ChapterPDF Available

3D virtual prototyping of clothing products

Authors:

Abstract and Figures

Producers of fashion and special garments are nowadays oriented towards the reduction of development cost and prototype development time. 3D virtual prototyping, which has been recently introduced to clothing industry, become a topic of increasing interest of both computer graphics and clothing industry. Based on the results of many recent studies, we can claim that 3D virtual garment prototyping is a promising technique, which will due to its potential considerably replace conventional methods of clothing prototypes’ development. These technologies are especially important when a garment prototype should be developed for special purposes such as competitive sports apparel, protective or special clothing.
Content may be subject to copyright.
3D VIRTUAL PROTOTYPING OF CLOTHING
PRODUCTS
Zoran Stjepanovič1, Tanja Pilar2, Andreja Rudolf1, Simona Jevšnik3
1University of Maribor, Faculty of Mechanical Engineering, Department of
Textile Materials and Design, Slovenia
2ORTUM d.o.o., Ljubljana, Slovenia
3Academy of Design, Ljubljana, Slovenia
Abstract
Producers of fashion and special garments are nowadays oriented towards the
reduction of development cost and prototype development time. 3D virtual
prototyping, which has been recently introduced to clothing industry, become a
topic of increasing interest of both computer graphics and clothing industry.
Based on the results of many recent studies, we can claim that 3D virtual
garment prototyping is a promising technique, which will due to its potential
considerably replace conventional methods of clothing prototypes’ development.
These technologies are especially important when a garment prototype should be
developed for special purposes such as competitive sports apparel, protective or
special clothing.
Keywords: clothing, 3D virtual prototyping, women’s apparel, sports clothing
1. Introduction
The aim of this research was to study and to enable a process of 3D virtual
prototyping of fashion clothing as well as competitive sports apparel and to
analyse its efficiency compared to conventional technologies. For this purpose
we obtained the 3D body scans of some representative persons. The body
models required a substantial reconstruction, after which we were able to import
the body models into commercial CAD/PDS package. Furthermore, we prepared
virtual parametric body models, which were also used for 3D virtual prototyping
and virtual try-on. Special attention was given to correct data for computational
material model since this was important for a realistic virtual garment fit
visualisation. Finally, comparison of virtual and real garments’ fit using different
body models was made.
Based on the results it can be concluded that material properties must be
considered and detailed knowledge of textile parameters for each part of the
garment is vital for a successful virtual clothing prototyping. Furthermore, it has
been confirmed that parametric body model is not sufficient to achieve adequate
body shape of a particular person resulting in a suitable fit of clothing product.
Indubitably, virtual 3D prototyping has a substantial potential for clothing
prototype designers and clothing manufacturers.
2. Theoretical part
The application of computer aided design (CAD) intended for garments
development and their virtual prototyping has become an obvious trend in many
of industries recently. Nowadays, the virtual prototyping allows us an accurate
and rapid development of garments, as well as an adaptable and quickly
changeable garments [1, 2, 3, 4]. Virtual garment simulation is the result of a
large combination of techniques that have also dramatically evolved during the
last decade. Unlike the mechanical models used for existing mechanical
engineering for simulating deformable structures, a lot of new challenges arise
from highly versatile nature of cloth. The central pillar of garment simulation
presents the efficient mechanical simulation model, which can accurately
reproduce the specific mechanical properties of the cloth. The cloth is by nature
highly deformable, therefore the mechanical representation should be accurate
enough to deal with the nonlinearities and large deformations occurring at any
place in the cloth, such as folds and wrinkles. Moreover, the garment cloth
interacts strongly with the body that wears it [5, 6].
Three-dimensional body model is critical for the virtual try-on system and has a
strong impact on complexity and effect of a garment simulation. Therefore, the
study of 3D body modelling has a great potential in both research and
application. It is well know that commonly used methods include non-uniform
rational basis spline (NURBS), manual modelling and 3D body scanning. 3D
body scanning has become prevalent since 3D scanning technology is introduced
into garment industry. It provides a realistic 3D body model on the basis of raw
body scan data.
2.1 3D virtual prototyping of garments
The purpose of prototyping is to build a virtual model that instead of developing
a real product. Virtual prototypes can then be presented to the client for
evaluation and confirmation. The final model/product can then be quickly and
easily modified and produced [7]. In recent years, a strong development of
computer technology enabled substantial changes in the way of development of
new clothes and a shift from the conventional to virtual prototyping, figure 1 [8].
