Article

Plasmid Transfection in Mammalian Cells Spatiotemporally Tracked by a Gold Nanoparticle

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Recent advances in cell transfection have suggested that delivery of a gene on a gold nanoparticle (AuNP) can enhance transfection efficiency. The mechanism of transfection is poorly understood, particularly when the gene is appended to an AuNP, as expression of the desired exogenous protein is dependent not only on the efficiency of the gene being taken into the cell, but also on efficient endosomal escape and cellular processing of the nucleic acid. Design of a multicolor surface energy transfer (McSET) molecular beacon by independently dye labeling a linearized plasmid and short duplex DNA (sdDNA) appended to an AuNP, allows spatiotemporal profiling the transfection events providing insight into package uptake, disassembly, and final plasmid expression. Delivery of the AuNP construct encapsulated in Lipofectamine2000® is monitored in Chinese hamster ovary cells using live-cell confocal microscopy. The McSET beacon signals the location and timing of the AuNP release and endosomal escape events for the plasmid and the sdDNA discretely, which are correlated with plasmid transcription by fluorescent protein expression within the cell. It is observed that delivery of the construct leads to endosomal release of the plasmid and sdDNA from the AuNP surface at different rates, prior to endosomal escape. Slow cytosolic diffusion of the nucleic acids is believed to be the limiting step for transfection, impacting the time dependent expression of protein. The overall protein expression yield is enhanced when delivered on an AuNP, possibly due to better endosomal escape or lower degradation prior to endosomal escape.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... 20,21 At present, methods for transfecting cells with plasmids include lipidosomes, nanoparticles, electroporation, microinjection, and calcium phosphate coprecipitation. [22][23][24] Previous studies have indicated that transfection efficiency is inversely proportional to plasmid size, and plasmids >12 kbp do not transfect into cells well, if at all, 21,25 especially in osteogenic cells. To carry out gene transfection studies to investigate MACF1 functions in osteogenic cells, it is imperative to define the optimum conditions for transfecting the large plasmid P-ACF7 (*21 kbp). ...
Article
Full-text available
Microtubule actin crosslinking factor 1 (MACF1) is a large spectraplakin protein known to have crucial roles in regulating cytoskeletal dynamics, cell migration, growth and differentiation. However, its role and action mechanism in bone remain unclear. This study investigated the optimal conditions for effective transfection of the large plasmid PEGFP-C1A-ACF7 (~21 kbp) containing the full-length human MACF1 cDNA and the potential role of MACF1 in bone formation. To enhance MACF1 expression, the large plasmid was transfected into osteogenic cells by electroporation in vitro and mouse calvaria with nanoparticles. The transfection efficiency, osteogenic marker expression, calvarial thickness and bone formation were analyzed. Notably, MACF1 overexpression triggered a drastic increase in osteogenic gene expression, alkaline phosphatase activity and matrix mineralization in vitro. The mouse calvarial thickness, mineral apposition rate and osteogenic marker protein expression were significantly enhanced by the local transfection. In addition, MACF1 overexpression promoted β-catenin expression and signaling. In conclusion, MACF1 overexpression by transfecting the large full-length MACF1 cDNA plasmid promotes osteoblast differentiation and bone formation via β-catenin signaling. Data from this study can provide useful experimental parameters for the transfection of large plasmids and provide a novel strategy based on promoting bone formation for prevention and therapy of bone disorders.
... Nanomaterials-based molecular delivery systems have been widely used in current biological and medical applications [1][2][3]. ...
Article
Full-text available
Layered double hydroxides (LDHs) are effective molecular carriers in cytological research, gene therapy, and transgenic applications. Herein, we investigated the internalization behavior of the LDH-DNA bioconjugates via a microscopic approach and analyzed the internalization pathway by dissipative particle dynamics (DPD) simulations. We experimentally found that LDH can efficiently carry DNA into the nucleus of cell in BY-2 suspension cells. Furthermore, atomic force microscopy and X-ray diffraction analysis demonstrated that the LDH-DNA bioconjugates mainly exist as a DNA-LDH-DNA sandwich complex, while the LDH-DNA-LDH sandwich complex and DNA-LDH complex cannot be excluded. The DPD simulations further indicated that only the DNA-LDH-DNA sandwich structure could penetrate the plasma membrane (PM), while PM is impermeable to the LDH-DNA-LDH sandwich complex and the DNA-LDH complex. This work provides novel perspective for understanding the membrane penetration mechanism of LDH nano-sheets and new insights into the design of novel molecular delivery systems.
... Two main strategies aimed at promoting the passive delivery of QDs, gold nanoparticles, and magnetic nanocrystals employ either lipid-based transfection reagents, 17,18 or cell-penetrating peptides (CPP). 19,20 These methods typically result in nanocrystals entering the cells via endocytosis, with subsequent entrapment in endosomal/lysosomal compartments. ...
Article
Full-text available
We describe a new quantum dot (QD)-conjugate prepared with a lytic peptide, derived from a non-enveloped virus capsid protein, capable of bypassing the endocytotic pathways and delivering large amounts of QDs to living cells. The polypeptide, derived from the Nudaurelia capensis Omega virus, was fused onto the C-terminus of maltose binding protein that contained a hexa-HIS tag at its N-terminus, allowing spontaneous self-assembly of controlled numbers of the fusion protein per QD via metal-HIS interactions. We found that the efficacy of uptake by several mammalian cell lines was substantial even for small concentrations (10-100 nM). Upon internalization the QDs were primarily distributed outside the endosomes/lysosomes. Moreover, when cells were incubated with the conjugates at 4C, or in the presence of chemical endocytic inhibitors significant intracellular uptake continued to occur. These findings indicate an entry mechanism that does not involve endocytosis, but rather the perforation of the cell membrane by the lytic peptide on the QD surfaces
Preprint
Engineering mammalian cells with synthetic circuits is leading the charge in next generation biotherapeutics and industrial biotech innovation. However, applications often depend on the cells’ productive capacity, which is limited by the finite cellular resources available. We have previously shown that cells engineered with incoherent feedforward loops (iFFL-cells) operate at higher capacity than those engineered with the open loop (OL). Here, we performed RNA-sequencing on cells expressing the iFFL and utilized DECCODE, an unbiased computational method, to match our data with thousands of drug-induced transcriptional profiles. DECCODE identified compounds that consistently enhance expression of both transiently and stably expressed genetic payloads across various experimental scenarios and cell lines, while also reducing external perturbations on integrated genes. Further, we show that drug treatment enhances the rate of AAV and lentivirus transduction, facilitating the prototyping of genetic devices for gene and cell therapies. Altogether, despite limiting intracellular resources is a pervasive, and strongly cell-dependent problem, we provide a versatile tool for a wide range of biomedical and industrial applications that demand enhanced productivity from engineered cells.
