ArticlePDF Available

Antiproliferative Potential of Extracts from Kappaphycus Seaweeds on HeLa Cancer Cell Lines


Abstract and Figures

A review of the current literature indicates that natural seaweeds are an excellent source of bioactive compounds with antioxidant, antimicrobial and antitumor properties. In the present study, 90% methanolic, 70% acetonic and aqueous extracts from Kappaphycus alvarezii (strains Crocodile, Giant and Brown) and Kappaphycus striatum were used to inhibit the growth of HeLa cell lines. MTS assay was carried out to determine the proliferation of HeLa cells in the presence of different seaweed extracts. Both 500 μg/mL of aqueous and methanolic extracts from K. striatum demonstrated highest anti-proliferative activity against HeLa cells with cell growth inhibition of 53.5 and 43.7%, respectively. Treatment with the aqueous extracts from three strains of K. alvarezii did not show any growth inhibition against HeLa cell lines. The acetonic extract of Kappaphycus seaweeds exhibited a very poor cell growth inhibition with inhibitory activity observed under the treatment of 300 to 500 μg/mL of K. alvarezii strain Brown only. Further studies are suggested to identify and purify the specific anti-tumoral compounds for potential use in cancer therapy.
Content may be subject to copyright.
Sains Malaysiana 43(12)(2014): 1895–1900
Antiproliferative Potential of Extracts from Kappaphycus Seaweeds
on HeLa Cancer Cell Lines
(Potensi Antiproliferatif Ekstrak Rumpai Laut Kappaphycus ke atas Titisan Sel Kanser HeLa)
A review of the current literature indicates that natural seaweeds are an excellent source of bioactive compounds with
antioxidant, antimicrobial and antitumor properties. In the present study, 90% methanolic, 70% acetonic and aqueous
extracts from Kappaphycus alvarezii (strains Crocodile, Giant and Brown) and Kappaphycus striatum were used to inhibit
the growth of HeLa cell lines. MTS assay was carried out to determine the proliferation of HeLa cells in the presence of
different seaweed extracts. Both 500 µg/mL of aqueous and methanolic extracts from K. striatum demonstrated highest
anti-proliferative activity against HeLa cells with cell growth inhibition of 53.5 and 43.7%, respectively. Treatment with
the aqueous extracts from three strains of K. alvarezii did not show any growth inhibition against HeLa cell lines. The
acetonic extract of Kappaphycus seaweeds exhibited a very poor cell growth inhibition with inhibitory activity observed
under the treatment of 300 to 500 µg/mL of K. alvarezii strain Brown only. Further studies are suggested to identify and
purify the specic anti-tumoral compounds for potential use in cancer therapy.
Keywords: Antiproliferation; growth inhibition; Kappaphycus alvarezii; Kappaphycus striatum
Suatu kajian kepustakaan semasa menunjukkan bahawa rumpai laut semula jadi adalah sumber komponen bioaktif
yang sangat baik dengan aktiviti antioksidan, antimikrobial dan antitumor. Dalam kajian ini, ekstrak metanol 90%,
aseton 70% dan akueus daripada Kappaphycus alvarezii (strain Buaya, Giant dan Brown) dan Kappaphycus striatum
telah digunakan untuk merencat pertumbuhan titisan sel HeLa. Asai MTS telah dijalankan untuk mengkaji pertumbuhan
sel HeLa dalam kehadiran pelbagai ekstrak rumpai laut. Kedua-dua 500 µg/mL ekstrak akueus dan metanol daripada
K. striatum menunjukkan aktiviti antiproliferasi yang tertinggi terhadap sel HeLa masing-masing dengan perencatan
pertumbuhan sel sebanyak 53.5 dan 43.7%. Rawatan dengan ekstrak akueus daripada tiga strain K. alvarezii tidak
menunjukkan perencatan pertumbuhan terhadap titisan sel HeLa. Ekstrak aseton daripada rumpai laut Kappaphycus
mempamerkan perencatan pertumbuhan sel yang lemah dengan aktiviti perencatan hanya boleh diperhatikan dengan
rawatan 300 hingga 500 µg/mL daripada K. alvarezii strain Brown sahaja. Kajian lanjutan adalah dicadangkan untuk
mengenal pasti dan menulenkan komponen khusus antitumor untuk pembangunan terapi kanser.
Kata kunci: Antiproliferasi; Kappaphycus alvarezii; Kappaphycus striatum; perencatan tumbuhan
Seaweeds are considered to be a source of bioactive
compounds as they are able to produce a variety of
secondary metabolites characterized by a broad spectrum of
biological activities. Compounds with cytostatic, antiviral,
anthelmintic, antifungal and antibacterial activities have
been detected in green, brown and red algae (Lindequist
& Schweder 2001; Newman et al. 2003). More recently,
seaweeds are reported to be a rich source of antioxidant
compounds (Duan et al. 2006; Kuda et al. 2005; Lim et al.
2002). For example, chlorophylls, carotenoids, tocopherol
derivatives such as vitamin E and related isoprenoids,
which are structurally related to plant-derived antioxidants,
were found in some marine organisms including seaweeds
(Takamatsu et al. 2003). Antioxidants in biological systems
have multiple functions, including defense against oxidative
damage and participating in the major signaling pathways
of cells. Besides, some compounds from the seaweeds
have antibacterial activities with potential use as mosquito
control agents. Extracts from Eucheuma denticulatum have
exhibited antibacterial activity on Gram positive organisms
including Staphylococcus aureus and Streptococus pyogenes
(Al-Haj et al. 2009).
