ArticlePDF Available

Melanin Complex from Medicinal Mushroom Inonotus obliquus (Pers.: Fr.) Pilat (Chaga) (Aphyllophoromycetideae)

Authors:
... We analyzed how adsorption of dyes by melanins can mitigate their biological toxicity using nonpathogenic soil bacteria B. subtilis. These micro-organisms occupy an important niche in the microbial consortium of natural systems, and the impact of dyes on their viability can shift the ecological balance [50,51]. In our preliminary experiments, we tested the effects of lichen melanins on the growth of bacterium B. subtilis. ...
... Solutions of melanins (0.4 mg/mL) were prepared in distilled water with the addition of 10% NH 4 OH to pH 7.0. Identification of melanins was carried out using qualitative reactions with H 2 O 2 , KMnO 4 and FeCl 3 [4,51]. Elemental composition of melanins (C, N, H) determined using an analyzer EuroEA 3028-HT-OM (Eurovector SpA, Pavia, Italy) [52], the oxygen content was determined by calculation. ...
Article
Full-text available
Synthetic dyes are widely used in the industry; they are chemically stable, difficult to neutralize, and therefore they are a threat to the environment when released into wastewaters. The dyes have a significant impact on plant performance by impairing photosynthesis, inhibiting growth, and entering the food chain and may finally result in the toxicity, mutagenicity and carcinogenicity of food products. Implementation of the dark piment melanin for the adsorption of the synthetic dyes is a new ecologically friendly approach for bioremediation. The aim of the present work was to study the physico-chemical characteristics of melanins from the lichens Lobaria pulmonaria and Lobaria retigera, analyze their adsorption/desorption capacities towards synthetic dyes, and assess the capacity of melanins to mitigate toxicity of the dyes for a common soil bacterium Bacillus subtilis. Unique chelating properties of melanins determine the perspectives of the use of these high molecular weight polymers for detoxification of xenobiotics.
... Inocutis rheades Rheadinin (yellow), phellinin A (orange), hypholomines A-B (yellow), hispidin (yellow-brown), bisnoryangonin (yellow) Olennikov et al., 2017 Inonotus hispidus Melanin (black), hispidin (yellow-brown), hispolon (yellow), uncharacterized (yellow) Ali et al., 1996;Robinson et al., 2012b;Tudor, 2013;Tudor et al., 2013;Robinson et al., 2014 Inonotus obliquus Inonoblins A-C (yellow), phelligridin D (yellow), phelligridins E-G (orange), melanin (black) Babitskaya et al., 2002; Jackrogersella cohaerens (formerly known as Annulohypoxylon cohaerens/Hypoxylon cohaerens) Cohaerin A (yellow), cohaerins B-F (yellow) Quang et al., 2005a;Quang et al., 2006c; Lactarius blennius Blennione (green) Spiteller and Steglich, 2002; Velisek and Cejpek, 2011 ...
... Researchers have studied the black pigment melanin-production potential of Inonotus hispidus in the wood substrate (Tudor, 2013;Tudor et al., 2013;Robinson et al., 2012b). Similarly, some of the investigators have discovered the melanin complex from medicinal mushrooms, Inonouts obliquus (Babitskaya et al., 2002). Moreover, many novel antioxidant polyphenols, such as inonoblins A-C (yellow) along with some known compounds (phelligridins D-G) have been extracted from the fruit body of Inonouts obliquus . ...
... Inocutis rheades Rheadinin (yellow), phellinin A (orange), hypholomines A-B (yellow), hispidin (yellow-brown), bisnoryangonin (yellow) Olennikov et al., 2017 Inonotus hispidus Melanin (black), hispidin (yellow-brown), hispolon (yellow), uncharacterized (yellow) Ali et al., 1996;Robinson et al., 2012b;Tudor, 2013;Tudor et al., 2013;Robinson et al., 2014 Inonotus obliquus Inonoblins A-C (yellow), phelligridin D (yellow), phelligridins E-G (orange), melanin (black) Babitskaya et al., 2002; Jackrogersella cohaerens (formerly known as Annulohypoxylon cohaerens/Hypoxylon cohaerens) Cohaerin A (yellow), cohaerins B-F (yellow) Quang et al., 2005a;Quang et al., 2006c; Lactarius blennius Blennione (green) Spiteller and Steglich, 2002; Velisek and Cejpek, 2011 ...
... Researchers have studied the black pigment melanin-production potential of Inonotus hispidus in the wood substrate (Tudor, 2013;Tudor et al., 2013;Robinson et al., 2012b). Similarly, some of the investigators have discovered the melanin complex from medicinal mushrooms, Inonouts obliquus (Babitskaya et al., 2002). Moreover, many novel antioxidant polyphenols, such as inonoblins A-C (yellow) along with some known compounds (phelligridins D-G) have been extracted from the fruit body of Inonouts obliquus . ...