Article
Understanding the initial adsorption and subsequent translocation of nanoparticles (NPs) across the phospholipid bilayer of liposome find importance in drug delivery and in vivo bio-imaging applications. Herein, we have investigated the time-dependent selective uptake of 2.0 ± 0.3 nm-sized CdTe quantum dots (QDs) into small unilamellar vesicles (SUV) of dipalmitoylphoshatidylcholine (DPPC) in its gel phase and subsequent alteration of nanometal surface energy transfer (NSET) in the presence of 18.0 ± 0.2 nm-sized citrate-capped gold NPs (Au NPs). The interactions between CdTe QD and Au NP across the lipid bilayer of DPPC liposome has been explored by monitoring the NSET process using fluorescence spectroscopy. The time-dependent selective partitioning of QDs into the liposomal phase has been demonstrated using confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM). It has been observed that instant mixing of QDs and Au NPs with liposomes does not alter the extent of NSET between QD-Au NP pair relative to that in the absence of liposome. However, equilibrating the binary mixture of liposome and QDs for 24 h at room temperature leads to the formation of liposome encapsulated QD (LipQD) which does not take part in NSET with aqueous phase Au NPs. In contrast, equilibrating the ternary mixture of QDs, liposomes, and Au NPs for 24 h results in the formation of Au NP adsorbed QD-encapsulated liposomes (AuLipQD) which exhibit moderate amount of NSET from encapsulated QDs to the adsorbed Au NPs at the surface of liposomes. It has been observed that the efficiency of NSET decreases from 62% in bulk aqueous medium to 24% in AuLipQD complex. Our present findings may be useful to understand the fundamental interaction of other metal and semiconductor NPs with liposomes and cell membrane for various drug-delivery and bio-imaging applications.
Article
Full-text available
There is a large number of two‐dimensional static in vitro studies about the uptake of colloidal nano‐ and microparticles, which has been published in the last decade. In this Minireview, different methods used for such studies are summarized and critically discussed. Supplementary experimental data allow for a direct comparison of the different techniques. Emphasis is given on how quantitative parameters can be extracted from studies in which different experimental techniques have been used, with the goal of allowing better comparison.
Article
Full-text available
There is a large number of 2‐dimensional static in vitro studies about the uptake of colloidal nano‐ and microparticles, which has been published in the last decade. In this viewpoints article different methods used for such studies are summarized and critically discussed. Supplementary experimental data allow for a direct comparison of the different techniques. Emphasis is given on how quantitative parameters can be extracted from studies in which different experimental techniques have been used, with the goal of allowing better comparison.
Article
Targeted gene delivery of wild type tumor suppressor gene p53 is a promising approach to inhibit the progression of ovarian cancer. Although several gene delivery vehicles have been reported earlier, there is paucity for targeted delivery of wild type p53 to ovarian cancer using gold nanoparticles. As it is well-known that EGFR (epidermal growth factor receptor) is overexpressed in ovarian cancer, in this study we hypothesized that the FDA approved monoclonal antibody C225 (cetuximab) that targets EGFR could be used for targeted delivery of wild type p53 gene. With this impetus, we devised an approach wherein cationic gold nanoparticles (AuNPs) were employed to generate gold nanoparticle-based drug delivery system (DDS, Au-C225-p53DNA where p53DNA is pCMVp53 plasmid) that was formulated and characterized by biochemical and biophysical methods. The nanoconjugate complexed with DNA (Au-C225-p53DNA) is serum-stable and protects the bound DNA from digestion by DNase-I. Additionally, in vitro reporter gene expression assays demonstrated efficient and specific gene transfection in EGFR overexpressing SK-OV-3 cells. Further, the intraperitoneal administration of Au-C225-p53DNA in SK-OV-3 xenograft mouse model displayed significant tumor targeting and tumor regression. Altogether, these studies indicated a promising nanoparticle-based approach for targeting ovarian cancers caused by mutated p53.
Article
Full-text available
The steady progress made over the past three decades in growing a variety of inorganic nanomaterials, with discreet control over their size and photophysical properties, has been exploited to develop several imaging and sensing applications. However, full integration of these materials into biology has been hampered by the complexity of delivering them into cells. In this report, we demonstrate the effectiveness of a chemically synthesized anticancer peptide to facilitate the rapid delivery of luminescent quantum dots (QDs) into live cells. We combine fluorescence imaging microscopy, flow cytometry, and specific endocytosis inhibition experiments to probe QD-peptide conjugate uptake by different cell lines. We consistently find that a sizable fraction of the internalized conjugates does not co-localize with endosomes or the nuclei. These findings are extremely promising for the potential integration of various nanomaterials into biological systems.
Article
Research over the past decade has identified several of the key limiting features in multidrug resistance (MDR) cancer ther-apy applications, such as evolving glycoprotein receptors at the surface of the cell that limit therapeutic uptake, metabolic changes leading to protection from multidrug resistant mediators by enhanced degradation or efflux of therapeutics, and difficulty ensuring retention of intact and functional drugs once endocytosed. Nanoparticles have been demonstrated to be effective delivery vehicles for a plethora of therapeutic agents and, in the case of nucleic acid-based agents, they provide protective advantages. Functionalizing cell penetrating peptides (CPPs), also known as protein transduction domains, onto the surface of a fluorescent quantum dots creates a labelled delivery package to investigate the nuances and difficulties of drug transport in MDR cancer cells for potential future clinical applications of diverse nanoparticle therapeutic delivery strategies. In this study, eight distinct cell penetrating peptides were used (CAAKA, VP-22, HIV-TAT, Ku-70, and hCT(9-32), integrin-β3, HIV-gp41, and K-FGF) to examine the different cellular uptake profiles in cancer versus drug resistant melano-ma (A375 & A375-R), mesothelioma (MSTO & MSTO-R), and glioma (rat 9L & 9L-R, and human U87 & LN18), cell lines. The results of this study demonstrate that cell penetrating peptide uptake varies with the amount of drug resistance and cell type, likely due to changes in cell surface markers. This study provides insight to developing functional nanoplatform deliv-ery systems in drug resistant cancer models.
Article
Covalently coupling nucleic acids to a gold nanoparticle (AuNP) surface has been demonstrated as an effective gene therapy agent to modify cellular protein expression. The therapeutic efficacy of the approach is anticipated to be impacted by the length of time the nucleic acid sequence resides in the endo-lysosomal pathway once transfected into a cell. It is believed that the dynamics of the processing should reflect the linkage chemistry of the DNA to the AuNP surface. In this manuscript the dynamics of nanotherapeutic uptake, nucleic acid release, and gene processing are investigated in vitro for a AuNP-nucleic acid delivery platform transfected into A375 human melanoma cells, as a function of the nucleic acid-gold linkage chemistry. The dynamics of cell processing of the single monodentate thiol (SX), bidentate dual thiol (SS), or mixed bidentate thiol plus amine (SN) coordination of nucleic acids to the AuNP surface are evaluated using a multicolor nano-surface energy transfer bio-optical transponder (SET-BOT) technology. The use of live-cell fluorescence microscopy allows for the direct visualization of the uptake and localization of a lipofectamine packaged SET-BOT using a dye (DL700) that is not quenched in the proximity of the AuNP, while fluorescence “turn on” of a dye that is proximally quenched by the AuNP (DL488) is used to report on the dynamics of release of the nucleic acid cargo within the cell. For protein expression following transcription of the gene, the emission signature of a red fluorescent protein, tdTomato, is monitored. The intracellular rates of DNA release from the AuNP surface once endosomally packaged within the A375 human melanoma cells were found to follow the binding activity series: bidentate thiol > bidentate thiol plus amine > monodentate thiol, consistent with the strength of multidentate chelation, paired with the stabilizing influence of pi-backbonding of thiols compared to sigma donation in amines, when bound to a gold surface.