Seaweeds also contain bioactive substances with great
potential as antitumoral drugs, which lead to emerging
interests in the biomedical research in seaweeds (Michio et
al. 1984; de Sousa et al. 2007). Several species of seaweeds
are rich sources of polysaccharides and glycoproteins with
immune-stimulant, anticancer or antiviral activity (Abdel-
Fattah et al. 1974; de Sousa et al. 2007; Michio et al. 1984;
Nishino et al. 1989; Smit 2004). Certain algae have long
been used in traditional Chinese herbal medicine in cancer
treatment (Yamamoto et al. 1984). Red and green algae
have been shown to demonstrate protective effects against
mammary, intestinal and skin carcinogenesis (Yuan & Walsh
2006). Zandi et al. (2010) reported that cold water extract
of red alga, Gracilaria corticata, possessed biological
activity against tumor cells replication. In recent years,
much attention has been focused on fucoidan, a sulphated
polysaccharide derived from brown seaweeds. Recent
studies evidenced that fucoidan has strong antitumor activity
and exhibited important roles against human cancer cell lines
(Ly et al. 2005; Matsuda et al. 2010). Fucoidan was found
to be able to suppress the growth of tumor cells in vivo and
activate the immune system against tumors (Itoh et al. 1993;
Maruyama et al. 2003; Noda et al. 1990; Usui et al. 1980;
Yamamoto et al. 1984; Zhuang et al. 1995).
The two red seaweed species, K. alvarezii and K.
striatum, which are extensively distributed in Sabah, have
been uncovered as a novel source for a variety of compounds
such as dietary bers, vitamin C, α-tocopherol, minerals,
fatty acid and protein (Matanjun et al. 2008). However,
there is limited information about their biological activity
on cancer cell growth inhibition. The objectives of this study
were to screen and evaluate the anti-proliferative activities of
crude methanolic, acetonic and aqueous extracts of selected
strains of K. alvarezii and K. striatum. The information
compiled during the course of this study can be of use for
further development of cancer therapy.
Kappaphycus alvarezii (strains Crocodile, Giant and
Brown) and Kappaphycus striatum were collected from
Semporna, Sabah. The samples were washed with fresh
water and dried at room temperature for 1 week. The dried
seaweed samples were separately milled and subjected
to compound extractions. For aqueous extraction, dry
powder of seaweed was macerated with de-ionized water
and ltered through cotton wool and Whatman (No. 1)
lter paper to remove debris. The ltrate was lyophilized
using freeze dryer for 3 days. For each of extraction using
90% methanol and 70% acetone, approximately 100 g of
powdered seaweed samples were extracted using a soxhlet
apparatus. The methanol and acetone were purchased from
Sigma-Aldrich (St. Louis, MO, USA). About 500 mL of
each solvent was used to carry out the extraction in soxhlet
apparatus for a period of 24-72 h until the solvent becomes
colorless at 65±2°C. The solvent was evaporated using a
rotary vacuum evaporator to make the nal volume one-
fourth of the original volume. The methanolic, acetonic and
aqueous extracts were stored in -10°C for further analysis
of anti-proliferative assay in triplicate.
HeLa Cancer Cell Line CCL-23TM was purchased from
American Type Culture Collection (ATCC®, USA). Cells
were seeded and grown in RPMI (Roswell Park Memorial
Institute) media. They were maintained in 12.5 cm3 BD
FalconTM cell culture ask (California, USA) at 37°C in a
humidied atmosphere with 5% CO2. The RPMI medium
was replaced once every two days and passaging was
performed to maintain the adherent cell lines.
In order to observe the seaweed extracts responsiveness,
a cell proliferation assay was carried out. The inhibition
effects of methonolic, acetonic and aqueous extracts
on the growth of HeLa cells were evaluated in vitro
by the MTS assay. This method relies on the ability
of dehydrogenase enzymes in the metabolically
active cells to convert 3-(4,5-dimethylthiazol-2-yl)-
tetrazolium or MTS to a formazan precipitate. The Cell
Titer 96® Aqueous Non-Radioactive Cell Proliferation
Assay purchased from Promega (Madison, USA) was
used to determine the cell proliferation of HeLa cells in
the presence of different types of extracts (methanolic,
acetonic and aqueous) at different concentrations (50,
100, 200, 300, 400 and 500 μg/mL). The different
concentrations of each extracts were prepared from the
stock solutions by serial dilution.
A known number of HeLa cells (104) were incubated
in 96-well plates in a volume of 200 μL of culture medium
and permitted to adhere for 24 h before addition of test
compounds. About 100 μL of different concentrations
(50, 100, 200, 300, 400 and 500 μg/mL) of each extracts
(methanolic, acetonic and aqueous) were added to the
cells. After 48 h of exposure, the cells were washed with
100 μL of phosphate-buffered saline (PBS) and replaced
with fresh medium. Approximately 20 μL of CellTiter
96® AQueous One Solution Reagent was added into each
well of the 96-well assay containing the samples in
100 μL of culture medium. The plates were incubated
at 37°C in a humidified atmosphere with 5% CO2.
Following incubation for 4 h, the plates were read with
SPECTRAMax M2 ROM (Molecular Devices) microplate
reader at absorbance of 490 nm. The experiments were
performed twice in triplicate. The results were evaluated
by comparing the absorbance of the treated cells with the
absorbance of wells containing cell treated by the solvent
control. Conventionally, cell viability was estimated to
be 100% in the solvent control.
Percentage of cell growth inhibition versus extracts
concentration was calculated according to Patel et al.
(2009) as follow:
Percentage of cell growth inhibition = 100-[(A-B)/
(C-B)] ×100,
where A is the absorbance of sample; B is the absorbance
of blank and C is the absorbance of control.
MTS assay was carried out to investigate the inhibition
effects of methonolic, acetonic and aqueous extracts of
Kappaphycus seaweeds on the growth of HeLa cells and
the results are represented in Figures 1 to 4. Six different
concentrations (50, 100, 200, 300, 400 and 500 μg/
mL) of each extract (methanolic, acetonic and aqueous)
were applied. Figure 1 shows the percentage of growth
inhibition against 90% methanolic, 70% acetonic and
aqueous extracts of K. alvarezii strain Crocodile. Among
the three types of extracts, only methanolic extract from
200 to 500 μg/mL showed obvious anti-proliferative
activity against the HeLa cells. The highest percentage
(31.7%) of growth inhibition was observed with the
treatment using 300 μg/mL of methanolic extract. This was
followed by the treatment using methanolic extracts at 400,
500 and 200 μg/mL with 24.6, 16.5 and 4.0% of growth
inhibition, respectively. Treatments with 50 and 100 μg/mL
methanolic extracts and all acetonic and aqueous extracts
did not show any growth inhibition but they promoted
growth of the treated cells instead.