... Inocutis rheades Rheadinin (yellow), phellinin A (orange), hypholomines A-B (yellow), hispidin (yellow-brown), bisnoryangonin (yellow) Olennikov et al., 2017 Inonotus hispidus Melanin (black), hispidin (yellow-brown), hispolon (yellow), uncharacterized (yellow) Ali et al., 1996;Robinson et al., 2012b;Tudor, 2013;Tudor et al., 2013;Robinson et al., 2014 Inonotus obliquus Inonoblins A-C (yellow), phelligridin D (yellow), phelligridins E-G (orange), melanin (black) Babitskaya et al., 2002; Jackrogersella cohaerens (formerly known as Annulohypoxylon cohaerens/Hypoxylon cohaerens) Cohaerin A (yellow), cohaerins B-F (yellow) Quang et al., 2005a;Quang et al., 2006c; Lactarius blennius Blennione (green) Spiteller and Steglich, 2002; Velisek and Cejpek, 2011 ...
... Researchers have studied the black pigment melanin-production potential of Inonotus hispidus in the wood substrate (Tudor, 2013;Tudor et al., 2013;Robinson et al., 2012b). Similarly, some of the investigators have discovered the melanin complex from medicinal mushrooms, Inonouts obliquus (Babitskaya et al., 2002). Moreover, many novel antioxidant polyphenols, such as inonoblins A-C (yellow) along with some known compounds (phelligridins D-G) have been extracted from the fruit body of Inonouts obliquus . ...
Chapter
Macrofungi are fungi that produce visible, multi-cellular fruit bodies (sporocarps) either above the ground (epigeous) or below the ground (hypogeous) and generally belong to phylum Ascomycota and Basidiomycota, and a few are members of Zygomycota (Chang and Miles, 2004; Mueller et al., 2007). Macrofungi of the phylum Ascomycota include morels, truffles and cup fungi; whereas Basidiomycota includes all the agarics (mushrooms and toadstools), puffballs, bracket fungi, club fungi, coral fungi, stinkhorns, as well as chanterelles (Razak et al., 2014). Being one of the most diverse groups of organisms, macrofungi form an important part of the ecosystem due to the vital role they play in the ecosystem (Mueller et al., 2004; Zotti et al., 2013). By nature, most of the macrofungi are saprophytic or show symbiotic mycorrhizal association, while some of them are reported as plant pathogens ..... etc
... Inocutis rheades Rheadinin (yellow), phellinin A (orange), hypholomines A-B (yellow), hispidin (yellow-brown), bisnoryangonin (yellow) Olennikov et al., 2017 Inonotus hispidus Melanin (black), hispidin (yellow-brown), hispolon (yellow), uncharacterized (yellow) Ali et al., 1996;Robinson et al., 2012b;Tudor, 2013;Tudor et al., 2013;Robinson et al., 2014 Inonotus obliquus Inonoblins A-C (yellow), phelligridin D (yellow), phelligridins E-G (orange), melanin (black) Babitskaya et al., 2002; Jackrogersella cohaerens (formerly known as Annulohypoxylon cohaerens/Hypoxylon cohaerens) Cohaerin A (yellow), cohaerins B-F (yellow) Quang et al., 2005a;Quang et al., 2006c; Lactarius blennius Blennione (green) Spiteller and Steglich, 2002; Velisek and Cejpek, 2011 ...
... Researchers have studied the black pigment melanin-production potential of Inonotus hispidus in the wood substrate (Tudor, 2013;Tudor et al., 2013;Robinson et al., 2012b). Similarly, some of the investigators have discovered the melanin complex from medicinal mushrooms, Inonouts obliquus (Babitskaya et al., 2002). Moreover, many novel antioxidant polyphenols, such as inonoblins A-C (yellow) along with some known compounds (phelligridins D-G) have been extracted from the fruit body of Inonouts obliquus . ...
Chapter
The fungi kingdom comprises a large group organisms, which include both microand macrofungi. Microfungi refer to fungi that are generally not visible to the naked eye, whereas macrofungi refer to fungi that form visible fruit bodies that can be picked by hand. Fruit bodies of macrofungi are either epigeous (above the ground) or hypogeous (below the ground) (Chang and Miles, 1992; Bhandari and Jha, 2017). Macrofungi are fleshy and include mushrooms or toadstools, jelly fungi, gilled fungi, bracket fungi, stink fungi, coral fungi, bird nest fungi, puffballs and truffles (Kinge et al., 2017). Members of macrofungi mostly belong to the phylum Basidiomycota or Ascomycota and very few are Zygomycota. Most of the macrofungi produce sexual reproductive structures in the form of visible, fleshy and colloidal fruit bodies, while some produce visible asexual structures, like sclerotia (Mueller et al., 2007; Tang et al., 2015; Lallawmsanga et al., 2018). They may live as saprophytes on dead and decaying organic matter or as parasites on living organisms, while some show symbiotic association with plants and animals (Piatek, 1999; Hou et al., 2012; Tang et al., 2015).