Article
Virus-inspired mimics for gene therapy have attracted increasing attention, because viral vectors show robust efficacy owing to the high infectious nature and efficient endosomal escape. Nonetheless, until now synthetic materials fail to achieve high “infectivity”, especially the mimicking of virus spikes for “infection” is underappreciated. Herein, a virus spike mimic by a zinc (Zn) coordinative ligand that shows high affinity towards phosphate-rich cell membranes is reported. Surprisingly, this ligand also demonstrates superior functionality of destabilizing endosomes. Therefore, the Zn coordination is more likely to imitate the virus nature with high cell binding and endosomal membrane disruption. Following this, the Zn coordinative ligand is functionalized on a bioreducible cross-linked peptide with alkylation that imitates the viral lipoprotein shell. The ultimate virus mimicking nanoparticle farthest imitates the structures and functions of viruses, leading to robust transfection efficiency both in vitro and in vivo. More importantly, apart from targeting ligand and cell penetrating peptide, metal coordinative ligand may provide another option to functionalize diverse biomaterials for enhanced efficacy, demonstrating its broad referential significance to pursue non-viral vectors with high performance.
Article
A pH-sensitive bio-optical transponder (pH-BOT) capable of simultaneously reporting the timing of intracellular DNA cargo release from a gold nanoparticle (AuNP) and the evolving intracellular pH during endosomal maturation is demonstrated. The pH-BOT is designed with a triple dye-labeled duplex DNA appended to a 6.6 nm AuNP, utilizing pH-responsive fluorescein paired with DyLight405 as a Surface Energy Transfer (SET) coupled dye pair to ratiometrically report the pH at and after cargo release. A non-SET-coupled dye, DyLight700, is used to provide active tracking throughout the experiment. The pH-BOT beacon of the cargo uptake, release, and processing was visualized using live-cell confocal fluorescent microscopy in Chinese hamster ovarian cells, and it was observed that while maturation of endosomes carrying pH-BOT is slowed significantly, the pH-BOT is distributed throughout the endolysosomal system while remaining at pH ~6 i. This observed decoupling of endosomal maturation from acidification lends support to those models which propose that pH alone is not sufficient to explain endosomal maturation and may enable new insights into our understanding of the fundamental processes of biology.
Article
Repetitive administration is routinely used to maintain therapeutic drug levels, but previous studies have documented an accelerated blood clearance of some lipid-based delivery systems under these conditions. To assess the effect of repetitive administration, non-PEGylated lipoplexes (+/- = 0.5) were administered four times via tail vein injection at 3-day intervals to immunocompetent Balb/c mice bearing 4T1 tumors. This study measured the effect of repeat administration of non-targeted lipoplexes on clearance, cytokine/chemokine response, plasmid distribution, reporter gene expression, and liver toxicity. We do not observe a refractory period or a statistically significant difference in blood clearance between the first administration and subsequent injections of this lipoplex formulation, consistent with the absence of a cytokine/chemokine response. However, we do see a significant effect on both plasmid accumulation and expression; an enhancement of 26-fold and 10-fold in tumor plasmid levels and expression, respectively, after 4 injections as compared to that after a single injection. In addition, in vivo imaging suggests that expression in other organs had diminished rapidly 72 h after each administration, in contrast to relatively constant expression in the tumor. Taken together, the findings indicate that gene delivery to tumors can be dramatically enhanced by employing repetitive administration.
Article
Selenol is a key metabolite of Na2SeO3 and plays an important role in many physiological and pathological processes. The real-time monitoring of selenol is of scientific interest for understanding the anti-cancer mechanism of Na2SeO3. Based on selenol's ability to specifically break AuS bonds and form more stable AuSe bonds on the surfaces of gold nanoparticles (AuNPs), we developed a novel near-infrared fluorescent nanosensor (Cy5.5-peptide-AuNPs) for detecting selenol. The nanosensor exhibited rapid response to selenol with high selectivity and sensitivity, and it was successfully used to image changes in the selenol level in HepG2 cells during Na2SeO3-induced apoptosis. Moreover, in vivo fluorescence imaging of selenol was obtained from H22 tumor-bearing mice injected with both the nanosensor and sodium selenite. The results showed that the tumor cell apoptosis induced by Na2SeO3 is correlated with high-level of selenol under hypoxic conditions. We believe that this nanosensor could serve as a powerful tool for monitoring selenol and exploring the physiological function of selenol in a variety of physiological and pathological contexts and that the probe-designed strategy will provide a new platform for research on relevant selenium chemistry.
Article
Full-text available
Programmable and algorithmic behaviors of DNA molecules allow controlling the structures of DNA-assembled materials with nanometer precision and constructing complex networks with digital and analog behaviors. Here we developed a way of integrating a DNA strand-displacement circuit with self-assembly of spherical nucleic acids, wherein a single DNA strand was used to initiate and catalyze the operation of upstream circuits to release a single strand that subsequently triggers self-assembly of spherical nucleic acids in downstream circuits, realizing a programmable kinetic control of self-assembly of spherical nucleic acids. Through utilizing this method, SNPs or indels occurring at different positions of a sequence of oligonucleotide were unambiguously discriminated. We provide here a sophisticated way of combining the DNA strand-displacement-based characteristic of DNA with the distinct assembly properties of inorganic nanoparticles, which may find broad potential applications in the fabrication of a wide range of complex multicomponent devices and architectures.
Article
Full-text available
Mesenchymal stem cells (MSC) have been identified as having great potential as autologous cell therapeutics to treat traumatic brain injury, spinal injury, as well as neuronal and cardiac ischemic events. All future clinical applications of MSC cell therapies must allow the MSC to be harvested, transfected, and induced to express a desired protein or selection of proteins to have medical benefit. For the full potential of MSC cell therapy to be realized, it is desirable to systematically alter the protein expression of therapeutically beneficial biomolecules in harvested MSC cells with high fidelity in a single transfection event. We have developed a delivery platform based on the use of a solid gold nanoparticle that has been surface modified to produce a fusion containing a zwitterionic, pentapeptide designed from Bax-inhibiting peptide (Ku70) to enhance cellular uptake and a linearized expression vector to induce enhanced expression of brain derived neurotrophic factor (BDNF) in rat derived MSCs. Ku70 is observed to effect >80% transfection following a single treatment of femur bone marrow isolated rat MSCs with efficiencies for the delivery of a 6.6kbp gene on either a AuNP or CdSe/ZnS QD. Gene expression is observed within 4d by optical measurements and secretion observed within 10d by Western Blot analysis. The combination of being able to selectively engineer the NP, co-localize biological agents, and enhance the stability of those agents have provided the strong impetus to utilize this novel class of materials to engineer primary MSCs.
Article
Full-text available
Understanding the mechanism of the escape of non-viral vectors from endosomes is critically important for the development of new gene delivery systems. Coarse-grained molecular dynamics simulations of responsive dendrimers interacting with tensionless and tense lipid membranes were performed to give insight into the gene escape mechanism. It was found that the insertion of a charged dendrimer into a membrane is facilitated by the asymmetric distribution of charged lipids and the strongly charged dendrimer can cause a breakdown of membrane asymmetry. Furthermore, dendrimer adsorption could lead to the drop of critical stress required to disrupt the membrane. We propose that a fundamental way for nanoparticles to penetrate through targeted membranes is endowing them with capabilities to tune the local membrane tension. Finally, an escape mechanism of delivered gene materials from an endosome was suggested: a cooperation between global effect, resulting from osmotic pressure and the increase of dendrimer size in the endosome, and local effects caused by the electrostatic adsorption of dendrimers.