For the treatment with different extracts from K.
alvarezii strain Giant, only methanolic extract at 400 μg/
mL demonstrated growth inhibition (8.5%) as summarized
in Figure 2. Methanolic extract with other concentrations
and all the acetonic and aqueous extracts from K. alvarezii
strain Giant did not show any cell growth inhibition. While
for the treatment with K. alvarezii strain Brown extracts,
the highest growth inhibition (30.4%) was observed with
50 μg/mL of methanolic extract, as shown in Figure 3.
Increment of methanolic extract concentrations resulted
in decrement of growth inhibition as seen with 100 and
200 μg/mL of extracts demonstrated 7.9 and 5.9% of
growth inhibition, respectively. On the other hand, only
acetonic extract from this strain demonstrated positive anti-
proliferative activity against the HeLa cells as compared
with the other two strains (Crocodile and Giant). Increment
of acetonic extract from 300 to 500 μg/mL had parallel
increment in the inhibition percentage from 17.5 to 29.7%.
Figure 4 shows the percentage of cell growth inhibition
against concentrations of methanolic, acetonic and aqueous
extracts of K. striatum. The results indicated that all the
methanolic and aqueous extracts have positive inhibition
on the HeLa cell lines. Treatment with the aqueous extract
ranging from 50 to 500 μg/mL exhibited concentration
dependent anti-proliferative activity against HeLa cells
with 17.8 to 53.5% of cell growth inhibition. Whereas,
the inhibition effect of methanolic extract on cells growth
ranged from 6.2 to 43.7%. All acetonic extracts from K.
striatum did not inhibit, but promote, cell growth.
Marine algae contain many unidentied useful components
and physiologically active substances. Studies on
bioactivity of marine algae against cancer cell lines
have been reported in previous researches, where the
ndings have brought great promise to the development
of cancer treatment activities (Albano et al. 1990;
Berlinck et al. 1996). Some studies involved general
extractions of seaweeds while others applied extraction of
specic metabolites such as carotene, bromophenols and
carrageenan (Ly et al. 2005; Xu et al. 2004). In the present
study, 90% methanolic extracts, 70% acetonic extracts
and aqueous extracts of K. alvarezii and K. striatum were
studied for their potential to inhibit the growth of HeLa
cell lines. The most effective concentration to inhibit cell
growth was found to be 500 µg/mL of aqueous extract of
K. striatum followed by 500 µg/mL of methanolic extract
of same species, with 53.5 and 43.7% of growth inhibition,
respectively. These differences in antitumor activities may
be attributed to their different molecular weights, charge
characteristics and monosaccharide distributions (Dias et
al. 2005).
FIGURE 1. Percentage of growth inhibition of HeLa cell lines in the presence of 90%
methanolic, 70% acenotic and aqueous extracts of K. alvarezii strain Crocodile.
Data points show the mean ± SE for a minimum of three experiments
Concentration (μg/mL)
% Growth Inhibition
FIGURE 2. Percentage of growth inhibition of HeLa cell lines in the presence of
90% methanolic, 70% acenotic and aqueous extracts of K. alvarezii strain Giant.
Data points show the mean ± SE for a minimum of three experiments
Concentration (μg/mL)
% Growth Inhibition
FIGURE 3. Percentage of growth inhibition of HeLa cell lines in the presence of
90% methanolic, 70% acenotic, and aqueous extracts of K. alvarezii strain Brown.
Data points show the mean ± SE for a minimum of three experiments
Concentration (μg/mL)
% Growth Inhibition
FIGURE 4. Percentage of growth inhibition of HeLa cell lines in the presence of
90% methanolic, 70% acenotic and aqueous extracts of K. striatum. Data points
show the mean ± SE for a minimum of three experiments
Concentration (μg/mL)
% Growth Inhibition
Previous studies reported that alcoholic extracts
from plant samples exhibited several bioactivities such as
adaptogenic, anti-ammatory, anticonvulsant, sedative,
androgenic and immunopromoting activities (Xu et al.
1992). This might be the reason why methanolic extracts
from Kappaphycus seaweeds generally showed positive
growth inhibition to the HeLa cell lines as compared
with acetonic and aqueous extracts. Studies by Shao et al.
(1996) also reported that alcoholic extract from asparagus
shoots exhibited antitumor activities and Singh et al. (1992)
reported their fruit to be the source of bile-stimulating agent.
Reports from World Intellectual Property Organization
(2010) also indicated that methanolic extracts from various
seaweed species have demonstrated cytotoxic effect on
human cancer cell lines including HeLa, MCF-7 and MDA-
MB-231. Alcohol is found to be effective to extract active
compounds such as biophenols, lipids, saccharides, minerals
and small peptides due to their polarity. The potential
bioactive compounds in seaweed may interact with special
cancer associated receptors or cancer specic molecules to
trigger the mechanisms leading to cancer cell death.
