa aus N-Peru. Es ist beinahe typisch, dass ein abweichendes Blütensyndrom
innerhalb der vorwiegend entomophilen Gattung Mammillaria früher zur Abtrennung als eigene
Gattung (Cochemiea poselgeri) führte.
Fig. 46: Convergent evolution of night-blooming, white, hawkmoth pollinated flowers with extremely
long flower tubes in not related species: the dwarf columnar cactus Echinopsis mirabilis from Argen-
tina (left), Epiphyllum phyllanthus (right), a widespread (Mexico to N-Argentina) rainforest epiphyte.
E. phyllanthus is one of the extremely spingophilous species with a flower tube of up to about 20 cm
length and can probably be pollinated only by the moth Cocytius cruentus. Photos: W. Barthlott.
Abb. 46: Konvergente Entstehung nachtblühender weißer Schwärmerblumen mit extrem langen Blüten-
röhren bei nicht verwandten Arten: links der zwergige Säulenkaktus Echinopsis mirabilis aus Argenti-
nien, rechts Epiphyllum phyllanthus, ein weitverbreiteter (Mexiko bis Nordargentinien) Regenwald-
Epiphyt. E. phyllanthus ist einer der extrem spingophilen Arten mit einer Blütenröhre von bis über
20 cm Länge und kann möglicherweise nur von dem Schwärmer Cocytius cruentus bestäubt werden.
6.1 Introduction
As cacti represent popular plants of great or-
namental value,for a long time they have been
the subject of conservationist concerns (e.g.,
B
ENSON
1982, O
LDFIELD
1984a, b). Due to a rel-
atively better knowledge of many species, but
also as a consequence of early overexploita-
tion for horticulutural uses, cacti, since the
1970s, were among the first plants to become
protected under international law. The whole
family Cactaceae is included in the Appendices
I and II of the “Convention on international
trade in endangered species of wild fauna and
flora” (CITES). This protection was especially
related to the international trade in endan-
gered species and to high demands in the or-
namental plant market, but it did not take
threats from other sources into account.With
increasing global conservation efforts aiming
at the establishment of a more effective pro-
tected area network, numerous species of Cac-
taceae have also benefitted from in-situ con-
servation measures. Still, the distribution
ranges of 19% of the species ranges do not
overlap with any protected area and 40% of
the species ranges are not covered by protected
areas of the IUCN categories I to IV. Most of
these have distribution ranges smaller than
50,000 km². Clearly, the representation within
a protected area does not automatically guar-
antee effective conservation,and the existence
of a species outside protected areas is not in-
dicating imminent threat.
The geographical assessment of cacti pre-
sented here can be a starting point for a more
informed evaluation of their threat and con-
servation status. Clearly, many threats to bio-
diversity in general, and to cacti in particular,
have been dynamically unfolding and chang-
ing over the last decades. Still relevant treat-
ments of cacti conservation have been pro-
vided by T
AYLOR
& al. (1997) and T
AYLOR
&
Z
APPI
(2004), which, however can be comple-
mented by integral and systematic assess-
ments.The systematic discussion of threats to
cacti according to modern threat classification
approaches (S
ALAFSKY
& al. 2008) is a first step,
which has also been adopted in the course of
the elaboration of the IUCN Red List (IUCN
2012). Additionally, spatial analyses allow for
a certain differentiation of conservation prob-
lems in the different regions of the Cactaceae
range. In the future, these spatial analyses can
be refined further, e.g. including detailed gap
analyses.This is urgently required as the IUCN
Red List is far from being complete and up to
date.
The IUCN Red List still shows a strong bias
towards a few well investigated countries such
as Brazil and Mexico. About 48% of all cacti
species,which have been assigned to one of the
Red List categories Vulnerable, Endangered,
Critically endangered, Extinct in the wild or
Extinct, are Mexican taxa,and 49% are Brazil-
ian. The analysis also might underestimate the
threat status of species living outside arid re-
gions. According to the current Red List
(IUCN 2012), about 60% of the most endan-
gered species (categories as above) would live
in deserts or rocky areas, and only about 12%
are forest taxa. However, in the case of many
epiphyte species from forest habitats (e.g., in
the very highly fragmented and deforested
Mata Atlantica region, Brazil) it seems likely
that the conservation status of many cactus
species is poor. I
BISCH
& al. (2000) indicated
that a few Bolivian epiphytic cacti would be at
least vulnerable to extinction, and the situation
is likely to have worsened.According to IUCN
(2012) however, the only epiphyte species that
are classified as vulnerable or more critical are
Rhipsalis cereoides,R. crispata,R. pilocarpa,
R. russellii, and Schlumbergera kautskyi (all
from Brazil).Intense monitoring efforts are re-
quired to detect significant population declines.