Article
Full-text available
The promise of cancer gene therapeutics is hampered by difficulties in the in vivo delivery to the targeted tumor cells, and systemic delivery remains to be the biggest challenge to be overcome. Here, we concentrate on systemic in vivo gene delivery for cancer therapy using nonviral vectors. In this review, we summarize the existing delivery barriers together with the requirements and strategies to overcome these problems. We will also introduce the current progress in the design of nonviral vectors, and briefly discuss their safety issues.
Article
Full-text available
One approach to super-resolution fluorescence imaging uses sequential activation and localization of individual fluorophores to achieve high spatial resolution. Essential to this technique is the choice of fluorescent probes; the properties of the probes, including photons per switching event, on-off duty cycle, photostability and number of switching cycles, largely dictate the quality of super-resolution images. Although many probes have been reported, a systematic characterization of the properties of these probes and their impact on super-resolution image quality has been described in only a few cases. Here we quantitatively characterized the switching properties of 26 organic dyes and directly related these properties to the quality of super-resolution images. This analysis provides guidelines for characterization of super-resolution probes and a resource for selecting probes based on performance. Our evaluation identified several photoswitchable dyes with good to excellent performance in four independent spectral ranges, with which we demonstrated low-cross-talk, four-color super-resolution imaging.
Article
Full-text available
The ability to target contrast agents and therapeutics inside cells is becoming important as we strive to decipher the complex network of events that occur within living cells and design therapies that can modulate these processes. Nanotechnology researchers have generated a growing list of nanoparticles designed for such applications. These particles can be assembled from a variety of materials into desirable geometries and configurations and possess useful properties and functionalities. Undoubtedly, the effective delivery of these nanomaterials into cells will be critical to their applications. In this tutorial review, we discuss the fundamental challenges of delivering nanoparticles into cells and to the targeted organelles, and summarize strategies that have been developed to-date.
Article
Full-text available
The use of imaging tools to probe nanoparticle-cell interactions will be crucial to elucidating the mechanisms of nanoparticle-induced toxicity. Of particular interest are mechanisms associated with cell penetration, translocation and subsequent accumulation inside the cell, or in cellular compartments. The objective of the present paper is to review imaging techniques that have been previously used in order to assess such interactions, and new techniques with the potential to be useful in this area. In order to identify the most suitable techniques, they were evaluated and matched against a list of evaluation criteria. We conclude that limitations exist with all of the techniques and the ultimate choice will thus depend on the needs of end users, and their particular application. The state-of-the-art techniques appear to have the least limitations, despite the fact that they are not so well established and still far from being routine. For example, super-resolution microscopy techniques appear to have many advantages for understanding the details of the interactions between nanoparticles and cells. Future research should concentrate on further developing or improving such novel techniques, to include the development of standardized methods and appropriate reference materials.
Article
Full-text available
The delivery of DNA into human cells has been the basis of advances in the understanding of gene function and the development of genetic therapies. Numerous chemical and physical approaches have been used to deliver the DNA, but their efficacy has been variable and is highly dependent on the cell type to be transfected. Studies were undertaken to evaluate and compare the transfection efficacy of several chemical reagents to that of the electroporation/nucleofection system using both adherent cells (primary and transformed airway epithelial cells and primary fibroblasts as well as embryonic stem cells) and cells in suspension (primary hematopoietic stem/progenitor cells and lymphoblasts). With the exception of HEK 293 cell transfection, nucleofection proved to be less toxic and more efficient at effectively delivering DNA into the cells as determined by cell proliferation and GFP expression, respectively. Lipofectamine and nucleofection of HEK 293 were essentially equivalent in terms of toxicity and efficiency. Transient transfection efficiency in all the cell systems ranged from 40%-90%, with minimal toxicity and no apparent species specificity. Differences in efficiency and toxicity were cell type/system specific. In general, the Amaxa electroporation/nucleofection system appears superior to other chemical systems. However, there are cell-type and species specific differences that need to be evaluated empirically to optimize the conditions for transfection efficiency and cell survival.
Article
Full-text available
Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.
Article
Full-text available
This critical review gives a short overview of the widespread use of gold nanoparticles in biology. We have identified four classes of applications in which gold nanoparticles have been used so far: labelling, delivering, heating, and sensing. For each of these applications the underlying mechanisms and concepts, the specific features of the gold nanoparticles needed for this application, as well as several examples are described (142 references).
Article
Full-text available
A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA, DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and effective for both transient and stable expression of transfected DNA. Depending upon the cell line, lipofection is from 5- to greater than 100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique.
Article
Full-text available
The past several years have witnessed the evolution of gene medicine from an experimental technology into a viable strategy for developing therapeutics for a wide range of human disorders. Numerous prototype DNA-based biopharmaceuticals can now control disease progression by induction and/or inhibition of genes. These potent therapeutics include plasmids containing transgenes, oligonucleotides, aptamers, ribozymes, DNAzymes, and small interfering RNAs. Although only 2 DNA-based pharmaceuticals (an antisense oligonucleotide formulation, Vitravene, (USA, 1998), and an adenoviral gene therapy treatment, Gendicine (China, 2003), have received approval from regulatory agencies; numerous candidates are in advanced stages of human clinical trials. Selection of drugs on the basis of DNA sequence and structure has a reduced potential for toxicity, should result in fewer side effects, and therefore should eventually yield safer drugs than those currently available. These predictions are based on the high selectivity and specificity of such molecules for recognition of their molecular targets. However, poor cellular uptake and rapid in vivo degradation of DNA-based therapeutics necessitate the use of delivery systems to facilitate cellular internalization and preserve their activity. This review discusses the basis of structural design, mode of action, and applications of DNA-based therapeutics. The mechanisms of cellular uptake and intracellular trafficking of DNA-based therapeutics are examined, and the constraints these transport processes impose on the choice of delivery systems are summarized. Finally, the development of some of the most promising currently available DNA delivery platforms is discussed, and the merits and drawbacks of each approach are evaluated.
Article
Single stranded DNA sequences that are highly specific for a target ligand are called aptamers. While the incorporation of aptamer sequences into stem loop molecular beacons has become an essential tool in optical biosensors, the design principles that determine the magnitude of binding affinity and its relationship to placement of the aptamer sequence in the stem-loop architecture are not well defined. By controlled placement of the aptamer along the loop region of the molecular beacon, it is observed that the binding affinity can be tuned over four orders of magnitude (1.3nM - 203 μM) for the Huizenga and Szostak ATP DNA aptamer sequence. It is observed that the Kd is enhanced for the fully exposed sequence, with reduced binding affinity when the aptamer is part of the stem region of the beacon. Analysis of the ΔG values indicate a clear correlation between the aptamer hybridized length in the stem and it's observed Kd. The use of a nanometal surface energy transfer probe method for monitoring of the ATP binding to the aptamer sequence allows the observation of negative cooperativity between the two ATP binding events. Maintenance of the high binding affinity of this ATP aptamer and the observation of two, separate Kd's for ATP-binding indicate NSET as an effective, non-manipulative optical method for tracking bimolecular changes.