Previous researches show that acetone-water mixtures
are good solvent systems for the extraction of polar
antioxidants (Lu & Yeap Foo 1999; Luximon-Ramma et
al. 2005; Sun 2002). Literature also describes that acetone
and water extracts of plant owers presented the best total
phenolic content (Liu et al. 2009). Nyenje and Ndip (2011)
suggested that an organic solvent, in particular, acetone
is a good solvent as it extracts more active compounds
from plant material. Flavonoids and steroids have also
been reported to be extracted using acetone according to
Abdulmalik et al. (2011) and Eloff (1998). Besides, van
Slambrouck et al. (2007) demonstrated that crude aqueous
extracts of L. tridentata (Creosote Bush) and J. communis
L. (Juniper Berry) have signicantly decreased the growth
of MCF-7/AZ breast cancer cells. Traditional medicines
are often prepared by water extraction, but water-soluble
impurities present challenges for conventional isolation
methods, such as chromatography or crystallization (Bart
2011). Water preferentially extracts polar compounds but
they need some special post treatment such as ion exchange
or caustic wash for further purication (Jones & Kingkorn
Further studies are suggested to identify the specic
anti-tumoral compounds in the targeted extracts.
Purication can be carried out to obtain the bioactive
compounds for the development of cancer therapy.
Besides, identication of specic metabolites such as
carotene, bromophenols and carrageenan from seaweeds
is also recommended for the discovery of potential anti-
proliferative or anticancer compounds.
The authors wish to thank the Ministry of Education (MOE),
Malaysia for funding the research under the Fundamental
Research Grant Scheme (FRG0201-SG-1/2010).
Abdel-Fattah, A.F., Hussein, M.M. & Salem, H.M. 1974. Studies
of the purication and some properties of sargasan, a sulphated
heterpolysaccharide from Sargassum linifolium. Carbohydrate
Research 33: 9-17.
Abdulmalik, I.A., Sule, M.I., Musa, A.M., Yaro, A.H., Abdullahi,
M.I., Abdulkadir, M.F. & Yusuf, H. 2011. Isolation of steroids
from acetone extract of Ficus iteophylla. British Journal of
Pharmacology and Toxicology 2: 270-272.
Albano, R.M., Pavao, M.S.G., Mourao, P.A.S. & Mulloy, B. 1990.
Structural studies of a sulfated L-galactan from Styela plicata
(Tunicate): Analysis of the Smith-degraded polysaccharide.
Carbohydrate Research 208: 163-174.
Al-Haj, N.A., Mashan, N.I., Shamsudin, M.N., Mohamad, H.,
Vairappan, C.S. & Sekawi, Z. 2009. Antibacterial activity in
marine algae Eucheuma denticulatum against Staphylococcus
aureus and Streptococcus pyogenes. Research Journal of
Biological Sciences 4: 519-524.
Bart, H.J. 2011. Extraction of natural products from plants - An
introduction. In Industrial Scale Natural Products Extraction.
1st ed., edited by Bart, H.J. & Pilz, S. Weinheim: Wiley-VCH
Verlag GmbH & Co. KGaA. pp. 1-25.
Berlinck, R.G.S., Ogawa, C.A., Almeida, A.M.P., Sanchez,
M.A.A., Malpezzi, E.L.A., Costa, L.V., Hajdu, E. & de Freitas,
J.C. 1996. Chemical and pharmacological characterization
of halitoxin from Amphimedon viridis (Porifera) from the
southeastern Brazilian coast. Comparative Biochemistry
and Physiology Part C: Pharmacology, Toxicology and
Endocrinology 115: 155-163.
de Sousa, A.P.A., Torres, M.R., Pessoa, C., de Moraes, M.O., Filho,
F.D.R., Alves, A.P.N.N. & Costa-Lotufo, L.V. 2007. In vivo
growth-inhibition of Sarcoma 180 tumor by alginates from
brown seaweed Sargassum vulgare. Carbohydrate Polymers
69: 7-13.
Dias, P.F., Siqueira, J.M., Vendruscolo, L.F., de Jesus Neiva, T.,
Gagliardi, A.R., Maraschin, M. & Ribeiro-do-Valle, R.M. 2005.
Antiangiogenic and antitumoral properties of a polysaccharide
isolated from the seaweed Sargassum stenophyllum. Cancer
Chemotherapy and Pharmacology 56: 436-446.
Duan, X.J., Zhang, W.W., Li, X.M. & Wang, B.G. 2006. Evaluation
of antioxidant property of extract and fractions obtained from
a red alga, Polysiphonia urceolata. Food Chemistry 95: 37-43.
Eloff, J.N. 1998. Which extractant should be used for the screening
and isolation of antimicrobial components from plants? Journal
of Ethnopharmacology 60: 1-8.
Itoh, H., Noda, H., Amano, H., Zhuang, C., Mizuno, T. & Ito, H.
1993. Antitumor activity and immunological properties of
marine algal polysaccharides, especially fucoidan, prepared
from Sargassum thunbergii of phaeophyceae. Anticancer
Research 13: 2045-2052.
Jones, W.P. & Kingkorn, A.D. 2006. Extraction of plant secondary
metabolites - Natural Products Isolation. In Methods in
Biotechnology. vol. 20, 2nd ed., edited by Sarker, S.D., Latif, Z.
& Gray, A.I. Totowa, New Jersey: Humana Press. pp. 323-351.
Kuda, T., Tsunekawa, M., Goto, H. & Araki, Y. 2005. Antioxidant
properties of four edible algae harvested in the Noto Peninsula,
Japan. Journal of Food Composition and Analysis 18: 625-633.
Lim, S.N., Cheung, P.C.K., Ooi, V.E.C. & Ang, P.O. 2002.
Evaluation of antioxidative activity of extracts from a brown
seaweed, Sargassum siliquastrum. Journal of Agricultural
and Food Chemistry 50: 3862-3866.
Lindequist, U. & Schweder, T. 2001. Marine biotechnology. In
Sun, S.G. 2002. Reply to the comments on the paper by Zheng
M.S. and Sun S.G. entitled ‘In situ FTIR spectroscopic
studies of CO adsorption on electrodes with nanometer-
scale thin lms of ruthenium in sulphuric acid solutions’
by Pecharromán, C., Cuesta, A. & Gutiérrez, C. Journal of
Electroanalytical Chemistry 529: 155-158.