These are often affordable only for rich coun-
tries, where even single populations and vari-
eties are carefully observed (e.g., compare iso-
lated populations in the Sonoran desert of
south-central Arizona of Nichol’s turk’s head
cactus Echinocactus horizonthalonius var.
nicholii with a dramatic decline from 1995 to
2008 (M
C
I
NTOSH
& al. 2011).
In the following we discuss the principal threats
to cacti adopting the standard classification by
S
ALAFSKY
& al. (20 07), which is also applied by
IUCN (2012).
68
© Schumannia 7 2015
6 Conservation and hotspots:
cactus diversity in change
Pierre L. Ibisch & Jens Mutke
Fig. 51: Shield inselberg in Bahia, Brazil, with Melocactus ferreophilus; agricultural not usable relict
habitat in a destroyed landscape. Photo: W. Barthlott.
Fig. 51: Schildinselberg in Bahia, Brasilien, mit Melocactus ferreophilus; ein landwirtschaftlich nicht
nutzbarer Relikt-Standort inmitten einer zerstörten Landschaft.
6.2 Threats to Cactaceae
Residential and commercial development, hu-
man settlements or other nonagricultural land
uses with a substantial footprint
Many fast growing cities exist in (sub)tropical
arid areas, where agriculture-related land use
change tends to be less important. With in-
creasing human population growth, develop-
ment, and urbanization, area consumption for
residential and commercial infrastructure be-
comes ever more relevant also for cacti. An
example is Cleistocactus acanthurus, which is
threatened by the development of Lima,
Chosica and satellite cities (M
OTTRAM
1998).In
Latin America, a significant number of large
cities are located in more or less narrow arid
valleys with relevant occurrences of cacti. For
example,in Bolivia, the rapid growth of the city
of Cochabamba and satellite settlements drives
the conversion of habitats both of the bottom
and the slopes of the valley system affecting
cacti populations of Cleistocactus parviflorus,
Echinopsis obrepanda,Parodia schwebsiana
among others (previously even benefitted by
deforestation, I
BISCH
2004b) (Fig. 55).In an as-
sessment of the Cactaceae of the Querétano
semi-desert it was concluded that fewer species
were threatened by residential development
than other land-use changes; however,the cor-
responding impact was considered more severe
(C
HÁVEZ
& al. 2007). While agricultural land-
use impacts mainly zonal ecosystems with
more or less fertile soils, residential develop-
ment also affects azonal sites such as rock out-
crops or steep slopes, especially in the case of
megacities suffering from decreasing space for
expansion (Figs. 51–52). Non-agricultural land
consumption must not be neglected as a prob-
lem especially for specialist plants in azonal
habitats. Currently, 14% of the cacti recorded
by IUCN (2012), which have been assigned to
one of the Red List categories Vulnerable, En-
dangered, Critically endangered, Extinct in the
wild or Extinct suffer from threats belonging to
this category.
Agriculture and aquaculture threats from
farming and ranching as a result of agricultural
expansion and intensification, including silvi-
culture, mariculture, and aquaculture
About 14% of all cacti species, which have
been assigned to one of the Red List categories
Vulnerable, Endangered, Critically endan-
gered, Extinct in the wild or Extinct, are threat-
ened by agriculture driven land-use change
(I
BISCH
& al. 2000, IUCN 2012, M
ÜLLER
2007).
For a long time, many cacti, in many regions
benefited from extensive land-use. Deforesta-
tion and the subsequent grazing in (semi-)arid
shrub-lands often led to the expansion of suit-
able habitat for species that were stress-toler-
ant and resistant to herbivory, but poor com-
petitors, including many terrestrial cacti (I
BISCH
2004a). Indeed,grazing can benefit cactus pop-
ulations (e.g.,in the case of some Mammillaria
species in Tehuacán Valley, M
ARTORELL
& P
E
-
TERS
2009). However, with increasing intensity
of grazing the degradation of ground vegeta-
tion and soils leads to severe hydric erosion
triggering loss of habitat, and the intensifica-
tion of agricultural land-use e.g. applying mas-
sive mechanical clearing, burning and irriga-
tion the elimination of cactus habitat is pro-
moted. With rapidly growing demand for
agricultural commodities and arable land, ad-
vancement of industrial agriculture even un-
der rather marginal conditions, as well as pro-
gressing desertification, land conversion is be-
coming an ever more important threat to
species of Cactaceae. This is also increasingly
reflected in reports about principal threats:ex-
cessive pasturing and exploitation of the
desert, habitat fragmentation and land-use
changes, and anthropogenic fire are increas-
ingly named as relevant conservation problems
(e.g.,B
RAILOVSKY
S
IGNORET
& H
ERNÁNDEZ
2010,
C
HÁVEZ
& al. 2007, C
LARK
-T
APIA
& al. 2005, E
M
-
MING
2005, G
OLUBOV
& al. 2009, L
EON
D
E
L
A
L
UZ
2005). In some cases, the compositional
change of plant communities is causing threats;
e.g., Opuntia humifusa, originally inhabiting
open Quercus savanna vegetation was reported
to suffer from shading by an encroaching
canopy of Quercus and Pinus, and smothering
by leaf litter (A
BELLA
& J
AEGER
2004). Af-
forestation activities can threaten habitats of
Cactaceae, such as in the case of Neoporteria
aspillagae being affected by Pinus radiata plan-
tations in Chile (N
OVOA
2002).