Article
The future of non-viral gene therapy depends on a detailed understanding of the barriers to delivery of polynucleotides. These include physicomechanical barriers, which limit the design of delivery devices, physicochemical barriers that influence self-assembly of colloidal particulate formulations, and biological barriers that compromise delivery of the DNA to its target site. It is important that realistic delivery strategies are adopted for early clinical trials in non-viral gene therapy. In the longer term, it should be possible to improve the efficiency of gene delivery by learning from the attributes which viruses have evolved; attributes that enable translocation of viral components across biological membranes. Assembly of stable, organized virus-like particles will require a higher level of control than current practice. Here, we summarize present knowledge of the biodistribution and cellular interactions of gene delivery systems and consider how improvements in gene delivery will be accomplished in the future.
Article
Release me: Polyelectrolyte capsules with different cargo in their cavities and plasmonic and magnetic nanoparticles in their walls were synthesized. Enzymatic reactions were triggered inside cells by light-mediated opening of two individual capsules containing either an enzyme or its substrate, by using photothermal heating. Furthermore, this technique allows controlled release of mRNA from capsules, thereby resulting in synthesis of green fluorescent protein (GFP).
Article
A new advance in cell transfection protocol using a bimodal nanoparticle agent to selectively manipulate protein expression levels within mammalian cells is demonstrated. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6nm AuNP surface. Unique control over release of the regulatory elements reflects the covalent appendage and subsequent packaging of the nucleic acid based oligomers resulting in enhanced endosomal stability and osmatocu pressure enhanced release of the genetic modifiers once the agent is transfected leading to the ability to induce endogenous protein knockdown simultaneously with exogenous protein expression. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression allow the efficiency of co-delivery of siRNA for GFP knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24h of delivery and continues exhibiting knockdown for up to 48h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same timeframe with expression levels reaching 34% after 25 days although cells have divided approximately twenty times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for defini-tive genetic control within a single cell and leads to a very efficient cell transfection protocol.
Article
Liposomes form a major class of non-viral vectors for short interfering RNA delivery, however tissue and cell-specific targeting are additional requirements in the design of short interfering RNA delivery systems with a therapeutic potential. Selective delivery of liposomes to hepatocytes may be achieved by directing complexes to the asialoglycoprotein receptor, which is expressed on hepatocytes, and which displays high affinity for the β-d-galactopyranosyl moiety. We aimed to show that the d-galactopyranosyl ring in direct β-glycosidic link to cholesterol, when formulated into liposomes with 3β[N-(N',N'-dimethylaminopropane) carbamoyl] cholesterol (Chol-T) or its quaternary trimethylammonium analogue (Chol-Q), may promote targeted delivery of cytotoxic short interfering RNA to the human hepatoma cell line HepG2 via the asialoglycoprotein receptor. Liposome-short interfering RNA interactions were characterized by electron microscopy, dye displacement, gel retardation and nuclease assays. Stable short interfering RNA-protective lipoplexes were formed at N/P ratios in the range 5:1-7:1. Targeted lipoplex 4 achieved high transfection efficiencies at 50 nm short interfering RNA (70%) and <10% in a competition assay, whilst untargeted complexes reached low levels at the same concentration (<25%). Transfection efficiencies of all lipoplexes in the asialoglycoprotein receptor-negative cell line HEK293 under the same conditions were low. Lipoplexes containing cholesteryl-β-d-galactopyranoside may therefore form the basis for the development of useful hepatotropic short interfering RNA delivery vectors.
Article
Monolayer stability of core-shell nanoparticles is a key determinant of their utility in biological studies such as imaging and drug delivery. Intracellular thiols (e.g., cysteine, cysteamine, and glutathione) can trigger the release of thiolate-bound monolayers from nanoparticles, a favorable outcome for controllable drug release applications but an unfavorable outcome for imaging agents. Here, we describe a method to quantify the monolayer release of gold nanoparticles (AuNPs) in living cells using parallel measurements by laser desorption/ionization (LDI) and inductively coupled plasma (ICP) mass spectrometry. This combination of methods is tested using AuNPs with structural features known to influence monolayer stability and on cells types with varying concentrations of glutathione. On the basis of our results, we predict that this approach should help efforts to engineer nanoparticle surface monolayers with tunable stability, providing stable platforms for imaging agents and controlled release of therapeutic monolayer payloads.
Article
We report the development of the multiplexed nanoflare, a nanoparticle agent that is capable of simultaneously detecting two distinct mRNA targets inside a living cell. These probes are spherical nucleic acid (SNA) gold nanoparticle (Au NP) conjugates consisting of densely packed and highly oriented oligonucleotide sequences, many of which are hybridized to a reporter with a distinct fluorophore label and each complementary to its corresponding mRNA target. When multiplexed nanoflares are exposed to their targets, they provide a sequence specific signal in both extra- and intracellular environments. Importantly, one of the targets can be used as an internal control, improving detection by accounting for cell-to-cell variations in nanoparticle uptake and background. Compared to single-component nanoflares, these structures allow one to determine more precisely relative mRNA levels in individual cells, improving cell sorting and quantification.
Article
Using live-cell confocal microscopy and particle tracking technology, the simultaneous transport of intracellular vesicles of the endo-lysosomal pathway and nonviral polyethylenimine (PEI)/DNA nanocomplexes was investigated. Due to potential problems associated with the use of acid-sensitive probes in combination with a gene vector that is hypothesized to buffer the pH of intracellular vesicles, the biological location of PEI/DNA gene vectors was revealed by probing their trafficking in cells expressing fluorescent versions of either early endosome antigen 1, a protein that localizes to early endosomes, or Niemann Pick C1, a protein that localizes to late endosomes and lysosomes. Studies directly show that PEI/DNA nanoparticles are actively transported within both early and late endosomes, and display similar overall transport rates in each. Additionally, gene vector transfer between endosomes is observed. Over time post-transfection, gene vectors accumulate in late endosomes/lysosomes; however, real-time escape of vectors from membrane-bound vesicles is not observed.
Article
Cationic lipid-coated gold nanoparticles were developed for efficient intracellular delivery of therapeutic siRNA. Particle formation was characterized by UV-visible spectroscopy, atomic force microscopy, and dynamic light scattering analysis. Cellular uptake, gene silencing effect, and cytotoxicity were investigated in multiple human cancer cell lines. Nanoparticles had a spherical nanostructure with highly cationic surface charge and could form stable nanosized polyelectrolyte complexes with siRNA via electrostatic interactions; complexes exhibited efficient intracellular uptake and significant gene silencing effect with markedly low cytotoxicity compared to the widely used polycationic carrier, linear polyethyleneimine. We demonstrated that cationic lipid-coated gold nanoparticles could be widely utilized as efficient and safe siRNA nanocarriers for diverse therapeutic and diagnostic applications.
Article
Colloidal quantum dots are semiconductor nanocrystals well dispersed in a solvent. The optical properties of quantum dots, in particular the wavelength of their fluorescence, depend strongly on their size. Because of their reduced tendency to photobleach, colloidal quantum dots are interesting fluorescence probes for all types of labelling studies. In this review we will give an overview on how quantum dots have been used so far in cell biology. In particular we will discuss the biologically relevant properties of quantum dots and focus on four topics: labelling of cellular structures and receptors with quantum dots, incorporation of quantum dots by living cells, tracking the path and the fate of individual cells using quantum dot labels, and quantum dots as contrast agents.