Figure 1: Representation of a 3D virtual prototyping process
In this work we are describing the 3D virtual prototyping of garments using two
groups of clothing products: women’s fashion clothing and competitive sports
apparel. The main aim of this research is to introduce an accurate and fast
process for development of fashionable and sports garments. Above all, the
development of a specific sportswear for professional purposes, such as
competitive ski-jumper suit, should be based on virtual prototyping and realistic
simulation of garment behaviour in virtual environment on real 3D body model,
gained by scanning technology. This allows us an effective individual treatment
of a sportsman and effective development of a competitive jumpsuit taking into
account the changeable demands. Because of the safety reasons the FIS
requirements for jumpsuit construction change annually or even more often,
which requires a rapid development of prototypes and final sports clothing.
2.2 Acquiring the 3D body scans
3D body scanning of selected persons (women and professional ski-jumpers)
was performed using the 3D body scanner Vitus Smart at the Textile
Technology Faculty, University of Zagreb, Croatia. The scanner consists of 8
cameras that provide 500 000 to 600 000 points (point cloud). After that, the
body measures were taken using the programme package ScanWorx V 2.7.2.
2.3 Reconstruction of 3D body scan models
For the purpose of the research we firstly used the parametric 3D body model of
selected female and ski-jumpers, determined with body measures obtained by
the scanner. The parametric models were defined using the following measures:
body high, chest circumference, waist circumference, neck circumference,
length crotch-floor, high thigh circumference, knee circumference, shoulders
width, shoulder slope, upper arm circumference and arm length. A great
deviation between the parametric 3D body models, and scanned 3D body models
of both selected female and ski-jumper is obvious, figures 2 and 3 [8, 9, 10, 11].
Therefore, we decided to use primarily the scanned 3D body models for
simulation of final garment prototypes.
The process of generation of scanned 3D body models involved the body
reconstruction. Namely, 3D scanner cannot produce sufficient scan data, which
results in defected body models. For this reason the reconstruction of the
scanned 3D body models of selected female and ski-jumper was performed by
using the programs Atos, Blender, Rhino 4, Netfabb and MeshLab [8, 11, 12, 13,
14, 15, 16].
(a) (b) (c)
Figure 2: Parametric 3D body model (a), scanned 3D body model showing defects (b)
and reconstructed 3D body model (c) of a selected female
(a) (b) (c)
Figure 3: Parametric 3D body model (a), raw 3D body model showing defects (b) and
reconstructed 3D body model (c) of a ski-jumper
3. Experimental part
The study discusses the development of the prototypes of two types of
fashionable women’s clothes: skirts and jackets, as well as ski-jumper’s suit with
a purpose to identify differences between the conventional and virtual garment
prototyping process. Real and virtual clothes were compared on the basis of the
criteria for assessing the fit of clothing to different body models (real body,
parametric and scanned body model).
3.1 Materials and models of garments used in a study
3.1.1 Women's fashionable garments
Models of women's skirts and jackets were made of fabrics suitable for upper
garments composed of different natural fibres (cotton, linen) and mixtures
(linen/PA); some fabric contained 2-3 % elastic yarns. Fusing was performed in
all models using the same type of adhesive interlinings and Mayer fusing
machine. Altogether, 3 models of skirts and 3 models of jackets were developed,
figures 4 and 5, each of them using two different fabrics [8].
(a) (b) (c)
Figure 4: Skirt models Nika (a), Sandy (b) and Verena (c)
(a) (b) (c)
Figure 5: Jacket models Nika (a), Lida (b) and Mia (c)
3.1.2 Ski-jumper’s suit
For the prototype of a ski-jumper suit we planned a five-layer laminated fabric
consisting of [17]:
- first layer: outer fabric,
- second layer: foam,
- third layer: elastic membrane,
- fourth layer: foam and
- fifth layer: lining fabric.
The components are laminated together by either a hot-melt process or flame
lamination. The outer fabric and lining fabric is a bi-elastic warp-knited fabric
(Charmeuse), which is produced on a 2-thread system warp knitting machine.
To obtain the realistic virtual prototype of the ski-jumpsuit the measurements of
the mechanical properties of the laminated fabric were done by using the FAST
measuring system [18]. The measuring results of the mechanical properties of
the laminated fabric were converted by using the Fabric Converter programme
and simulation of the laminate draping and jumpsuit fitting was carried out by
OptiTex programme, table 1.
Table 1: Mechanical properties of the laminated fabric measured by FAST
measuring system and converted properties for jumpsuit simulation using
OptiTex programme
PROPERTIES
MEASURED VALUE
OptiTex parameters
UNIT
WALE D.