Energy production and mining threats from
production of nonbiological resources
Mining and extraction of rocks can very specif-
ically threaten species of Cactaceae at azonal
sites otherwise not affected by land-use changes.
For instance, this has been reported for Turbi-
69
© Schumannia 7 2015
Fig. 52: The highly mimetic Ariocarpus kotschoubeyanus (red circle) next to a flowering Proboscidea
in the Mexican state San Luis Potosí. Photo: W. Barthlott.
Abb. 52: Der hoch mimetische Ariocarpus kotschoubeyanus (roter Kreis) neben einer blühenden
Proboscidea im mexikanischen Staat San Luis Potosí.
71
© Schumannia 7 2015
1000 km
Canada: species diversity and protected areas
Species per 100 km²
M
©Barthlott et al. 2013
Protected areas
1
2
3
Map 47
©
Map 47: Canada. Species diversity and protected areas. Country area: 9.093.507 km²; 3 species (0 endemic); 2 genera (0 endemic); 0 range-restricted
species; 0 species in CITES Appendix I; 0 species in the IUCN Red List.
Karte 47: Kanada. Artendiversität und Schutzgebiete (Arten pro 100 km²). Staatsgebiet: 9.093.507 km²; 3 Arten (0 endemisch); 2 Gattungen (0 endemisch);
0 Arten mit begrenztem Areal; 0 Arten im CITES-Anhang I; 0 Arten in der IUCN-Roten-Liste.
Map 48: USA. Species diversity and protected areas. Country area: 9,476,600 km²; 173 species (32 endemic); 33 genera (1 endemic); 24 range-restricted
species; 18 species in CITES Appendix I; 6 species in the IUCN Red List.
Karte 48: USA. Artendiversität und Schutzgebiete (Arten pro 100 km²). Staatsgebiet: 9.476.600 km²; 173 Arten (32 endemisch); 33 Gattungen
(1 endemisch); 24 Arten mit begrenztem Areal; 18 Arten im CITES-Anhang I; 6 Arten in der IUCN-Roten-Liste.
1000 km
USA: species diversity and protected areas
Species per 100 km²
Map 48
1 - 5
6 - 10
11 - 15
16 - 20
21 - 25
26 - 30
31 - 40
41 - 52
©Barthlott et al. 2013
Protected areas
7.1. Subfamily: Pereskioideae
Pereskia Mill. (Maps 64–66)
17 species.Woody climbers,shrubs or trees, nor-
mally 4–5 m; stems not conspicuously succu-
lent, spiny; with broad persistent leaves. Flow-
ers rotate white, orange, red or purplish. Fruits
fleshy globose, red, yellow or black. Distribu-
tion: Caribbean, Central America, northern
Colombia,Venezuela (Guyanas,coastal regions),
northern Peru (Andes), Bolivia, Paraguay,
northern Argentina (Andes and lowlands),
Brazil to northern Uruguay (Atlantic region).
Centres of diversity: Caribbean (Haiti), Bolivia
(eastern slopes of the Andes), eastern Brazil.
Main references: L
EUENBERGER
(1986), A
N
-
DERSON
(2001), T
AYLOR
& Z
APPI
(2004), H
UNT
(2006).
7.2. Subfamily: Maihuenioideae
Maihuenia Phil. (Map 67)
2 species. Low cushion-forming, with persist-
ing leaves. Flowers rotate, white, yellow or red.
Fruits fleshy. Distribution: central Chile to cen-
tral Argentina. Main references: K
IESLING
(1999),A
NDERSON
(2001),H
OFFMANN
&W
ALTER
(2004), H
UNT
(2006).
7.3. Subfamily: Opuntioideae
Austrocylindropuntia Backeb. (Map 68)
6 species. Small to large shrubs, cylindric, with
more or less tuberous, finally deciduous leaves.
Flowers rotate,yellow, pink or red. Fruits juicy.
Distribution: Ecuador to northern Argentina
(Andes). Main references: J
ØRGENSEN
(1999),
A
NDERSON
(2001), T
AYLOR
& Z
APPI
(2004),
H
UNT
(2006).
Brasiliopuntia A. Berger (Map 69)
1 species.Lage tree up to 25 m, erect,with clus-
ters of spines. Flowers near apex of leader or
terminal segment or borne by proliferation.