Article
With recent progress in gene therapy clinical trials, there is an even greater demand to advance the development of nonviral gene delivery vehicles. We have previously developed poly(ethylene glycol) (PEG)-based vehicles with transfection efficiency similar to polyethyleneimine and low cytotoxicity. It was hypothesized that conjugating endosomal escape peptides (EEPs) to PEG-based vehicles would further increase their transfection efficiency. The present study aimed to determine how two different EEPs, INF7 and H5WYG, which destabilize the endosomal membrane at different pHs, affect the efficiency of PEG-based vehicles. INF7 and H5WYG were conjugated to PEG-tetraacrylate (PEG-TA) via a Michael-type addition at the desired molar ratios. The pH-dependent membrane lytic activity, transfection efficiency, particle size, zeta potential, and endosomal escape kinetic rate constants were determined. Fusogenic peptides, INF7 and H5WYG, showed pH-dependent membrane lytic activity when conjugated to PEG-TA. The highest membrane lytic activity of PEG-INF7 and PEG-H5WYG conjugates occurred at pH 5 and 5.5, respectively. Coupling one INF7 peptide to PEG-DNA binding peptide (DBP) vehicles increased the transfection efficiency ten-fold and showed greater transfection efficiency than PEG-DBP vehicles coupled with H5WYG peptide. Fitting a first-order kinetic model to the average intracellular pH of the vehicle/DNA particles over time determined that coupling EEPs to PEG-DBP vehicles increased the endosomal escape rate constant by two orders of magnitude. Endosomal escape is a key step in nonviral cellular trafficking and thus the transfection efficiency of nonviral vehicles can be increased by targeting release of DNA from the endosome with EEPs.
Article
Development of safe and efficient short interfering RNA (siRNA) delivery system for RNA interference (RNAi)-based therapeutics is a current critical challenge in drug delivery field. The major barriers in siRNA delivery into the target cytoplasm are the fragility of siRNA in the body, the inefficient cellular uptake, and the acidic endosomal entrapment. To overcome these barriers, this study is presenting a hybrid nanocarrier system composed of calcium phosphate comprising the block copolymer of poly(ethylene glycol) (PEG) and charge-conversional polymer (CCP) as a siRNA vehicle. In these nanoparticles, the calcium phosphate forms a stable core to incorporate polyanions, siRNA and PEG-CCP. The synthesized PEG-CCP is a non-toxic endosomal escaping unit, which induces endosomal membrane destabilization by the produced polycation through degradation of the flanking cis-aconitylamide of CCP in acidic endosomes. The nanoparticles prepared by mixing of each component was confirmed to possess excellent siRNA-loading efficiency (∼80% of dose), and to present relatively homogenous spherical shape with small size. With negligible cytotoxicity, the nanoparticles efficiently induced vascular endothelial growth factor (VEGF) mRNA knockdown (∼80%) in pancreatic cancer cells (PanC-1). Confocal laser scanning microscopic observation revealed rapid endosomal escape of siRNA with the nanoparticles for the excellent mRNA knockdown. The results obtained demonstrate our hybrid nanoparticle as a promising candidate to develop siRNA therapy.
Article
The ionic nature of endosomes varies considerably in character along the endocytic pathway. Counter-ion flux across the limiting membrane of endosomes has long been considered essential for full acidification and normal endosome/lysosomal function. The proximal functions of luminal ions, however, have been difficult to assess. The recent development of transgenic mice carrying mutations in the intracellular chloride channels (ClCs) has provided a tool to uncouple Cl(-) influx from endosomal acidification. Intriguingly, many of the defects of the endo-lysomal system attributed to aberrant pH persist in the Cl(-)-deficient mice implying a direct regulatory role for Cl(-) influx in endosome function. These observations may begin to explain the abundance of endosomal ion transporters, including ClCs, sodium-proton exchangers, two-pore channels and mucolipins, that have been localized to endo-lysosomes, and the extensive changes in luminal ion composition therein. In this review, we summarize what is known regarding the mediators of endosomal ion flux, and discuss the implications of changing ionic content on endo-lysosomal function.
Article
Despite continuous improvements in delivery systems, the development of methods for efficient and specific delivery of targeted therapeutic agents still remains an issue in biological treatments such as protein and gene therapy. The endocytic pathway is the major uptake mechanism of cells and any biological agents, such as DNA, siRNA and proteins. These agents become entrapped in endosomes and are degraded by specific enzymes in the lysosome. Thus, a limiting step in achieving an effective biological based therapy is to facilitate the endosomal escape and ensure cytosolic delivery of the therapeutics. Bacteria and viruses are pathogens which use different mechanisms to penetrate the membranes of their target cells and escape the endosomal pathway. Different mechanisms such as pore formation in the endosomal membrane, pH-buffering effect of protonable groups and fusion into the lipid bilayer of endosomes have been proposed to facilitate the endosomal escape. Several viral and bacterial proteins have been identified that are involved in this process. In addition, chemical agents and photochemical methods to rupture the endosomal membrane have been described. New synthetic biomimetic peptides and polymers with high efficacy in facilitating the endosomal escape, low pathogenicity and toxicity have been developed. Each strategy has different characteristics and challenges for designing the best agents and techniques to facilitate the endosomal escape are ongoing. In this review, several mechanisms and agents which are involved in endosomal escape are introduced.
Article
Nucleic acids are not only expected to assume a pivotal position as "drugs" in the treatment of genetic and acquired diseases, but could also act as molecular cues to control the microenvironment during tissue regeneration. Despite this promise, the efficient delivery of nucleic acids to their side of action is still the major hurdle. One among many prerequisites for a successful carrier system for nucleic acids is high stability in the extracellular environment, accompanied by an efficient release of the cargo in the intracellular compartment. A promising strategy to create such an interactive delivery system is to exploit the redox gradient between the extra- and intracellular compartments. In this review, emphasis is placed on the biological rationale for the synthesis of redox sensitive, disulfide-based carrier systems, as well as the extra- and intracellular processing of macromolecules containing disulfide bonds. Moreover, the basic synthetic approaches for introducing disulfide bonds into carrier molecules, together with examples that demonstrate the benefit of disulfides at the individual stages of nucleic acid delivery, will be presented.
Article
Messenger RNA encoding luciferase (mLUC) was complexed to the cationic lipids Lipofectamine or DOTAP/DOPE, and to the cationic polymer linear poly(ethyleneimine) (linPEI). The complexes were incubated with HeLa cells and luciferase expression was assessed. The type of non-viral carrier used determined the extent and duration of protein expression. Maximal duration of mRNA expression was about 9 days for Lipofectamine complexes, i.e. not very much shorter than with pDNA polyplexes. Interestingly, luciferase activity was already detected 30 min after adding the mRNA complexes to the cells, independent on the type of carrier. We also assessed the proportion of cells that become transfected by means of transfection with an mRNA encoding GFP. For both cationic lipids transfection with mRNA yielded a substantially larger fraction of transfected cells (more than 80%) than transfection with pDNA (40%). In addition we tested the carriers for their ability to mediate delivery of mRNA encoding CXCR4 into mesenchymal stem cells. The fraction of CXCR4-positive cells obtained with the mRNA-cationic lipid complexes was around 80%, as compared to 40% for the linPEI polyplexes. Our results demonstrate that the advantage of the use of mRNA over that of pDNA may under certain conditions outweigh the disadvantage of the somewhat shorter expression period.