UNIT
COURSE D.
WALE D.
Extension at load of 98,1
Nm-1 / E 100
%
10.9
gcm-2
400.641
352.858
Bending rigidity / B
Nm
54.5
dyn*cm
4965
Shear rigidity / G
Nm-1
199
dyn*cm
1990
Surface thickness / ST
mm
0.035
cm
0.0035
Mass per unit area / W
gm-2
601
gm-2
601
4. Results and discussion
Corresponding properties of textile fabrics have to be measured and used for
virtual simulation of garments. In our study we have used the OptiTex CAD
system, which allows also the selection of database values, which describe
particular fabric types/properties. In our study we used the fabric properties
(tensile, shear, bending and surface properties) measured by KES-FB and FAST
measuring systems. Conversion of measurements has been carried out by a
Fabric Converter programme [19].
4.1 Evaluation of a garment fit
4.1.1 Women's fashionable garments
Assessment of a fit of clothing to the body of all models was performed by:
(a) assessing the fit of 3D virtual garment prototypes on parametrical body
according to the parameters of the material and
(b) assessing the fit of 3D virtual garment prototypes on real person, parametric
and scanned body models.
For this purpose, we developed a procedure for evaluating the fit of garment
prototypes to the body for all skirts and jackets. Specific garments areas were
defined, figure 6, after which we observed/evaluated the front, side and rear
views.
Figure 6: Three (coloured) evaluation areas of skirts and five evaluation areas of jackets
(front and back views)
The evaluation procedure is suitable for both real and virtual models and
includes the following steps:
The clothing item is chosen.
Evaluation area is chosen.
Assesment of a garment fit to the body using the following criteria
grades: 1 (good); 0 (satisfactory) and -1 (inappropriate).
The evaluation of a fit of 3D virtual prototypes of fashionable women’s
garments to the real, parametric and scanned body models, figure 7, gave very
interesting results, therefore we are presenting a part of them in this publication.
Using the above described areas and criteria we firstly carried out an expert
evaluation. After that, we also performed a non-expert evaluation using specially
prepared questionaries using a group of 16 persons having a limited knowledge
in a discussed area. The results of expert and non-expert evaluation did not differ
significantly.
Assessment of fit of prototypes of women's real and 3D virtual garment
prototypes on real body, scanned and parametrical body models are collected in
table 2 (skirts) and table 3 (jackets). Altogether we evaluated 9 areas related to
three views of skirts and 14 areas related to three views of jackets.
(a) (b) (c) (a) (b) (c)
Figure 7: Fitting results for skirts and jackets on (a) real body, (b) scanned body model,
(c) parametric body model (front, side and back views)
Table 2: Assessment of fit of prototypes of skirts on different body models
Model
Real
prototype
Virtual
prototype on a
scanned body
model
Virtual
prototype on a
parametric body
model
Grade
Grade
Grade
1
0
-1
1
0
-1
1
0
-1
Skirt NIKA-
6
3
-
2
6
1
-
7
2
Skirt NIKA-
4
4
1
4
4
1
4
5
-
Skirt SANDY-1Z
5
4
-
-
3
6
6
3
-
Skirt SANDY-3Z
6
3
-
1
5
3
6
3
-
Skirt VERENA-3M
8
1
-
5
-
4
4
4
1
Skirt VERENA-4B
5
2
2
6
2
1
5
4
-
Table 2: Assessment of fit of prototypes of jackets on different body models
Model
Real
prototype
Virtual
prototype on a
scanned body
model
Virtual
prototype on a
parametric body
model
Grade
Grade
Grade
1
0
-1
1
0
-1
1
0
-1
Jacket NIKA-1Z
6
4
4
5
6
3
6
7
1
Jacket NIKA-
7
3
4
7
5
2
7
5
2
Jacket LIDA-2M
6
5
3
7
7
-
13
1
-
Jacket LIDA-
4
7
3
7
7
-
13
1
-
Jacket MIA-4B
5
6
3
8
5
1
11
2
1
Jacket MIA-4M
5
4
5
8
5
1
12
2
-
4.1.2 Ski-jumper suit
For the 3D virtual simulation of the competitive prototype of the ski jumper suit
it was necessary to define the jumpsuit patterns by:
type and position of the individual pattern regarding the virtual mannequin
(e.g. front part, back part, sleeves etc.),
measured mechanical properties of the laminated fabric for all jumpsuit
patterns and
seam lines for stitching the patterns on the (a) parametric 3D body model
and (b) scanned 3D model of ski-jumper, Figure 8.