Flowers yellow. Fruits solitary or clustered, glo-
bose to ovoid. Distribution: Peru, Bolivia,
northern Argentina, southern Paraguay and in
coastal regions of Brazil. Main references:K
IES
-
LING
(1999), A
NDERSON
(2001), T
AYLOR
& Z
APPI
(2004).
Consolea Lem. (Map 70)
3 species. Treelike with trunk and primary
branches cylindric, not articulated, ultimate;
segments flattened as in Opuntia. Flowers
small, diurnal. Fruits juicy, ovoid. Distribution:
Caribbean islands (mostly coastal rocks). Main
references: A
NDERSON
(2001), H
UNT
(2006).
Corynopuntia F. M. Knuth (Maps 71–72)
14 species. Dwarf caespitose opuntioid shrubs;
branches cylindric-clavate. Flowers yellow or
rose to purple. Fruits ellipsoid fleshy at first,
later dry, yellow to brownish, smooth, some-
times spiny. Distribution: from central Mexico
to southern USA. Centre of diversity: Chi-
huahuan Desert. Main references: G
UZMÁN
&
al. (2003), H
UNT
(2006), USDA & NRCS
(2008).
Cumulopuntia F. Ritter (Map 73)
5 species. Low clumps. Flowers yellow, some-
times red; young shoots with small, cylindrical,
deciduous leaves. Fruits thick-walled and
fleshy. Distribution:southern Peru,south-west-
ern Bolivia, northern Chile and north-western
Argentina. Centre of diversity: south-eastern
Bolivia. Main references: B
RAKO
& Z
ARUCCHI
(1993), A
NDERSON
(2001), H
UNT
(2006).
Cylindropuntia (Engelm.) F. M. Knuth (Maps
74–79)
33 species. Shrubby or treelike, branched. Flow-
ers variously coloured. Fruits fleshy or dry. Dis-
tribution: south-western USA to Mexico,
Caribbean islands. Centre of diversity: north-
western Mexico to south-western USA (south-
ern California to Arizona). Main references:
A
NDERSON
(2001),G
UZMÁN
& al. (2003), USDA
& NRCS (2008).
Grusonia Rchb.f. ex Britton & Rose (Map 80)
1 species. Low shrubs. Flowers variously
coloured.Fruits cylindric,various,fleshy or dry.
Distribution: northern Mexico (Coahuila).
Main references: G
ONZALEZ
E
LIZONDO
& al.
(1991), V
ILLARREAL
Q
UINTANILLA
(2001), G
UZ
-
MÁN
& al. (2003).
Maihueniopsis Speg. (Map 81)
8 species. Low compact cushions; roots tuber-
ous. Flowers yellow, orange, pink or red. Fruits
juicy, thick-walled, indehiscent. Distribution:
southern Bolivia,Argentina and eastern Chile.
Main references: K
IESLING
(1999), A
NDERSON
(2001), H
OFFMANN
& W
ALTER
(2004), H
UNT
(2006).
Miqueliopuntia Fricˇ ex F. Ritter (Map 82)
1 species.Shrubby, forming clumps up to 1.4 m,
Flowers almost white, fruits globose,pale green
to whitish, juicy. Distribution: central Chile
(coastal regions). Main references: A
NDERSON
(2001), H
OFFMANN
& W
ALTER
(2004).
Nopalea Salm-Dyck (Map 83)
3 species.Tree-like, with a cylindric trunk.Flow-
ers purplish pink or red. Fruits ovoid. Distri-
bution: north-eastern Mexico to Central Amer-
ica. Main references: K
IESLING
(1999), A
NDER
-
SON
(2001), G
UZMÁN
& al. (2003), T
AYLOR
&
Z
APPI
(2004), H
UNT
(2006).
Opuntia Mill. (Maps 84–95)
64 species.Trees and shrubs, some low to cush-
ion-forming; stem normally segmented; seg-
ments cylindric, clavate, subglobose, or more
or less flattened. Flowers rotate, yellow, pink,
red or whitish. Fruits umbilicate, fleshy or dry.
Distribution: southern Canada (temperate
forests), most parts of the USA, CentralAmer-
ica, Mexico, Caribbean, north-eastern coast of
Colombia and Venezuela, Galápagos islands,
western Colombia, Ecuador,Peru, Bolivia,Ar-
gentina, Paraguay, Uruguay and south-eastern
Brazil. Centres of diversity: central Mexico
(southern Chihuahuan Desert); southern Mex-
82
© Schumannia 7 2015
7 Distribution maps of Cactaceae
Wilhelm Barthlott, Kerstin Burstedde, Jan Laurens Geffert, Pierre L. Ibisch, Nadja Korotkova,
Andrea Miebach, M. Daud Rafiqpoor, Anke Stein & Jens Mutke
Additional data and revisions contributed by Ralf Bauer, Graham Charles, Paul Hoxey,
David Hunt, Martin Lowry & Nigel Taylor
98
© Schumannia 7 2015
Map/Karte 68: Austrocylindropuntia.
