Content uploaded by Irina Rezvyakova
Author content
All content in this area was uploaded by Irina Rezvyakova on Dec 25, 2014
Content may be subject to copyright.
An additive problem with the Fourier coefficients
of holomorphic non-cusp forms
Irina Rezvyakova
Steklov Mathematical Institute, Moscow
1–5 December 2014
An additive-type problem
An additive problem
S=X
an−bm=l,
n≤N
a(n)a(m),
where a,b,lare positive integers, which can slightly grow with N.
A trivial estimate
SεN1+ε,
if the coefficients a(n) satisfy the Ramanujan-Petersson conjecture.
Applications
In all problems, where we have to evaluate
2T
Z
T
L1
2+it
2
dt,
or 2T
Z
T
L1
2+itη21
2+it
2
dt,
where
L(s) =
+∞
X
n=1
a(n)
nsfor Re s>1
and η(s) is a short Dirichlet polynomial.
Applications
The last mentioned integral arises when we want
1. To prove an analogue of Selberg theorem, that L-function has
a positive proportion of its non-trivial zeros on the critical
line.
2. To break a convexity bound for L-function on the critical line.
3. To prove that log L(1/2 + it ) has “normal distribution”.
Normal distribution of L-functions on the critical line
Let κa,bdenote the characteristic function of the interval (a,b),
then
2T
Z
T
κa,blog |L(1/2 + it)|
√cLπlog log Tdt =T
b
Z
a
e−πu2du +o(T),
or even
2T
Z
T
κa,b log |L1(1/2 + it)| − log |L2(1/2 + it)|
p(c1+c2)πlog log T!dt
=T
b
Z
a
e−πu2du +o(T).
Selberg density theorem
To prove such value distribution results, we need a special density
theorem for a given L-function.
-
6
01
1
2σ
T
Let N(σ, T) be the number of zeros of
L(s) in the region Re s≥σ, where
1/2≤σ≤1. Then there is a constant
a>0 such that the following estimate
holds:
N(σ, T)T1−a(σ−1
2)log T.
The proof of Selberg density theorem
Let
Jσ(T) =
2T
R
T|L(σ+it)η2(σ+it)−1|2dt.
The Selberg density theorem follows by standart arguments from
the following estimate
Jσ(T)T1−a(σ−1/2).
Choosing appropriate η(s), we find
J1/2(T)T,J3/2(T)T1−a.
Now Gabriel’s convexity theorem yields the desired estimate.
Selberg theorem on the zeros of L(s) on the critical line
The Riemann hypothesis: all non-trivial zeros of ζ(s) lie on the
critical line Re s= 1/2.
A. Selberg (1942): a positive proportion of non-trivial zeros of ζ(s)
lie on the critical line Re s=1
2.
Detecting zeros on the critical line
Let F(t) be a real-valued function,
J(t) =
t+H
R
t|F(u)|du,I(t) =
t+H
R
t
F(u)du
. If J(t)>I(t) then F
has a sign change in (t,t+H), and thus a zero of odd order on
this interval.
If E={t∈(T,2T) : J(t)>I(t)}, then it is easy to show that F
has µ(E)H−1zeros on (T,2T).
For a given L-functions we want to establish that
µ(E)T,while H(log T)−1.
Detecting zeros on the critical line
We suppose, that L(s) =
+∞
P
n=1
a(n)
nssatisfies the following functional
equation
Λ(s) := HL(s)L(s) = Λ(1 −s),
where HL(s) = θAsQk
j=1 Γ(λjs+µj) and |θ|= 1, A>0, λj>0,
Re µj≥0 and choose
F(t)=Λ1
2+it|η1
2+it|2,
Detecting zeros on the critical line
η(s) = X
ν<√X
α(ν)
νs+ 2 X
√X≤ν≤X
α(ν)
νs
log X/ν
log X
and (L(s))−1
2=
+∞
P
n=1
α(n)
ns.
Detecting zeros on the critical line
Define
M(t) =
t+H
Z
t
L(1/2 + iu)η2(1/2 + iu)du −H.
Then
J(t)≥c
t+H
Z
t|L(1/2 + iu)η2(1/2 + iu)|du ≥c(H− |M(t)|).
Detecting zeros on the critical line
If we show that
|M(t)|<H/3,|I(t)|<cH/3
then |I(t)|<J(t) and, thus, there is a zero of L(1/2 + iu) on
(t,t+H).