Takamatsu, S., Hodges, T.W., Rajbhandari, I., Gerwick, W.H.,
Hamann, M.T. & Nagle, G. 2003. Marine natural products
as novel antioxidant prototypes. Journal of Natural Products
66: 605-608.
Usui, T., Asari, K. & Mizuno, T. 1980. Isolation of highly puried
“Fucoidan” from Eisenia bicylclis and its anticoagulant and
antitumor activities. Agricultural and Biological Chemistry
44: 1965-1966.
van Slambrouck, S., Daniels, A.L., Hooten, C.J., Brock, S.L.,
Jenkins, A.R., Ogasawara, M.A., Baker, J.M., Adkins, G.,
Elias, E.M., Agustin, V.J., Constantine, S.R., Pullin, M.J.,
Shors, S.T., Kornienko, A. & Steelant, W.F.A. 2007. Effect
of crude aqueous medicinal plant extracts on growth and
invasion of breast cancer cells. Oncology Reports 17: 1487-
Xu, J.P., Xu, R.S. & Li, X.Y. 1992. Four new cycloartane saponins
from Curculigo orchioides. Planta Medica 58: 208-210.
Xu, N., Fan, X., Yan, X. & Tseng, C.K. 2004. Screening marine
algae from China for their antitumor activities. Journal of
Applied Phycology 16: 451-456.
Yamamoto, I., Takahashi, M., Suzuki, T., Seino, H. & Mori, H.
1984. Antitumor effect of seaweeds. IV. Enhancement of
antitumor activity by sulfation of a crude fucoidan fraction
from Sargassum kjellmanianum. The Japanese Journal of
Experimental Medicine 54: 143-151.
Yuan, Y.V. & Walsh, N.A. 2006. Antioxidant and antiproliferative
activities of extracts from a variety of edible seaweeds. Food
and Chemical Toxicology 44: 1144-1150.
Zandi, K., Tajbakhsh, S., Nabipour, I., Rastian, Z., Youse, F.,
Sharaah, S. & Sartavi, K. 2010. In vitro antitumor activity
of Gracilaria corticata (a red alga) against Jurkat and molt-4
human cancer cell lines. African Journal of Biotechnology
9: 6787-6790.
Zhuang, C., Itoh, H., Mizuno, T. & Ito, H. 1995. Antitumor active
fucoidan from the brown seaweed, umitoranoo (Sargassum
thunbergii). Bioscience, Biotechnology, and Biochemistry
59: 563-567.
Tiek Ying Lau, Cassandra Sze Yii Chew
& Wilson Thau Lym Yong*
Biotechnology Research Institute
Universiti Malaysia Sabah, Jalan UMS
88400 Kota Kinabalu, Sabah
Delbora Fenny Vittal
School of Science and Technology
Universiti Malaysia Sabah, Jalan UMS
88400 Kota Kinabalu, Sabah
*Corresponding author; email:
Received: 10 March 2013
Accepted: 24 April 2014
Biotechnology, vol. 10, edited by Rehm, H.J. & Reed, G.
Weinheim: Wiley-VCH. pp. 441-484.
Liu, S.C., Lin, J.T., Wang, C.K., Chen, H.Y. & Yang, D.J. 2009.
Antioxidant properties of various solvent extracts from lychee
(Litchi chinenesis Sonn.) owers. Food Chemistry 114: 577-
Lu, Y. & Yeap Foo, L. 1999. The polyphenol constituents of grape
pomace. Food Chemistry 65: 1-8.
Luximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla,
K.P., Dexter, D.T. & Aruoma, O.I. 2005. Characterization of
the antioxidant functions of avonoids and proanthocyanidins
in Mauritian black teas. Food Research International 38:
Ly, B.M., Buu, N.Q., Nhut, N.D., Thinh, P.D., Thi, T. & Van, T.
2005. Studies on fucoidan and its production from Vietnamese
brown seaweeds. Asean Journal for Science and Technology
Development (AJSTD) 22: 371-380.
Matanjun, P., Mohamed, S., Mustapha, N.M., Muhammad, K. &
Ming, C.H. 2008. Antioxidant activities and phenolics content
of eight species of seaweeds from north Borneo. Journal of
Applied Phycology 20: 367-373.
Maruyama, H., Tamauchi, H., Hashimoto, M. & Nakano, T. 2003.
Antitumor activity and immune response of Mekabu fucoidan
extracted from Sporophyll of Undaria pinnatida. In vivo 17:
Matsuda, Y., Teruya, K., Matsuda, S., Nakano, A., Nishimoto,
T., Ueno, M., Niho, A., Yamashita, M., Eto, H., Katakura,
Y. & Shirahata, S. 2010. Anti-cancer effects of enzyme-
digested fucoidan extract from seaweed Mozuku. Animal Cell
Technology: Basic & Applied Aspects 16: 295-300.
Michio, F., Noriko, I., Ichiro, Y. & Terukazu, N. 1984. Purication
and chemical and physical characterization of an antitumor
polysaccharide from the brown seaweed Sargassum fulvellum.
Carbohydrate Research 125: 97-106.
Newman, D.J., Cragg, G.M. & Snader, K.M. 2003. Natural
products as source of new drugs over the period 1981-2002.
Journal of Natural Products 66: 1022-1037.
Nishino, T., Yokoyama, G., Dobashi, K., Fujihara, M. & Nagumo,
T. 1989. Isolation, purication and characterization of fucose-
containing sulphated polysaccharides from the brown seaweed
Ecklonia kurome and their blood-anticoagulant activities.
Carbohydrate Research 186: 119-129.
Noda, H., Amano, H., Arashima, K. & Nisizawa, K. 1990.
Antitumor activity of marine algae. Hydrobiologia 204-205:
Nyenje, M. & Ndip, R.N. 2011. In-vitro antimicrobial activity of
crude acetone extract of the stem bark of Combretum molle
against selected bacterial pathogens. Journal of Medicinal
Plants Research 5: 5315-5320.