Austrocylindropuntia
cylindrica
floccosa
pachypus
shaferi
subulata
vestita 500 km
©Barthlott et al. 2013
Map 68
Pereskia
aureiflora
nemorosa
sacharosa
stenantha
weberiana
1000 km
Map 66
©Barthlott et al. 2013
Map/Karte 66: Pereskia.
Maihuenia
patagonica
poeppigii 500 km
©Barthlott et al. 2013
Map 67
Map/Karte 67: Maihuenia.
109
© Schumannia 7 2015
Opuntia
aurea
basilaris
huajuapensis
microdasys
pinkavae
pycnantha
rufida
streptacantha 500 km
Map 94
©Barthlott et al. 2013
Map/Karte 94: Opuntia.
Opuntia
aciculata
atrispina
aureispina
bravoana
chlorotica
engelmannii
lagunae
littoralis
macrocentra
oricola 500 km
Map 93
©Barthlott et al. 2013
Map/Karte 93: Opuntia.
Opuntia
fuliginosa
hyptiacantha
lasiacantha
leucotricha
pilifera
robusta
stenopetala
tehuacana 250 km
Map 95
©Barthlott et al. 2013
Map/Karte 95: Opuntia.
120
© Schumannia 7 2015
1000 km
Cleistocactus: Diversity pattern
Species per 2500 km²
1
2
3
4
5
6
Map 127
©Barthlott et al. 2013
Cleistocactus
baumannii
brookeae
buchtienii
candelilla
chrysocephalus
hyalacanthus
laniceps
luribayensis
parapetiensis
strausii 250 km
Map 128
©Barthlott et al. 2013
Map 127: Cleistocactus, diversity pattern.
Karte 127: Cleistocactus, Diversitätsmuster (Arten pro 2500 km²).
Map/Karte 128: Cleistocactus.
AAU (2008): AAU Herbarium Database. –
www.aubot.dk/search_form.php [accessed
02.09.2008].
A
BELLA
, S. R. & J. F. J
AEGER
(2004): Ecology of eas-
tern prickly pear cactus (Opuntia humifusa) in
Oak Openings Preserve, northwestern Ohio.
– Michigan Bot. 43: 1–11.
A
NDERSON
,C.L., K. B
REMER
& E. M. F
RIIS
(2005): Da-
ting phylogenetically basal eudicots using rbcL
sequences and multiple fossil reference points.
– Amer. J. Bot. 92: 1737–1748.
A
NDERSON
, E. F. (2001): The cactus family. – Port-
land: Timber Press.
A
NDERSON
, E. F. (2005): Das große Kakteen-Lexi-
kon. – Stuttgart: E. Ulmer
A
NDERSON
, E. F. (2011): Das große Kakteen-Lexi-
kon. 2. Aufl. – Stuttgart: E. Ulmer.
A
NDERSON
, E. F. & W. A. F
ITZ
M
AURICE
(1997): Ario-
carpus revisited. – Haseltonia 5: 1–20.
A
NDERSON
, E. F., S. A
RIAS
M
ONTES
& N. P. T
AYLOR
(1994): Threatened cacti of Mexico. – Succ.
Pl. Res. 2: 5–116.
A
NDERSON
, E. F., W. A. F
ITZ
M
AURICE
, B. F
ITZ
M
AU
-
RICE
, A. H
OFER
, M. S
OTOMAYOR
, A. G. A
RRENDONDO
& B. S
ÁNCHEZ
(2002): Turbinicarpus gielsdorfi-
anus. – In: IUCN: Red List of threatened spe-
cies. Version 2012.1. www.iucnredlist.org
[accessed 13.09.2012].
A
NDERSON
, E. P., J. M
ARENGO
, R. V
ILLALBA
, S. H
ALLOY
,
B. Y
OUNG
, D. C
ORDERO
, F. G
AST
, E. J
AIMES
& D. R
UIZ
(2011): Consequences of climate change for
ecosystems and ecosystem services in the Tro-
pical Andes. – In: R. M. S. K. H
ERZOG
, P. M. J
OR
-
GENSEN
& H. T
IESSEN
: Climate change and bio-
diversity in the Tropical Andes: 1–18. Sao Jose
dos Campos & Paris: MacArthur Foundation,
Inter-American Institute of Global Change Re-
search & Scientific Committee on Problems of
the Environment.
A
NTONELLI
, A. & I. S
ANMARTÍN
(2011): Why are there
so many plant species in the Neotropics? – Ta-
xon 60: 403–414.
A
PPLEQUIST
, W. L. & R. S. W
ALLACE
(2001): Phylo-
geny of the portulacaceous cohort based on
ndhF sequence data. – Syst. Bot. 26: 406–
419.