(a) (b)
Figure 8: Positioning of the jumpsuit patterns on (a) parametric and (b) scanned 3D body
model, and appointed seams for stitching
Furthermore, the comparison of the ski jumper suit between the real prototype,
simulated jumpsuit prototype on the parametric 3D body model and simulated
jumpsuit prototype on scanned 3D body model of the ski jumper was performed.
Figure 9 represents 3D virtual prototypes on parametric and scanned body
models.
Figure 8: Virtual 3D prototypes of a ski-jumper suit on (a) parametric body model and
on (b) scanned body model
The computer simulation of the ski jumpsuit prototype was made using the
parametric 3D body model and reconstructed scanned 3D body model. In order
to assure appropriate simulation of the jumpsuit different positioning and
adjustment of the patterns regarding the parametric 3D body model and scanned
3D body model should be performed. The reason for this are different postures
of the 3D body models. With the aim to make a proper comparison of virtual and
real jumpsuit, we also produced a real prototype. When estimating the fitting of
the jumpsuit the evaluation of the neck line, shoulder area and armpit front and
back, as well as form of the sleeves, trousers and waist area were carried out.
When analysing the simulated jumpsuits in the waist area, an additional fold in
the area of waist and buttock area appears, while it isn't visible when simulating
the jumpsuit on a parametric 3D body model. The appearance of the bottom part
of the jumpsuit is smooth and suggests the filling of tension and discomfort. On
the other hand the real jumpsuit and simulated jumpsuit on a scanned 3D body
model of the ski jumper expresses non-stretched trousers and assures felling of a
good comfort and requested width in this area. The form and fitting of the
sleeves are very similar on all of prototypes with the exception of the shoulder
and armpit areas, because of the anomalies of the parametric mannequin.
Additional folds on sleeves appear in elbow area. These are visible on real and
simulated jumpsuit on a scanned 3D body model, while they are not visible on a
parametric body model because of the stretched arms.
5. Conclusions
Advanced computer-supported garment simulation techniques already represent
an important tool for textile and garment designers, since they offer numerous
advantages, such as quick and simple introduction of changes while developing
a model in comparison with conventional techniques. The primary advantage of
virtual prototyping is that we can design clothes while directly monitoring its
fitting to the silhouette of a specific person without his or her physical presence.
Thanks to latest developments, this new technology will be widely used in the
near future for implementation in daily tasks. This will have an immense effect
on different modules in the clothing industry with its related branches. It can be
seen as a way to move a very traditional industry to a higher level. Computer-
based prototyping has a great potential in modern clothing industry because it
allows rapid development of 3D virtual garment prototypes. In a small number
of process steps we may change patterns, colours, fabric types and other
parameters that influence the appearance and behaviour of clothing products.
This study confirmed the applicability of virtual prototyping for both fashionable
and sports garments. Successful virtual prototyping process requires the use of
reliable fabric parameters measured by at least one of objective fabric evaluation
systems. The results of the study confirmed that effective 3D virtual garment
prototyping requires the application of scanned body models instead of simple
parametric body models. The reason for this is that using today’s technology it is
not possible to prepare satisfactory parametric body models taking into account
the age and specificities/deformities of real bodies. Although virtual prototyping
still cannot fully replace conventional prototyping, it surely is an efficient and
helpful procedure that saves time and money in a modern apparel production.
Acknowledgement
The authors wish to express their thanks to colleagues from the Faculty of
Textile Technology, University of Zagreb, Croatia, for enabling us to carry out
the 3D body scanning, which resulted in the realisation of an important part of
the study, described in this article.
6. References
[1] Volino P., Cordier F. & Magnenat-Thalmann N.: From early virtual garment
simulation to interactive fashion design, Computer Aided Design, Vol. 37 (2005),
pp. 593-608, ISSN 0010-4485
[2] Rizzi C., Fontana M. & Cugini U.: Towards Virtual Prototyping of complex-
shaped multi-layered apparel. Available from:
http://www.cadanda.com/V1Nos1to4_24.pdf Accessed: 2011-10-8
[3] Rudolf A., Jevšnik S., Stjepanovič Z. & Pilar T.: Comparison between virtual and
real shape of garments, 8th AUTEX Conference, Biella, June 2008, Biella, (2008)
[4] Lim H. S.: Three dimensional virtual try-on technologies in the achievement and
testing of fit for mass customization, Doctoral Dissertation, North Carolina State
University, (2009)
[5] Jevšnik S., Stjepanovič Z. & Celcar D.. Virtual clothes' simulations. Jevšnik S.,
ILIF Proceedings, 1st International Conference, Matičič N., Šterman S. (Ed.), pp.