Article
We report a simple and efficient synthetic method to prepare gold nanoparticles (AuNPs) in aqueous phase using HAuCl(4) and poly(ethylene glycol) (PEG) ligands appended with bidentate anchoring groups. Our approach provides narrow size distribution nanocrystals over the size range between 1.5 and 18 nm; this range is much wider than those achieved using other small molecules and polymer ligands. The NP size was simply controlled by varying the molar ratio of Au-to-PEG ligand precursors. Further passivation of the as-prepared AuNPs permitted in situ functionalization of the NP surface with the desired functional groups. The prepared AuNPs exhibit remarkable stability in the presence of high salt concentrations, over a wide range of pHs (2-13), and a strong resistance to competition from dithiothreitol (DTT). These results are a clear manifestation of the advantages offered by our synthetic approach to prepare biocompatible AuNPs, where modular, multifunctional ligands presenting strong anchoring groups and hydrophilic PEG chains are used.
Article
The unique optical, chemical, and biological properties of gold nanoparticles have resulted in them becoming of clinical interest in several applications including drug and gene delivery. The attractive features of gold nanoparticles include their surface plasmon resonance, the controlled manner in which they interact with thiol groups, and their non-toxic nature. These attributes can be exploited to provide an effective and selective platform to obtain a targeted intracellular release of some substance. The use of gold nanoparticles can also increase the stability of the payload. Here we review recent advances in the use of gold nanoparticles in drug and gene delivery systems. The topics of surface modification, site-specificity and drugs and gene and gene delivery are discussed.
Article
Human mesenchymal stem cells (hMSCs) represent a potent target for gene delivery for both stem cell differentiation applications and clinical therapies. However, it has, thus far, proven difficult to develop delivery vehicles that increase the efficiency of gene delivery to hMSCs, due to several problematic issues. We have evaluated different vehicles with regard to the efficiency with which they deliver hMSCs and enhance the ability to deliver a reporter gene. In this study, a non-viral gene delivery system using nanoparticles was designed, with emphasis placed on the ability of the system to mediate high levels of gene expression into stem cells. Via polyplexing with polyethylenimine (PEI), the cell-uptake ability of the nanoparticles was enhanced for both in vitro and in vivo culture systems. In experiments with PEI/pNDA polyplexed with nanoparticles, the expression of green fluorescent protein (GFP) with this vehicle was noted in up to 75% of hMSCs 2 days after transfection, and GFP gene expression was detected via Western blotting, flow cytometric analysis, and immunofluorescence using a confocal laser microscope after transfection.
Article
Polyvalent oligonucleotide gold nanoparticle conjugates have unique fundamental properties including distance-dependent plasmon coupling, enhanced binding affinity, and the ability to enter cells and resist enzymatic degradation. Stability in the presence of enzymes is a key consideration for therapeutic uses; however the manner and mechanism by which such nanoparticles are able to resist enzymatic degradation is unknown. Here, we quantify the enhanced stability of polyvalent gold oligonucleotide nanoparticle conjugates with respect to enzyme-catalyzed hydrolysis of DNA and present evidence that the negatively charged surfaces of the nanoparticles and resultant high local salt concentrations are responsible for enhanced stability.
Article
Various nanoviral vectors exhibiting reduced transfection efficiency, biocompatibality, and potentially for large-scale production, are found to be suitable for gene delivery and therapy. Significant research work is focused on developing vector systems with attached receptor ligands to promote gene delivery to specific cells and tissues. Studies have shown that in arsonium and phosphonium phosphonolipid derivatives, in vitro transfection efficiency in Hela cells increases proportional to the number of methylene units between the phosphonate group and the cationic moiety. DNA condensed with low molecular weight lysine oligomers containing terminal cysteine residues cross-linked to form complexes with reducible disulfide linkages show significant gene transfer compared to commercially available lipid genes. The in vivo transfection efficiency using PDMAEMA shows that DNA complexes injected intraperitoneally is negatively affected by hyaluronic acid present in ascites.
Article
Lipid-DNA-AuNP (L-DNA-AuNP) hybrid-based gene delivery system was devised for better transfection efficiency and reduced cytotoxicity by taking advantages of AuNPs and liposomes as gene-delivery vehicles. pDNA-AuNPs were modified with cationic liposomes to form L-pDNA-AuNP hybrids and its structures were characterized using a cryo-transmission electron microscope (cryo-TEM). The transfection results show that the lipid-AuNP hybrid system has much better transfection efficiency than the liposome-based system. Dehydrogenases in viable cells induce a change in color, while liposome-based transfection system shows the highest cytotoxicity. It is also seen that only the L-pDNA-AuNP hybrid-based gene delivery system has both high delivery efficiency and low cytotoxicity. Less lipid is needed in the L-pDNA-AuNP system for efficient pDNA deliver than the lipid-pDNA system.
Article
The future of non-viral gene therapy depends on a detailed understanding of the barriers to delivery of polynucleotides. These include physicomechanical barriers, which limit the design of delivery devices, physicochemical barriers that influence self-assembly of colloidal particulate formulations, and biological barriers that compromise delivery of the DNA to its target site. It is important that realistic delivery strategies are adopted for early clinical trials in non-viral gene therapy. In the longer term, it should be possible to improve the efficiency of gene delivery by learning from the attributes which viruses have evolved; attributes that enable translocation of viral components across biological membranes. Assembly of stable, organized virus-like particles will require a higher level of control than current practice. Here, we summarize present knowledge of the biodistribution and cellular interactions of gene delivery systems and consider how improvements in gene delivery will be accomplished in the future.
Article
One of the major challenges for gene therapy is systemic delivery of a nucleic acid directly into an affected tissue. This requires developing a vehicle which is able to protect the nucleic acid from degradation, while delivering the gene of interest to the specific tissue and specific subcellular compartment. In this review, we summarize some of the recent advances in new non-viral delivery systems for systemic administration. Two types of gene delivery systems are described: (i) LPD1 (cationic liposome-entrapped, polycation-condensed DNA, type 1), and (ii) retention-time mediated naked DNA delivery. Hypothesized mechanisms for these systemic gene transfers are also discussed.
Article
Mixed monolayer protected gold clusters (MMPCs) functionalized with quaternary ammonium chains efficiently transfect mammalian cell cultures, as determined through beta-galactosidase transfer and activity. The success of these transfection assemblies depended on several variables, including the ratio of DNA to nanoparticle during the incubation period, the number of charged substituents in the monolayer core, and the hydrophobic packing surrounding these amines. Complexes of MMPCs and plasmid DNA formed at w/w ratios of 30 were most effective in promoting transfection of 293T cells in the presence of 10% serum and 100 microM chloroquine. The most efficient nanoparticle studied (MMPC 7) was approximately 8-fold more effective than 60 kDa polyethylenimine, a widely used transfection agent.
Article
The degradation of DNA in lysosomes represents a major obstacle to efficient nonviral gene delivery. The rational design of vectors that overcome this obstacle requires a better understanding of the lysosomal barrier to gene delivery, which in turn requires a means to investigate this intermediate step. To this end, we developed a technique to measure the pH environment of delivered DNA, from which the degree to which vectors avoided trafficking to acidic Iysosomes could be determined. The measured average pH of DNA delivered using poly-L-lysine (PLL) polyplexes was 4.5, suggesting that PLL polyplexes were trafficked to acidic lysosomes. Other vectors could avoid or buffer the pH of Iysosomes as DNA delivered using Lipofectamine Plus, polyethylenimine (PEI), linear polyethylenimine (LPEI), and two degradable poly(beta-amino ester)s (poly-1 and poly-2) had average pH values of 7.1, 5.9, 5.0, 6.7, and 6.4, respectively.