A
PPLEQUIST
,W.L. & R. S. W
ALLACE
(2002): Deletions
in the plastid trnT-trnL intergenic spacer define
clades within Cactaceae subfamily Cactoi-
deae. – Pl. Syst. Evol. 231: 153–162.
A
RAKAKI
,M., P.-A. C
HRISTIN
, R. N
YFFELER
, A. L
ENDEL
, U.
E
GGLI
, R. M. O
GBURN
, E. S
PRIGGS
, M. J. M
OORE
&
E. J. E
DWARDS
(2011): Contemporaneous and
recent radiations of the world’s major succulent
plant lineages. – Proc. Natl. Acad. Sci. USA
108: 8379–8384.
A
RIAS
M
ONTES
, S., S. G
AMA
L
ÓPEZ
& L. U
LISES
G
UZMÁN
C
RUZ
(1997): Cactaceae A. L. Juss. – Mexico
City: Universidad Nacional Autonoma de Me-
xico.
B
ACKEBERG
, C. (1942a): Cactaceae Lindley. Syste-
matische Übersicht (Neubearbeitung) mit Be-
stimmungsschlüssel. – Cactaceae (Berlin)
1941(2): 1–80.
B
ACKEBERG
, C. (1942b): Zur Geschichte der Kak-
teen im Verlauf der Entwicklung des amerika-
nischen Kontinentbildes. – Cactaceae (Berlin)
1942(2): 1–72.
B
ACKEBERG
,C. (1944): Verbreitung und Vorkom-
men der Cactaceae. – Cactaceae (Berlin)
1943/1944(2): 1–111, 44 maps.
B
ACKEBERG
, C. (1958): Die Cactaceae. Handbuch
der Kakteenkunde 1: Einleitung und Beschrei-
bung der Pereskioideae und Opuntioideae. –
Jena: G. Fischer.
B
ACKEBERG
, C. (1959): Die Cactaceae. Handbuch
der Kakteenkunde 2: Cereoideae (Hylocereeae
– Cereeae [Austrocerinae]). – Jena: G. Fischer.
B
ACKEBERG
, C. (1959): Die Cactaceae. Handbuch
der Kakteenkunde 3: Cereoideae (Austroca-
ctinae). – Jena: G. Fischer.
B
ACKEBERG
, C. (1960): Die Cactaceae. Handbuch
der Kakteenkunde 4: Cereoideae (Boreocere-
eae). – Jena: G. Fischer.
B
ACKEBERG
, C. (1961): Die Cactaceae. Handbuch
der Kakteenkunde 5: Cereoideae (Boreoca-
ctinae). – Jena: G. Fischer.
B
ACKEBERG
, C. (1962): Die Cactaceae. Handbuch
der Kakteenkunde 6: Nachträge und Index. –
Jena: G. Fischer.
B
ALICK
, M. J., M. H. N
EE
& D. E. A
THA
(2000):
Checklist of the vascular plants of Belize, with
common names and uses. – St. Louis: Missouri
Botanical Garden.
B
ÁRCENAS
, R. T., C. Y
ESSON
& J. A. H
AWKINS
(2011):
Molecular systematics of the Cactaceae. – Cla-
distics 27: 1–20.
B
ARTHLOTT
,W. (1977): Kakteen. – Stuttgart: Belser.
B
ARTHLOTT
, W. (1983): Biogeography and evolu-
tion in neo- and palaeotropical Rhipsalinae
(Cactaceae). – Sonderb. Naturwiss. Vereins
Hamburg 7: 241–248.
B
ARTHLOTT
,W. (1988): Über die systematischen
Gliederungen der Cactaceae. – Beitr. Biol.
Pflanzen 63: 17–40.
B
ARTHLOTT
, W. & D. H
UNT
(1993): Cactaceae. – In:
K: K
UBITZKI
: The families and genera of vascu-
lar plants 2: 161–197. Berlin [& al.]: Springer.
B
ARTHLOTT
,W. & N. P. T
AYLOR
(1995): Notes to-
wards a monograph of Rhipsalideae (Cacta-
ceae). – Bradleya 13: 43–79.
B
ARTHLOTT
, W., W. L
AUER
& A. P
LACKE
(1996): Glo-
bal distribution of species diversity in vascular
plants: towards a global world map of phyto-
diversity. – Erdkunde 50: 317–327.
B
ARTHLOTT
, W., S. P
OREMBSKI
, M. K
LUGE
, J. H
OPKE
& L.
S
CHMIDT
(1997): Selenicereus wittii (Cacta-
ceae): an epiphyte adapted to Amazonian
Igapo inundation forests. – Pl. Syst. Evol. 206:
175–185.
B
ARTHLOTT
, W., J. M
UTKE
, M. D. R
AFIQPOOR
, G. K
IER
&
H. K
REFT
(2005): Global centres of vascular
plant diversity. – Nova Acta Leop. 92(342):
61–83.