Patel, S., Gheewala, N., Suthar, A. & Shah, A. 2009. In-vitro
cytotoxicity activity of Solanum nigrum extract against Hela
cell line and Vero cell line. International Journal of Pharmacy
and Pharmaceutical Sciences 1: 38-46.
Shao, Y., Chin, C.K., Ho, C.T., Ma, W., Garrospm, S.A. & Huang,
M.T. 1996. Anti-tumor activity of the crude saponins obtained
from asparagus. Cancer Letters 104: 31-36.
Singh, A.K., Hussain, A., Srivastava, G.N., Misra, L.N., Gupta,
M.M., Virmani, O.P., Popli, S.P. & Abraham, Z. 1992.
Dictionary of Indian Medicinal Plants. Lucknow, India:
Central Institute of Medicinal and Aromatic Plants (CIMAP).
Smit, A.J. 2004. Medicinal and pharmaceutical uses of seaweed
natural products: A review. Journal of Applied Phycology 16:
... This low cytotoxic effect was demonstrated by high IC 50 values (KAEA: 106.705 ± 0.41 µg/mL, KAC: 156.074 ± 0.19 µg/mL and KAE: 209 ± 0.21) µg/mL) than Cisplatin in KB-3-1 cells (6.90 µg/mL) (Campos et al., 2017). Previous studies have also cited the low cytotoxic effect of K. alvarezii on other cancer cell lines, such as HeLa cervical cancer line (Lau et al., 2014) and HepG2 hepatoma cell line (Ariffin et al., 2014). However, Chang et al. (2017) have observed a reduction in the cell growth of MCF-7 (breast cancer cell line) from 84.91% to 0.81% by K. alvarezii and the IC 50 value was 4.1 ± 0.69 mg/mL. ...
... This low cytotoxic effect was demonstrated by high IC 50 values (KAEA: 106.705 ± 0.41 µg/mL, KAC: 156.074 ± 0.19 µg/mL and KAE: 209 ± 0.21) µg/mL) than Cisplatin in KB-3-1 cells (6.90 µg/mL) (Campos et al., 2017). Previous studies have also cited the low cytotoxic effect of K. alvarezii on other cancer cell lines, such as HeLa cervical cancer line (Lau et al., 2014) and HepG2 hepatoma cell line (Ariffin et al., 2014). However, Chang et al. (2017) have observed a reduction in the cell growth of MCF-7 (breast cancer cell line) from 84.91% to 0.81% by K. alvarezii and the IC 50 value was 4.1 ± 0.69 mg/mL. ...
Oral infections (gingivitis and periodontitis) and oral cancer are under rise in developing countries. Products with antibacterial and antioxidant activity can provide a combined approach to treat oral disorders. Marine algae is a reservoir of rich bioactive phytochemicals and are considered to be potential candidates in natural pharmaceutics. Kappaphycus alvarezii is a marine algae widely cultivated for food applications. The current study investigates the phyto-pharmacological properties of K. alvarezii for oral diseases. Different polarity solvents (ethanol, ethyl acetate and chloroform) were used in the extraction of bioactive components of K. alvarezii, partially characterized by GCMS and studied for their antioxidant, antimicrobial and cytotoxic activity. All the K. alvarezii extracts exhibited good antioxidant activity and potential efficacy against oral pathogenic microbes. Although K. alvarezii extracts were found to be safe for normal Vero cells, their inhibitory activity on oral cancer cells (KB-3-1 cell lines) was found to be low. These findings have suggested the possibility of K. alvarezii using in the dental preparation/product to combat oral infections.
... Kappaphycus striatum has showed cell growth inhibition activity against HeLa (Cervical adenocarcinoma) cell line and this study explains that the molecular weight, monosaccharide sequence, bond formation and charge of molecules are the characteristics of bioactive compounds present in seaweed extracts which support seaweeds to act as an anticancer agent [22] . Zandi, et al., 2010 [42] has found that the aqueous extract of Sargassum oligocystum shows cytotoxic activity on K562 (Human chronic myelogenous leukemia) and Human Daudi (Burkitt Lymphoma) cell lines in dose dependet manner. ...
Full-text available
Seaweed is an enormous resource comprised with natural bioactive compounds with several therapeutic effects including anticancer activity. In this context, the biochemical composition of seaweed plays a major role. Many biochemical compounds isolated from seaweed, fractions of seaweed and crude extracts has revealed ability of seaweed to fight against several cancer types. In this contrast seaweed extracts inhibit cancer cell growth and proliferation by inducing apoptosis and by inhibiting metastasis activity. In this review, biochemical and anticancer properties of seaweeds are discussed and this will provide the basic information to develop a novel chemotherapeutic drug to challenge the cancers.
... According to the results, the extract of S. wightii-synthesized nanoparticles showed the best anticancer activity (at 10 lg/ml and 24 h). It has been previously reported by early researchers [30][31][32] stated that red seaweed Gracillaria corticata, Kappaphycus alvarezii, Kappaphycus striatum, brown seaweed S. wightii, and green seaweed Ulva fasciata all show anti proliferative activity against HeLa cells and also show an inhibitory effect against on HeLa, respectively. But still, more scientific findings are required to assess the anticancer activities of other compounds from seaweeds to find the most efficient resources of anticancer components for further clinical experiments. ...
The biological synthesis of the metallic nanoparticle is gaining more interest, as it is more reliable and eco-friendlier. Recently, macroalgae are widely used in pharmaceutical research for their known biological activities. The green synthesized silver nanoparticles (AgNPs) were characterized using UV–visible spectrophotometer, HPLC, FTIR, SEM, and XRD methods. The surface plasmon resonance peak in absorption spectra for synthesized AgNPs showed an absorption peak at 420 nm in a UV–visible spectrophotometer. The HPLC of seaweed methanolic extract showed the presence of six secondary metabolites. The functional biomolecules such as amino acids, esters, polysaccharides, phenols, alkanes, chlorophyll, protein amide-I band, protein amide II band, carboxylic group, glycosidic linkage, carbohydrate, and protein groups responsible for the synthesis of AgNPs were characterized by FTIR. The SEM results revealed a spherical morphology for the AgNPs. The XRD pattern confirms the crystalline structure of the synthesized AgNPs. Additionally, the biologically synthesized AgNPs exhibited dose-dependent cytotoxicity against human cervical cancer cell lines and when incubated for 24 and 48 h, respectively.