67-73, Ljubljana, April 2009, Media Print, Academy of design, Ljubljana (2009)
[6] JEVŠNIK, S., STJEPANOVIĆ, Z. & RUDOLF, A.: Study of correlation between
bending and shearing properties and shaping ability with parameters of fabric drape.
Glas. hem. tehnol. ekol. Repub. Srp., Vol. (2010), No. 3, pp. 1-17, ISSN 1840-054X
[7] STJEPANOVIĆ, Z. & FAKIN, D.: Employing visualisation techniques and tools
for educational purposes in textile studies. AUTEX res. j.. [Print ed.], June 2010,
Vol. 10 (2010), No. 2, pp. 39-43, ISSN 1470-9589
[8] Pilar, T.: Development of 3D Prototypes of Women’s Clothing (M.Sc. Thesis),
University of Maribor, Maribor, (2012)
[9] Stjepanović, Z., Rudolf, A., Jevšnik, S., Cupar, A., Pogačar, V. & Geršak, J.:
Reconstruction of 3D body scan model for virtual garmet Protyping. International
Symposium in Knitting and Apparel ISKA 2010 Iasi, November 2010, Technical
University Iasi, (2010)
[10] Stjepanović, Z., Rudolf, A., Jevšnik, S., Cupar, A., Pogačar, V. & Geršak, J.:
3D virtual prototyping of a ski jumpsuit based on a reconstructed body scan model.
Buletinul Institutului Politehnic din Iaşi. Secţia Textile, Pielärie, Vol. 57 (2011), No.
1, pp. 17-30, ISSN 0253-1119
[11] Štanc, B., Lukač, T., Jevšnik, S., Rudolf, A. & Stjepanović, Z.: Ski-jumper suit
prototyping. Tekstilec, Vol. 52 (2009) No. 7/9, pp. 210-225, ISSN 0351-3386
[12] ATOS, Available from: http://www.capture3d.com/products-ATOS-software.html .
Accessed: 2011-10-29
[13] Blender, Available from: http://www.blender.org/. Accessed: 2011-12-14
[14] Meshlab Available from: http://meshlab.sourceforge.net/ Accessed: 2011-10-12
[15] Rhinoceros, Available from: http://www.rhino3d.com/. Accessed: 2011-12-7
[16] Netfabb Studio Tutorial, Available from: http://wiki.netfabb.com/. Accessed: 2011-
12-3
[17] International ski federation: Specifications for competition equipment and
commercial markings, Edition 2010/1, Available from: http://www.fis-
ski.com/data/document/edition1011.pdf Accessed: 2009-9-16
[18] De Boss, A.: The FAST System for Objective Measurement of Fabric Properties,
Operation, Interpretation and Application. CSIRO Division of Wool Technology,
Sydney, (1991)
[19] OptiTex Fabric Converter. Available from:
http://www.optitex.com/Help/en/index.php/Utilities:Fabric_Editor#Converter_Tab
Accessed: 2011-10-10
... Visualization of the pressure distribution on a virtual manikin would offer many advantages including higher accuracy of garment fi t prediction without really trying it on and visualized pressure distribution on the human body, both of which are related to contact between the garment and the body, information that can be useful for the mechanical functional design of apparel. Besides, it is advantageous to evaluate the overall fi t level for all relevant positions and to determine static and dynamic performance of the selected fabric, as well as garment fi t effects in terms of comfort and fabric properties [18,19]. ...
Article
Full-text available
Graduated compression is widely used for medical application to prevent perioperative venous thromboembolism, but other applications such as sportswear can potentially also benefit from it. A tight-fit cycling shirt meant to ensure the correct position during cycling and prevent injuries was designed. The aim of this study was to improve garment pattern design from the aspect of clothing pressure for providing support and enhancing comfort to the user. This paper investigates the suitability of pressure maps from 3D fashion design software CLO 3D for design and in particular its capability to discriminate between various materials and cycling postures. Moreover, the impact of the mechanical properties of fabric was analyzed. In particular, virtual prototyping tool CLO 3D and pressure mapping were employed to achieve the required graduated compression while ensuring fit and comfort. Pattern adjustments were iteratively performed until stress, strain, and pressure maps showed adequate fit and pressure of the cycling garment on the virtual cyclist in static and dynamic cycling positions. The impact of fabric types on garment fit has been shown by generating the stress, strain, and pressure maps with a virtual simulation. It was found that the visualized pressure on the human body model shows distributions that are related to contact between body and garment, and large compression stresses occur in the lower parts of the two shirts. Evident garment deformation was shown at hip level, upper arm, lower front side seam, and front neck, which can reduce garment wear comfort and freedom of movement. The output was found to be sufficiently accurate to optimize the garments based on material and cycling posture.