B
ARTHLOTT
, W., W. R. E
RDELEN
& M. D. R
AFIQPOOR
(2014): Biodiversity and technical innovations:
bionics. – In: D. L
ANZERATH
& M. F
RIELE
: Concept
and value in biodiversity. Routledge Studies in
Biodiversity Politics and Management: 300–
315. New York: Routledge.
B
AUER
, R. (2003): A synopsis of the tribe Hyloce-
reeae F.Buxb. – Cactaceae Syst. Init. 17: 3–63.
B
ENSON
, L. (1982): The cacti of the United States
and Canada. – Stanford: Stanford University
Press.
B
RAILOVSKY
S
IGNORET
, D. & H. M. H
ERNÁNDEZ
(2010):
Mazapil, Zacatecas: diversity and conserva-
tion of cacti in a poorly-known arid region in
northern Mexico. – Cact. Succ. J. (Los Ange-
les) 82: 197–202.
B
RAKO
,L. & J. L. Z
ARUCCHI
(1993): Catalogue of the
flowering plants and gymnosperms of Peru. –
St. Louis: Missouri Botanical Garden.
B
RAUN
, P. J. & E. E
STEVES
P
EREIRA
(2001): Die Kak-
teen Brasiliens mit Anmerkungen zu anderen
Sukkulenten und xeromorphen Bromelien. –
Schumannia 3: 6–235.
B
RAUN
, P. J. & E. E
STEVES
P
EREIRA
(2004): Pilosoce-
reus mollispinus – a new species of Cactaceae
from the state of Goias and comments on ot-
her Pilosocereus species from Central Brazil. –
Cact. Succ. J. (Los Angeles) 76: 73–82.
B
REGMAN
, R. (1996): The genus Matucana: bio-
logy and systematics of fascinating Peruvian
cacti. – Rotterdam: Balkema.
B
URR
, B. & D. S
UPTHUT
(eds.) (1994): Artenschutz
bei Sukkulenten. – Schumannia 1: 1–52.
B
UTTERWORTH
, C. A. (2006): Resolving “Nyffeler’s
puzzle”—the intriguing taxonomic position of
Blossfeldia. – Haseltonia 3: 3–10.
B
UTTERWORTH
, C. A. & R. S. W
ALLACE
(2005): Mo-
lecular phylogenetics of the leafy cactus genus
Pereskia (Cactaceae). – Syst. Bot. 30: 800–
808.
B
UTTERWORTH
,C.A., J. H. C
OTA
-S
ÁNCHEZ
& R. S. W
AL
-
LACE
(2002): Molecular systematics of Tribe Ca-
cteae (Cactaceae: Cactoideae): a phylogeny
based on rpl16 intron sequence variation. –
Syst. Bot. 27: 257–270.
C
HARLES
,G. (2009): Micranthocereus. – Cact.
Succ. J. (Los Angeles) 81: 150–155.
C
HÁVEZ
, R. J., J. G. H
ERNÁNDEZ
& E. S
ÁNCHEZ
(2007):
Documentación de factores de amenaza para
la flora cactológica del semidesierto Queret-
ano. – Bol. Nakari 18: 89–95.
C
HUK
, M. (2010): Invasive cacti – a threat to the
rangelands of Australia, Bourke. – In: E. A. C.
W
ATERS
: Proceedings of the 16th Biennial Con-
ference of the Australian Rangeland Society. 5
pp. Perth: Australian Rangeland Society.