Detecting zeros on the critical line
For certain L-functions one can show (and, moreover,
simultaneously) that
2T
Z
T
|I(t)|2dt =OTH
log T,
2T
Z
T
|L(1/2+it)η2(1/2+it )|2dt =O(T).
From the last estimate we deduce later that
T
Z
0|M(t)|2dt =OTH
log T.
Thus,
|I(t)| ≤ cH
3and |M(t)| ≤ H
3
outside a set of measure OT
Hlog T. Choosing H=A
log Twe get
that µET.
Detecting zeros on the critical line
We now prove the estimate
2T
Z
T
|M(t,H)|2dt =OTH
log T.
Using the Cauchy inequality we get
|M(t,H)|=
t+H
Z
t
(L(1/2 + iu)η2(1/2 + iu)−1)du
≤
3/2
Z
1/2
(L(σ+it)η2(σ+it)−1)dσ
+|(t→t+H)|+O(X−a/4)
with abeing an arbitrary positive number less than 1.
Proof of the mean-estimate for M(t)
Also,
3/2
Z
1/2
(L(σ+it)η2(σ+it)−1)dσ
2
≤
3/2
Z
1/2
Xa
2(1
2−σ)dσ·
3/2
Z
1/2
Xa
2(σ−1
2)L(σ+it)η2(σ+it)−1
2dσ.
Setting, for example, a=1
2, we obtain from the estimate on Jσ(T)
2T
Z
T
|M(t,H)|2dt =OT/log2X=O(TH/log T).
Selberg theorem for linear combination of L-functions
If we have a linear combination of two (or more) L-functions
c1L1(s) + c2L2(s),
with a functional equation but without an Euler product, then
it has many non-trivial zeros outside the critical line.
Selberg theorem for linear combination of L-functions
But if we can prove the mean-value estimate
2T
Z
T
|Lj(1/2 + it)η2
j(1/2 + it)|2dt =O(T),
and Lj(s) are independent, then we can prove the value
distribution result for
log |L1(1/2 + it)| − log |L2(1/2 + it)|
which implies that our linear combination of L-functions has a
positive proportion of non-trivial zeros on the critical line.
Additive divisor problem
X
m−n=l,n≤N
τ(m)τ(n) = NPl(log N) + R.
History:
A. Ingham (1927): first main term.
T. Estermann (1931): RN11/12+ε.
D.R. Heath-Brown (1979): RN5/6+ε.
J.-M. Deshouillers, H. Iwaniec (1982): RN2/3+ε.
The case am-bn = l:
W. Duke, J.B. Friedlander, H. Iwaniec (1994): Ra,b,lN8/9+ε.
Additive problem for modular forms
X
m−n=l,n≤N
a(m)a(n)R.
History:
A. Good (1982): RN2/3+ε(holomorphic modular forms).
T. Meurmann (1987): RN2/3+ε(Maass forms).
H. Iwaniec, J.B. Conrey (2001): RN8/9+εcusp forms for
congruence groups.
The case am-bn = l:
J.L. Hafner (1983-87): both cases (implicit result).
V. Blomer, G. Harcos, P. Sarnak, P. Michel. E. Kowalski,
J. Vanderkam (2001-2007): congruence subgroups (holomorphic or
Maass).
Circle method
Theorem
Let δ(k) = (1,if k= 0,
0,else.
Then
δ(k) = X∗
X
q≤Q<a∗≤q+Q
1
qa∗
Z
0
2 cos(2πk(a/q−α))dα,
where aa∗= 1( mod q), Q≥1.
Proof
Let f:R→Cbe 1-periodic. We shall evaluate
µ(f) =
1
R
0
f(x)dx.
Split the unit interval −1
Q+1 ,Q
Q+1 iinto Farey segments
Ma
q=a
q−1
q(q+q0),a
q+1
q(q+q00), where
a0
q0<a
q<a00
q00.
We find
µ(f) = X∗
X
0<a<q≤Q
1
q(q+q00)
Z
−1
q(q+q0)
fa
q+xdx.
Proof
µ(f) = X∗
X
q≤Q<a∗≤q+Q
0
Z
−1
qa∗
fa
q+xdx +
1
qa∗
Z
0
f−a
q+xdx
.
If f(−x) = f(x), then
µ(f) = 2 Re X∗
X
q≤Q<a∗≤q+Q
1
qa∗
Z
0
fa
q−xdx.
Taking f(x) = e2πikx , we obtain the theorem.