... If a fit assessment is required, the garment has to be presented on an avatar approximating the customer's body. The avatar can be created based on the individual's body measurements or by using a 3D body scanner to create a replica of the body (Gribbin, 2014;Kim & LaBat, 2013a;Lim & Istook, 2011;Stjepanovič et al., 2012). The type of avatar used in a simulation affects the final virtual garment, and researchers have shown that 3D body-scanned avatars provide a more realistic virtual garment compared to parametric avatars (Jevsnik et al., 2012;Kim & LaBat, 2013a;Lim & Istook, 2011). ...
Article
Close to 30% of garments bought online are returned, often due to issues of fit. These issues often relate to size selection, which is challenging without physically trying on a garment. Alternative methods need to be explored to select the best size in lieu of physically trying apparel on. To address this issue, we compare the size selections based on primary measurements and size charts, virtual garments, and real garments. A cross-sectional quantitative survey was carried out in an experimental setting. The participants (36, predominantly White females, aged 21–56) made size selections and evaluations based on virtual and real blouses and trousers. Selecting the size based on virtual garments is more accurate than size selection based on primary measurements and size charts, scoring 57% and 42%, respectively. Further research should be used to improve the virtual fitting room, with benefits such as fewer returns and more satisfied customers.
... They concluded that virtual dress can be used for estimating the fit and appearance of a dress before it is actually produced. Garment fit could be evaluated referring to experts' opinions [7] – [9] or wearers' responses [10] – [12]. ...
Article
Full-text available
In this article investigation of real and virtual garment fit is presented. The dress of simple straight silhouette was constructed using the program "Modaris" (CAD Lectra). The dress fitting was performed using mechanical parameters of the prewashed 100% linen fabric. Four respondents, whose figures were similar to the typical figure 164 - 88 - 92, were used to evaluate the ease and strain deformations of the dress. For the comparison of real fitting process with the virtual, 3D mannequins of respondents were made using the program .,Modaris 3D Fit" (CAD Lectra) and virtual try-on of the dress was done. The scores that were given by the respondents wearing the real dress were compared to the ease and strain results that were given by the software.
... Research works addressing the garment fit of sportswear for professional purposes to the parametric body model and scanned 3D body model show significant differences between virtual garments' fits to body models and the successfulness of virtual prototyping using the scanned 3D body model [8,9]. Previous examinations of garment fit to the body in a real and virtual environment were similarly based and merely focused on an expert's view regarding the descriptive comparison of proper and improper fitting areas [21,22]. The comparisons were made only for some critical areas on the garment,respectively. ...
Article
Full-text available
Garment fit on a body model is an important factor for designing comfortable, functional and well fitting garments. Nowadays the virtual prototyping of garments provides high potential for design, product development and marketing processes. Previous examinations of garment fit to the body in a real and virtual environment were merely focused on expert evaluation by way of a descriptive comparison of proper and improper areas for fitting. Therefore the problem area in our research was to examine the fit of a skirt on a live model and on virtual models such as parametric and scanned body models in order to propose which virtual human body is the most suitable where garment fit is concerned. The paper also discusses the fit of a skirt on an individual part of the human body with respect to predefined areas. A numerical study with a questionnaire survey database was conducted with the aim of selecting the best model to assess the fit of a skirt to the human body, and the Analytic Hierarchy Process (AHP) was used to evaluate the questionnaire results. The results obtained confirm that the design is most important factor when evaluating a skirt’s fit to the body. Furthermore results confirmed that the hips and abdomen areas were the most important for evaluators when assessing a skirt’s fit to the body.
Thesis
Full-text available
Research the effect of different 3D Virtual Garment Presentation Technologies on the consumer experience in brick and mortar stores.
Article
Full-text available
In this study, it was aimed to produce a substance, which could be used as an antibacterial agent in textiles, from petroleum sub-products in order to extend the use of petroleum and petroleum sub-products in textiles. For this aim, complex compounds with copper, cobalt, nickel, zinc, and sodium, were produced. Then, those compounds were applied onto cotton fabric by padding process, and their antibacterial activities were evaluated according to the AATCC 147 agar diffusion test method. As a result of the trials, it was determined that best results were obtained against both gram-positive and gram-negative bacteria with copper mono carboxylate. Its activity was still present against Staphylococcus aureus and Escherichia coli after 3 washings and against Bacillus subtilis and Klebsiella pneumoniae after 10 washings.