198
© Schumannia 7 2015
8 References/Literatur
Acanthocereus 83, 112
Acharagma 83, 112
Argentina 16, 36, 37, 80
Ariocarpus 69, 70, 72, 83, 112
Armatocereus 83, 113
Arrojadoa 63, 83, 113
Arthrocereus 83, 113
Astrophytum 72, 83, 114
Austrocactus 83, 114
Austrocylindropuntia 49, 82, 98
Aylostera =Rebutia
Aztekium 41, 83, 114
Bergerocactus 83, 114
biogeographic regions 22
biomes 14
Blossfeldia 15, 20, 25, 28, 83, 115
Blossfeldieae 23, 26
Bolivia 36, 37–41, 47, 79
Brachycereus 20, 84, 115
Brasilicereus 84, 115
Brasiliopuntia 82, 99
Brazil 36, 37–41, 78
Browningia 84, 115–116
Caatinga centre 36, 40, 41, 65
Cacteae 23, 25, 26, 57, 58, 60
Cactoideae 26, 83, 55, 58
Calymmanthium 84, 116
Canada 71
Caribbean 72
Carnegiea 72, 73, 84, 116
Castellanosia 84, 116
Central America 35, 37–41, 76
Cephalocereus 84, 117
Cereeae 23, 26, 66
Cereineae 26
Cereus 41, 46, 84, 117–119
Chihuahua centre 36, 37–40, 65
Chile 41, 81
Cipocereus 84, 119
Cleistocactus 41, 69, 84, 120–121
climate factors 65
Coleocephalocereus 15, 84, 122
Colombia 13, 76
Conservation 68–73
Consolea 82, 99
Copiapoa 17, 28, 41, 84, 122–123
Corryocactineae 26
Corryocactus 84, 123–123
Corynopuntia 82, 100
Coryphantha 84, 124–126
Cuba 19, 49, 72
Cumarinia 84, 126
Cumulopuntia 16, 82, 101
Cylindropuntia 18, 82, 101–103
Cylindropuntieae 23, 26, 59
Dendrocereus 19, 70, 84, 127
Denmoza 84, 127
Discocactus 41, 46, 63, 84, 127–128
Disocactus 45, 63, 84, 128–129
Echinocactus 20, 60, 84, 129
Echinocereinae 26
Echinocereus 21, 85, 130–134
Echinopsis 16, 62, 69, 85, 135–138
Ecuador 77
Epiphyllum 62, 85, 138–139
Epithelantha 85, 139
Eriosyce 41, 85, 139–140
Escobaria 85, 141
Escontria 85, 142
Espostoa 41, 85, 142
Espostoopsis 85, 142
Eulychnia 85, 143
Facheiroa 85, 143
Ferocactus 16, 85, 143–145
Frailea 85, 145–146
Geohintonia 41, 46, 85, 146
growth form 44–45, 47, 49, 56
Grusonia 82, 104
Guyanas 77
Gymnocalycium 85, 147–150
Haageocereus 41, 85, 150
Harrisia 85, 151
Hatiora 85, 151
Hylocereinae 25, 26
Hylocereus 86, 151–152
Jalisco centre 36, 37, 40, 41, 65
Jasminocereus 86, 152
Lasiocereus 86, 152
latitudinal gradient 64
Leocereus 86, 153
Lepismium 86, 154
Leptocereus 86, 154
Leuchtenbergia 86, 155
Lobivia =Echinopsis
Lophophora 86, 155
Lymanbensonia 29, 86, 155
Lymanbensonieae 23, 25, 26
Maihuenia 25, 45, 82, 98
Maihuenieae 23
Maihuenioideae 25, 26, 82
Maihueniopsis 82, 104
Mammillaria 41, 62, 68, 70, 72, 86, 156–162
Mammilloydia 86, 162
Mata Atlantica centre 36, 40, 41, 65
Matucana 41, 62, 86, 163
Melocactus 68, 70, 86, 163–165
Mexico 36, 37–40, 74
Micranthocereus 46, 86, 165
Mila 86, 166
Miqueliopuntia 82, 104
Myrtillocactus 86, 166
Neobuxbaumia 86, 167
Neolloydia 86, 167
Neoraimondia 86, 167
Neowerdermannia 86, 168
Nopalea 82, 104
Notocacteae 23, 25, 26, 61
Notocactus =Parodia
Obregonia 87, 168
Opuntia 19, 48, 69, 72, 82, 105–109
Opuntieae 23, 26, 59
Opuntioideae 15, 20, 26, 31–33, 55, 82
Oreocereus 87, 168
Oroya 87, 169
Ortegocactus 87, 169
Pachycereeae 25, 26
Pachycereus 18, 87, 169–170
Paraguay 47, 49, 80
Parodia 41, 69, 87, 170–173
Pediocactus 70, 72, 86, 174
Pelecyphora 46, 87, 174
Peniocereus 87, 174–175
Pereskia 13, 20, 25, 82, 97–98
Pereskieae 23
Pereskioideae 13, 20, 24, 26, 55, 82
Pereskiopsis 83, 110
Peru 41, 78
Pfeiffera 87, 176
Phyllocacteae 15, 23, 25, 26, 60
Pierrebraunia 87, 176
Pilosocereus 70, 87, 176–179
Polaskia 87, 179
pollination 47–50, 51, 57
Praecereus 87, 179
Pseudoacanthocereus 87, 180
Pseudorhipsalis 87, 180
Pterocactus 83, 110
Puebla-Oaxaca centre 36, 37, 40, 41, 65
Punotia 83, 110
Pygmaeocereus 87, 181
Quiabentia 83, 111
range size 41–44
Rauhocereus 87, 181
Rebutia 41, 87, 181–183
Rebutiinae 26
Rhipsalideae 10, 23, 26, 30, 61
Rhipsalidopsis 88, 184
Rhipsalinae 30
Rhipsalis 19, 20, 41, 48, 68, 88, 184–187
202
© Schumannia 7 2015
Index
The index covers genera,tribes,subfamilies, important synonyms,the country names of the ‘country profiles’ and some key words.