... Further investigations are aimed at cutting down the capital and operational costs of bioreactors. Additionally, bioprocess engineering of cell and tissue cultures created a potential platform for the controlled production of high value chemicals such as pharmaceuticals and nutraceuticals from marine seaweeds (Rorrer and Cheney 2004), including Eucheuma and Kappaphycus which could provide rich sources of valuable, bioactive compounds (Farah Diyana et al. 2015;Holdt and Kraan 2011;Kumar et al. 2008;Lau et al. 2014;Matanjun et al. 2008;Raman and Doble 2014;Reddy et al. 2008). However, the manufacturing capacity, chain of custody and security of supply are found lacking and required for safer and more efficacious biopharmaceuticals production from valuable species. ...
Full-text available
Among the red algae, Kappaphycus and Eucheuma are the two most commercially important carrageenophytes farmed extensively in Southeast Asian countries; they rank top in production in terms of volume of raw material produced. The farming of carrageenophytes has emerged as a successful enterprise and provides a promising, alternative livelihood option for low-income, coastal communities in a number of countries. In 2014, carrageenophyte production worldwide, surpassed other red seaweeds and was placed at the top of the production rankings with 10.99 million MT wet weight (77% of total production of farmed red seaweed) and Indonesia being a major producer. However, over time, the productivity of the crop (carrageenophytes) has declined in some regions due to sourcing of seedlings from single, selected genetic stocks considered to have higher yield potential which resulted in strain fatigue, or loss of vigour. The incidences of disease and epiphytic infestations are on rise in recent times which have severely affected biomass production, as well as the yield and product quality (carrageenan). In order to circumvent the crop productivity issues arising from clonal propagation, the raising of planting materials from spores, derived through the red algal sexual reproductive cycle, has been initiated to support the sustainability of selected, farmed carrageenophytes. Alternatively, in vitro tissue culture techniques have also been explored to not only rejuvenate the vigour of seedlings (i.e. the out-planting material) but also to seek seedlings resilient to stress, disease and epiphytes to act as an invigorated mother stock. These efforts have succeeded to a great extent in the development of appropriate techniques for explant culture, callus induction, callus sub-culture and regeneration to micro-propagules with improved traits. The present chapter briefly summarizes the developments and success achieved in micro-propagation of Kappaphycus and Eucheuma and also provides pointers to both gaps and priority areas for future research required for the advancement of sustainable farming of these carrageenophytes.
Full-text available
Macroalgae have the potential of a bioactive compound that can be used as the main ingredient in functional beverages. The content of bioactive compounds in macroalgae such as natural pigments, sulfated polysaccharides, antioxidants have been studied and it is very beneficial for health. Macroalgae, which are used as main ingredient in functional beverage, must be contain bioactive compound that are beneficial for health and also must be free from microbiological and heavy metal contamination. This study aims to determine bioactive compound activity and the potential of macroalgae as the primary raw material in the formulation of functional beverages. Studied on the formulation of functional beverages with macroalgae as raw materials have been carried out in the last few decades. All types of macroalgae have the potential to be used as raw material or main ingredient for functional beverage. The formulation of macroalgae functional beverages with other additives can improve the quality of the final product. The addition of natural scented ingredients and containing bioactive compounds can increase the value of taste and increase the nutritions in functional beverage products.
In the age of increasing awareness of our planet’s limited resources, utilization of plant biomass not only for food but also for fuel and chemicals becomes an essential part of a more sustainable economy. Marine plants such as seaweeds have an especially high potential compared to land plants as the earth’s surface is mainly covered by water and they can be considered still under-utilized. This scenario is currently changing with the increasing areas of seaweed farms close to the shore in the Indo-Pacific area as well as the development of off-shore concepts on floats in the Atlantic Ocean. Of the different types of seaweeds brown and red seaweed have been utilized most so far. The major products obtained from red seaweeds today are carrageenans. Kappaphycus here plays a central role as it is the dominant source for kappa-carrageenan. While Kappaphycus, as any other seaweed, contains many more components, the production process is optimized for highest carrageenan yields. The modern zero-waste policy, however, requires production processes that will allow utilization of any by-product. Biorefinery approaches have been developed for many land plants over the last decade. Can these concepts be transferred to seaweeds as well? This chapter evaluates the challenges and opportunities for optimal utilization of the crude biomass from Kappaphycus seaweeds, with special focus on the latest applications and processing technologies for its main components, including carrageenan as a major valorization product.
Some recent studies indicate that seaweeds are a rich source of bioactive compounds that may have significant roles in health promotion, especially for disease prevention and treatment. Seaweeds remain a relatively untapped resource with a huge potential as edible foods, food ingredients, cosmetics, agrichemicals, fishmeal, biomaterials and bioenergy molecules while having a significant role in the ecosystem and economic revenues. The global production of seaweed has been increasing annually following the demand by the hydrocolloid industry as well as for consumer food products. There must be continuous efforts to increase the productivity, quality and constant supply of seaweeds using the latest eco-friendly farming practices and technology. In addition, seaweeds are also useful in the production of biofuel, owing to their high carbohydrate, nitrogen and sulfur content, which can be converted into biogas, biobutanol or bioethanol. The anti-inflammation property of seaweeds has made them a candidate to treat inflammation-related conditions such as allergy and asthma.