Article
Full-text available
Excellent results do not depend solely on sportsmen's physical condition, but also on the sport suit required by a specific sports discipline. From the aerodynamic point of view, a ski- jumper suit can be, next to the jumping skis, regarded as the main part of the equipment. The jumpsuit shape and size need to be individually adapted to each ski-jumper taking into account precise requirements by FIS (Fédération Internationale de Ski). Constructing a ski-jumper suit is a demanding process, since the FIS rules change annually in order to assure ski-jumpers safe yet competitive ski jumps. Modern technologies enable rapid and precise development of prototypes of garments by ensuring higher efficiency and accuracy of the construction process. The article presents the development of the prototype of a ski-jumper suit in accordance with the FIS rules. The results demonstrate the process of virtual prototyping of a ski-jumper suit and a comparison with a real jumpsuit.
Article
Full-text available
3D virtual prototyping become a topic of increasing interest of both computer graphics and computer-aided design for apparel production. These technologies are especially important when a garment prototype should be developed for a special purpose, such as ski-jumper suit. Namely, shape and size of a jumpsuit need to be individually adapted to each ski-jumper according to the exact requirements set by FIS (Fédereation Internationale de Ski). The FIS requirements change annually or even more often in order to assure ski-jumpers’ safety during competitive ski jumps. The conventional body measurement technique and development of ski-jumpers pattern are time consuming. In order to develop an accurate and rapid design, as well as an adaptable and quickly changeable jumpsuit, different modern technologies were used. The obtained virtual prototypes of a skijumper and a jumpsuit enable both - fast re-modelling according to FIS rules and expeditious development and/or simulations of a jumpsuit. All these measures are taken to improve the aerodynamic design of a suit and jumper’s result. The body scanning technology represents a great potential for textile industries and above all for producers of garments. It enables fast and reliable capture of 3D body data and extraction of precise measurements needed for design, construction, visualisation and animation of garments on virtual mannequins. However, there are also some problems related to the scanned body models, caused by the scanning technique. In this article we are discussing the techniques for reconstruction of the body models and its results using the example from one of the competitive sports clothing - ski-jumper suit. In our study we have used different computer graphics programmes in order to reconstruct and prepare the 3D body scan model for successfully importing it into OptiTex CAD programme. The aim of this research was to enable effective 3D virtual garment prototyping using the reconstructed body scan model.
Conference Paper
Full-text available
3D body scanning technology represents a great potential for textile industries and above all for producers of garments. It enables fast and reliable capture of 3D body data and extraction of precise measurements needed for design, construction, visualisation and animation of garments on virtual mannequins. However, there are also some problems related to the scanned body models, caused by the scanning technique. In this contribution we are discussing the techniques for reconstruction of the body models and its results using the example from one of the competitive sports clothings - ski-jumper suit. Virtual prototyping become a topic of increasing interest of both, computer graphics and computer-aided design for apparel production. These technologies are especially important when a garment prototype should be developed for special purpose such as ski-jumper suit. Namely, shape and size of a jumpsuit need to be individually adapted to each ski-jumper according to the exact requirements by FIS (Fédereation Internationale de Ski). The FIS requirements change annually or even more often in order to assure ski-jumpers’ safety during competitive ski jumps. The conventional body measurement technique and development of ski-jumpers pattern are time consuming. In order to develop an accurate and rapid design, as well as an adaptable and quickly changeable jumpsuit, different modern technologies were used. The obtained virtual prototypes of a ski-jumper and a jumpsuit enable both - fast re-modelling according to FIS rules and expeditious development and/or simulations of a jumpsuit. All these measures are taken to improve the aerodynamic design of a suit and jumper’s result. In our study we have used different computer graphics programmes in order to reconstruct and prepare the 3D body scan model for successfully importing it into OptiTex CAD programme.