Article
The success of gene therapy is largely dependent on the delivery vector system. Efficient transfection and nontoxicity are two of the most important requirements of an ideal gene delivery vector. To generate both an efficient and nontoxic vector, we rationally constructed polymeric vectors to have simultaneous multiple functions, i.e., controlled degradation, an endosome disruptive function, and positive charges. Remarkably, the transfection efficiency of network poly(amino ester) (n-PAE) synthesized in this manner was comparable to that of polyethylenimine (PEI), one of the most efficient polymeric gene delivery vectors reported to date. However, there was a marked difference in cytotoxicity between the polymers. The majority of PEI-transfected cells were granulated and dead, whereas most of the cells transfected with n-PAE were viable and healthy. Successive events of efficient endosome escape of n-PAE/DNA polyplex and n-PAE biodegradation should result in high transfection efficiency and favorable cell viability response. The n-PAE-mediated transfection was also very efficient in the presence of serum. These data show that the approach we applied is a very appropriate way of making an ideal gene delivery carrier.
Article
DNA transport through the cell membrane is an essential requirement for gene therapy, which utilizes oligonucleotides and plasmid DNA. However, membrane transport of DNA is an inefficient process, and the mechanism(s) by which this process occurs is not clear. Although viral vectors are effective in gene therapy, the immune response elicited by viral proteins poses a major problem. Therefore, several laboratories are involved in the development of nonviral DNA delivery vehicles. These vehicles include polyamines, polycationic lipids, and neutral polymers, capable of condensing DNA to nanoparticles with radii of 20-100 nm. Although the structural and energetic forces involved in DNA condensation have been studied by physical biochemists for the past 25 years, this area has experienced a resurgence of interest in recent years because of the influx of biotechnologists involved in developing gene therapy protocols to combat a variety of human diseases. Despite an intense effort to study the mechanism(s) of DNA condensation using a variety of microscopic, light scattering, fluorescence, and calorimetric techniques, the precise details of the energetics of DNA nanoparticle formation and their packing assembly are not known at present. Future studies aimed at defining the mechanism(s) of DNA compaction and structural features of DNA nanoparticles might aid in the development of novel gene delivery vehicles.
Article
The structure of the lipoplex formed from DNA and the sugar-based cationic gemini surfactant 1, which exhibits excellent transfection efficiency, has been investigated in the pH range 8.8-3.0 utilizing small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-TEM). Uniquely, three well-defined morphologies of the lipoplex were observed upon gradual acidification: a lamellar phase, a condensed lamellar phase, and an inverted hexagonal (H(II)) columnar phase. Using molecular modeling, we link the observed lipoplex morphologies and physical behavior to specific structural features in the individual surfactant, illuminating key factors in future surfactant design, viz., a spacer of six methylene groups, the presence of two nitrogens that can be protonated in the physiological pH range, two unsaturated alkyl tails, and hydrophilic sugar headgroups. Assuming that the mechanism of transfection by synthetic cationic surfactants involves endocytosis, we contend that the efficacy of gemini surfactant 1 as a gene delivery vehicle can be explained by the unprecedented observation of a pH-induced formation of the inverted hexagonal phase of the lipoplex in the endosomal pH range. This change in morphology leads to destabilization of the endosome through fusion of the lipoplex with the endosomal wall, resulting in release of DNA into the cytoplasm.
Article
Lipofectamine 2000 is a cationic liposome based reagent that provides high transfection efficiency and high levels of transgene expression in a range of mammalian cell types in vitro using a simple protocol. Optimum transfection efficiency and subsequent cell viability depend on a number of experimental variables such as cell density, liposome and DNA concentrations, liposome-DNA complexing time, and the presence or absence of media components such as antibiotics and serum. The importance of these factors in Lipofectamine 2000 mediated transfection will be discussed together with some specific applications: transfection of primary neurons, high throughput transfection, and delivery of small interfering RNAs.
Article
Ligand exchange reactions of 1.5-nm triphenylphosphine-stabilized nanoparticles with omega-functionalized thiols provides a versatile approach to functionalized, 1.5-nm gold nanoparticles from a single precursor. We describe the broad scope of this method and the first mechanistic investigation of thiol-for-phosphine ligand exchanges. The method is convenient and practical and tolerates a surprisingly wide variety of technologically important functional groups while producing very stable nanoparticles that essentially preserve the small core size and size dispersity of the precursor particle. The mechanistic studies reveal a novel three-stage mechanism that can be used to control the extent of ligand exchange. During the first stage of the exchange, AuCl(PPh3) is liberated, followed by replacement of the remaining phosphine ligands as PPh3 (assisted by gold complexes in solution). The final stage involves completion and reorganization of the thiol-based ligand shell.
Article
Optical-based distance measurements are essential for tracking biomolecular conformational changes, drug discovery, and cell biology. Traditional Forster resonance energy transfer (FRET) is efficient for separation distances up to 100 A. We report the first successful application of a dipole-surface type energy transfer from a molecular dipole to a nanometal surface that more than doubles the traditional Forster range (220 A) and follows a 1/R(4) distance dependence. We appended a 1.4 nm Au cluster to the 5' end of one DNA strand as the energy acceptor and a fluorescein (FAM) to the 5' end of the complementary strand as the energy donor. Analysis of the energy transfer on DNA lengths (15, 20, 30, 60bp), complemented by protein-induced DNA bending, provides the basis for fully mapping the extent of this dipole surface type mechanism over its entire usable range (50-250 A). Further, protein function is fully compatible with these nanometal-DNA constructs. Significantly extending the range of optical based methods in molecular rulers is an important leap forward for biophysics.
Article
The potential dangers of using viruses to deliver and integrate DNA into host cells in gene therapy have been poignantly highlighted in recent clinical trials. Safer, non-viral gene delivery approaches have been largely ignored in the past because of their inefficient delivery and the resulting transient transgene expression. However, recent advances indicate that efficient, long-term gene expression can be achieved by non-viral means. In particular, integration of DNA can be targeted to specific genomic sites without deleterious consequences and it is possible to maintain transgenes as small episomal plasmids or artificial chromosomes. The application of these approaches to human gene therapy is gradually becoming a reality.
Article
We demonstrate here the effective delivery of a dye payload into cells using 2-nm core gold nanoparticles, with release occurring via place exchange of glutathione onto the particle surface. In vitro experiments demonstrate effective release of drug analogues upon addition of glutathione. Cell culture experiments show rapid uptake of nanoparticle and effective release of payload. The role of glutathione in the release process was demonstrated through improved payload release upon transient increase in glutathione levels achieved via introduction of glutathione ethyl ester into the cell.
Article
The fluorescence behavior of molecular dyes at discrete distances from 1.5 nm diameter gold nanoparticles as a function of distance and energy is investigated. Photoluminescence and luminescence lifetime measurements both demonstrate quenching behavior consistent with 1/d(4) separation distance from dye to the surface of the nanoparticle. In agreement with the model of Persson and Lang, all experimental data show that energy transfer to the metal surface is the dominant quenching mechanism, and the radiative rate is unchanged throughout the experiment.