Scientific research has always been concerned with aspects of human health. There are several systems of medicines besides the globally accepted allopathy, which are based on compounds originating from natural products. Recent research has been centred around validation of the traditional knowledge on medicinal products. The traditional systems in India, China and forklore medicines in other parts of the world have indicated the potential of natural products consist of various chemical compounds that could be used as drugs. The search for drugs against five major dreadful diseases namely, cancer, AIDS, heart disease, diabetes and pulmonary disorders that attack the present day human from natural products has been in progress for some time. Microbes, plants and animals are the sources of natural products. In the past five decades, the research on bioactive chemicals from marine algae has been incited and several compounds with biological activity were isolated from algae. Generally, these are secondary metabolites produced for chemical defence against the biotic pressure of predators, consumers and epibionts. These potential drugs are now attracting considerable attention from the pharmaceutical industries due to the necessity of identifying substances that could be utilized for novel therapeutic purposes. Several compounds such as alginate, carrageenans, sulphated and halogenated polysachcharise and other derivatives have been shown to provide drugs that could be antiviral, anticancer and antimicrobial. The present account is on the potential of marine macro-algae for medicinally important products.
Full-text available
The antioxidant capacities of the acetone, methanol and water extracts of hot-air dried lychee (Litchi chinenesis Sonn.) flowers were estimated with Trolox equivalent antioxidant capacity (TEAC) assay, reducing power and 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) radical-scavenging assay. The contents of antioxidant components in these extracts were also determined. Results showed that the highest and lowest contents of these components including phenols, flavonoids and condensed tannins were found in acetone and water extracts, respectively. The antioxidant activities of the lychee flower extracts for all assays were in the order: acetone extract>methanol extract>water extract. The contents of antioxidant components in these extracts were correlated with antioxidant activities.
Full-text available
Sulfated fucans are among the most widely studied of all the sulfated polysaccharides of plant origin that exhibit biological activities in mammalian systems. In this report fucoidans from some Vietnamese Sargassum species such as S. polycystum, S. oligocystum, S. mcclurei, S. swartzii and denticaprum were extracted and fractionated on a DEAE-Sephadex A-25 column. On the basis of chemical and spectral analyses, the fucoidan fractions obtained were found to be the sulfated fucogalactans containing sulfate ester groups and uronic acid, and composed essentially of fucose and galactose, as well as a minor amount of other sugars. The polysaccharide fractions were tested for anticancer activity. The primarily obtained results showed that all fucoidan fractions isolated from S. swartzii demonstrate bioactivity effects against cancer cells, while fraction F5 with a highest sulfate content exhibits the strongest anti-invasion activity. This indicates that sulfate content plays an important role in the anticancer activity of the brown algal fucoidans. A laboratory scale pilot for fucoidan production from Vietnamese brown seaweeds has been set with a capacity of 500 g of crude fucoidan per day.
Covering the latest technologies in process engineering, this handbook and ready reference features high pressure processing, alternative solvents and processes, extraction technologies and biotransformations -- describing greener, more efficient and sustainable techniques. The result is an expert account of engineering details from lab-scale experiments to large-scale industrial design. The major focus is on the engineering aspects of extraction with organic and supercritical solvents, ionic liquids or surfactant solutions, and is supplemented by aspects of both up- and downstream processing, biotransformation, as well as a survey of typical products in food, pharmaceutical and cosmetic applications. This is rounded off by market developments, economic considerations and regulations requirements in the field. Authored by experts from leading industrial and academic institutions, this is essential reading for the hands-on scientist and office manager alike.
Drug resistance by clinically important pathogens is now a worldwide problem with far-reaching consequences especially considering that the emergence of drug resistance is now outpacing the development of new drugs. Plants have been used for many generations for healing purposes, and screening of extracts of these plants has often yielded positive outcomes. This study was aimed at evaluating the antibacterial potential of the stem bark of Combretum molle, in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs to address the growing antimicrobial resistance. Various solvents were used for plant extraction. The agar well diffusion technique was used to screen for antimicrobial activity of the solvent extracts against Helicobacter pylori PE 252C, Streptococcus pyogenes ATCC 49399, Pseudomonas aeruginosa ATCC 15442 and Plesiomonas shigelloides ATCC 51903. Minimum inhibitory concentration (MIC 50) of the most active extracts was determined by the broth dilution method. Fisher's exact test indicated a high antimicrobial activity with zones of inhibition ranging from 0 to 32 mm. Acetone was the most potent extract with its MIC 50 ranging from 0.078 to 5.0 mg/ml. There was no statistically significant difference (P>0.05) in the potency of four extracts (acetone, methanol, ethanol and ethyl acetate) and antibiotic (ciprofloxacin), which served as positive control. Therefore, the acetone extract of C. molle contain therapeutically useful compounds, justifying the use of the plant in traditional medicine.
The acid-extractable, water-soluble, polysaccharide material of the brown alga Sargassum linifolium has been fractionated by using lead acetate and barium hydroxide, cetylpyridinium chloride, and copper acetate, and by chromatography on DEAE-cellulose and DEAE-Sephadex. A neutral, laminaran-like glucan and a sulphated heteropolysaccharide (sargassan), composed of D-glucuronic acid, D-mannose, D-galactose, D-xylose, L-fucose, and a protein moiety, were obtained. The latter polysaccharide could not be freed from protein. On partial hydrolysis, sargassan afforded three neutral oligosaccharides, together with a dialysable acidic fragment, a non-dialysable water-soluble portion, and the protein moiety. The backbone of sargassan seems to be composed of glucuronic acid, mannose, and galactose residues with partially sulphated side-chains composed of galactose, xylose, and fucose residues. Sargassan showed high anticoagulant activity.
A polysaccharide isolated from a hot-water extract of Sargassum fulvellum and purified by gel-filtration chromatography on Sepharose 4B inhibited the growth of subcutaneous Sarcoma-180 in mice. The purified, active substance appeared to be sodium alginate having a mol. wt. of 33,400 and a molar ratio of mannuronic acid to guluronic acid of 2.78.