The additive problem
Let a(n) correspond to coefficients of Hecke L-function with
complex (or real) ideal class group character of Q(√−D). In case
of a real character we have the identity
a(n) = X
d|n
χv(d)χw(n/d),vw =D.
Suppose (m1,m2) = 1. Then
X
m2n2−m1n1=l,
n1<N
a(n1)a(n2) = c(m1,m2,l,v,w)·N+R,
where Rm1,m2,lN7/8+ε,
The additive problem
c(m1,m2,l,v,w) = 2π2h2(−D)
m2ζ(2) ×
×(δ((m1m2,v)−1)Av+δ((m1m2,w)−1)Aw),
Av= (v,l)µv
(v,l)
X
d|l,(d,D)=1
1
d
Y
p|m1m2,(p,D)=1 1 + 1
p×
×Y
p|D
(D,m1m2)1−1
p2−1Y
p|(v,l)1−1
pα−1
pα+1 ,
l=Y
p
pα(p).
The additive problem
For simplicity, we consider the case m1=m2= 1. It is possible to
divide this sum into ln Nsmoothed sums of the form
X
n2−n1=l,
1≤n1<N
a(n2)a(n1) =
K
X
k=−KX
n2−n1=l
a(n2)a(n1)gk(n1)
where 0 ≤gk(x)1, vol gkMk,g(j)
kjM−j
k,
K
X
k=−K
gk(n) = 1,1≤n≤N−1
0,n≥Nand n≤0.
The additive problem
If vol gkN7/8+ε, we estimate trivially using Deligne’s result.
The worst situation left is for a smooth function gsatisfying
0≤g(x)1,
supp g⊆(N/2,N),vol gM≥N7/8+ε,g(j)jM−j.
We shall proceed as follows:
X
n2−n1=l
a(n2)a(n1)g(n1) = X
n2−n1=l
a(n2)a(n1)g(n1)g(n2) + O(lNε)
and the error term fits our needs if l≤N7/8.
The additive problem
Letting
S(α) = X
n
a(n)g(n) exp(2πinα),
we have
S:= X
n2−n1=l
a(n2)a(n1)g(n1)g(n2)
= 2 Re X∗
X
q≤Q<a∗≤q+Q
1
qa∗
Z
0|S(a/q−α)|2e−2πil(a/q−α)dα.
The additive problem
Voronoi summation formula
Let (a,q) = 1, aa∗≡1( mod q), k(t) is a smooth function with a
compact support on (0,+∞). Then
+∞
X
n=1
τv,w(n)k(n)e2πia
qn=2πi
q√rh(−D)θv(a)
2Zk(x)dx
+
+∞
X
n=1
τv∗,w∗(n)e−2πi(ar)∗
qn˜
k(n)!,
where ˜
k(n) =
+∞
R
0
k(t)J04π√nt
qdt,r=D/(D,q), v∗=w(q,v)
(q,w),
v∗w∗=D,|θv(a)| 6= 0 if (q,D) = vor (q,D) = w.
We come to the following sum
σ=X
q≤Q
1/(qQ)
Z
0
e2πilαVq(α)dα,
where
Vq(α) = X
Q<a∗≤min(q+Q,1/(qα))
e−2πila/q|S(a/q−α)|2.
We apply Voronoi formula with
k(t) = g(t)e−2πinα.
Main term
Vq(α) = c
q2X
a( mod q)
e−2πila/q|ˆg(α)|2+. . . .
S= 2 Re X
q≤Q
c
q2rq(l)
1/(qQ)
Z
0
e2πilα|ˆg(α)|2+. . .
=X
q≤Q
c
q2rq(l)
+∞
Z
0
g(α)g(α+l)dα+. . . .
Error term
RNεX
q≤Q
√q
q2 +∞
X
n=1 Zg(n)e−2πinαJ04π√nα
qdα!2
.
J0(y) = W(y)e2πiy +W(y)e−2πiy ,
yνW(ν)(y)νy−1/2.
Taking Q√N, the integrals won’t have stationary points. Thus,
Z··· M3/2N−1/2q2N
nM2ν
2+1
4
.
If q2N
nM2≤N−ε, then the contribution from those nis negligible.
Error term
For q2N
nM2≥N−εwe apply the estimate for the integral with
ν= 0 and obtain that
RNεX
q≤Q
1
q3/2(qQ)−1
X
n≤q2N1+ε
M2q2N
nM21
4
M3/2N−1/2
2
N
MQ3/2.
Since we should take Q√N, and MN7/8, we obtain
RN7/8+ε.