Article
Full-text available
Drape is a three-dimensional appearance when a fabric is due to its mass formed into folds and in which shifts occur and small stretching, shearing and bending deformations. In a real environment, this appearance is mostly related to the drape and fit of the garment, which is one of the essential elements of garment aesthetics and appearance. Draping is objectively evaluated with the parameters such as draping coefficient, number of folds, fold depth, fold distribution and the like. The aim of the investigation is to analyze the relationship between the parameters of bending and shearing properties of wool fabrics. They were evaluated by the FAST and KES FB measuring systems as draping parameters such as draping coefficient and number of folds. The relationship of the fabric shaping ability was also analyzed, which represents a measure of fabric shaping process from a two-dimensional plane into a three-dimensional garment shape. The analysis of the results shows that with increasing values of bending properties the values of draping coefficients rise, regardless of the way how an individual parameter is determined, i.e. of the type of the measuring instrument used. The correlation between the analyzed bending and shearing properties and the shaping ability, draping coefficient and number of folds is evaluated by means of Pearson's correlation coefficient confirmed by the t-test. The statistical analysis of the draping coefficient and number of folds with bending properties determined by the FAST measuring system indicates that the correlation is positive for the draping coefficient, and negative for the number of folds. The correlation of shearing rigidity is positive with all analyzed draping parameters. The subsequent results show that the value of draping coefficient is highly related to the values of all analyzed properties determined by means of the KES-FB measuring system. Shaping abilities according to the FAST method and Niwa calculations show that in both cases no correlation with the draping coefficient was recognized. It was also found out that parameters of bending properties combined with surface mass do not show any direct effect on the analyzed parameters of draping wool cloths.
Article
Full-text available
Modern textile and clothing manufacturers can today use the entire range of conventional CAD/CAM systems together with new computer graphics and Internet-based technologies in order to strengthen their position on the market, building a completely new electronic-business offer. Graphical presentation of textile products and processing, or visualisation, presents a promising technology that can be treated as a potential enrichment of conventional computer aided technologies used today by the majority of advanced producers of textile fabrics, clothing, and other textile products. The article presents the results of research on designing computer software for visualising the fabric dyeing process. The program package produced enables the effective visualisation of two fabric dyeing processes: a Pad-Batch machine line for dyeing flat textiles in open-width state, and an HT overflow dyeing machine for fabric dyeing in rope form. Graphical applications of both dyeing processes can be used for both industrial and educational purposes. In this article, we focus more on presenting the program structure and functionalities for using the software to support the education of textile students.
Article
Virtual prototyping of cloth has recently become a topic of increasing interest both in computer graphics and computer-aided design for industrial fabric or apparel production. Aiming at an accurate simulation of garment shapes, this paper presents a physics-based system for virtual cloth modelling, specifically conceived for design purposes and targeted to the clothing industry. This environment should allow the designer/modellist to validate her/his style and design options through the analysis of garment virtual prototypes and simulation results in order to reduce the number and role of physical prototypes. To this end, a complete physics-based model has been defined, oriented to actual complex-shaped apparel, incorporating aspects related to garment's shape and structure (e.g., 2D profiles of basic patterns and multi-layered parts), mechanical/structural properties of fabric materials and multi-layered parts, and design/manufacturing processes (e.g., ironing, starching). The physical garment's model has been developed upon a particle-based model embedded in constrained Newtonian dynamics with collision management. The system has been validated within European and national projects, simulating several female and male garments with different levels of design complexities and directly provided from involved clothing companies.
Article
Virtual garment design and simulation involves a combination of a large range of techniques, involving mechanical simulation, collision detection, and user interface techniques for creating garments. Here, we perform an extensive review of the evolution of these techniques made in the last decade to bring virtual garments to the reach of computer applications not only aimed at graphics, but also at CAD techniques for the garment industry.As a result of the advances in the developments of virtual garment simulation technologies, we then detail a framework which fits the needs of the garment industry of virtual garment design and prototyping, concentrating on interactive design, simulation and visualization features. The framework integrates innovative tools aimed towards efficiency and quality in the process of garment design and prototyping, taking advantage of state-of-the-art algorithms from the field of mechanical simulation, animation and rendering.
Development of 3D Prototypes of Women's Clothing (M.Sc. Thesis)
  • T Pilar
Pilar, T.: Development of 3D Prototypes of Women's Clothing (M.Sc. Thesis), University of Maribor, Maribor, (2012)
Available from: http://www.optitex.com/Help/en/index.php/Utilities:Fabric_Editor#Converter_Tab Accessed
  • Optitex Fabric
  • Converter
OptiTex Fabric Converter. Available from: http://www.optitex.com/Help/en/index.php/Utilities:Fabric_Editor#Converter_Tab Accessed: 2011-10-10
Comparison between virtual and real shape of garments, 8th AUTEX Conference
  • A Rudolf
  • S Jevšnik
  • Z Stjepanovič
  • T Pilar
Rudolf A., Jevšnik S., Stjepanovič Z. & Pilar T.: Comparison between virtual and real shape of garments, 8th AUTEX Conference, Biella, June 2008, Biella, (2008)