... Attributed by its global anecdotal evidence of medicinal proper-Peng et al. Qualitative analysis of secondary metabolites of chaga mushroom ties, chaga has been used as a functional beverage (tea) or folk medicine (decoction, ointment) for the treatment of stomach diseases, intestinal worms, liver/heart ailments, dermatomycoses, joint pain, and different types of cancer in the East European countries for centuries (Babitskaya et al., 2002;Koyama, 2017;Lemieszek et al., 2011;Peng and Shahidi, 2020;Saar, 1991;Shashkina et al., 2006;Shikov et al., 2014). To date, numerous studies have claimed various bioactivities, together with related biomolecular mechanism of chaga, including antioxidant, antimicrobial, anti-cancer, hypoglycemic, antilipidemic, anti-inflammation, abirritative, immunoregulatory, and cardioprotective effects (Koyama et al., 2008;Patel, 2015;Peng and Shahidi, 2020;Shashkina et al., 2006;Zhong et al., 2009). ...
Article
Full-text available
Chaga mushroom is a black perennial fungus that usually parasites on adult birch tree trunks. It has been conventionally used as a health-promoting supplement and nutraceutical in different cultures for centuries. The desired clarification of the profile of chaga secondary metabolites responsible for various bioactive properties has been continuously pursued for decades but has only partially been unveiled. Meanwhile, in recent years, attention to food safety, quality stability, authentication, and sustainability of chaga products from the wild has become increasingly popular in the current commercial market and related small/medium-size food industry enterprises. Phenolic, hydroxylated fatty acid, and terpenoid compounds produced by sclerotia of chaga mushrooms are bioactive constituents with antioxidant, anti-microorganism, and anti-tumor activities. Some new secondary metabolites of chaga mushroom have occasionally been reported previously, and effects of environment (e.g., cultivation method, harvesting region) on compositional characteristics noted. However, these have rarely and systematically compared the compositions of their material with a reliable database of known secondary metabolites of chaga. Therefore, this study aimed to achieve a rapid screening and characterization of secondary metabolites of Newfoundland chaga. A total of 111 phenolic, 63 fatty/aromatic acid, and 108 terpenoid constituents was primarily identified using HPLC-ToF-MS (high-performance liquid chromatograph coupled with time-of-flight mass spectra), among which 161 were newly reported. In addition, an update of the compositional database of chaga was provided as supplementary materials to help utilization and development of Newfoundland chaga mushroom as edible-fungi. Conclusively, chaga mushroom is a very promising food supplement abundant in numerous fungal secondary metabolites that were rarely found in other edible materials, even though its safety (e.g., oxalate content) aspects is still in need of additional investigation for being considered as a viable commercial nutraceutical.
... Помимо внешнего древесного материала, частично модифицированного грибными лакказами, гифы фронтального мицелия I. obliquus, участвующего в формировании чаги, поглощают и накапливают синтезируемый клетками дерева бетулин, содержание которого во внешней черной «корке» чаги может достигать 30% [26]. Кроме того, с использованием окислительных ферментов гриб строит из поглощенного в результате разложения лигнина полифенольного материала собственные меланины, которые откладывает снаружи склеритизированных гиф вторичного мицелия [27]. ...
Article
Full-text available
Обзор состояния изученности известного в России грибного лекарственного сырья – чаги – вызван необходимостью обобщить сведения о воздействии его отдельных компонентов на молекулярные мишени раковой клетки. Сырье чаги (стерильные наросты гриба Inonotus obliquus) представляет собой комплекс грибной ткани, продуктов деградации и продуктов ассимиляции грибом компонентов древесной ткани. Сырье богато полифенолами, тритерпеноидами грибного и растительного происхождения, полисахаридами. В начале 1960-х гг. сырье чаги вошло в государственную фармакопею СССР и было рекомендовано к применению как неспецифическое лекарственное средство для лечения гастритов, язвы желудка, полипозов, предраковых заболеваний и некоторых форм злокачественных опухолей в случаях, когда не показаны лучевая терапия и хирургическое вмешательство. Однако, фармакологический потенциал чаги на сегондняшний момент до конца не задействован. Прежде всего, очевидно разнонаправленное действие различных биоактивных комплексов чаги на молекулярные мишени раковой клетки: ингибирующее циклинзависимые киназы и проапоптотическое (тритерпеноиды), иммуноопосредованное цитотоксическое и провоспалительное (полисахариды), генопротективное и антиапоптотическое (полифенолы). Комплексное воздействие этих веществ на раковую ткань, очевидно, имеет менее выраженный эффект, чем таргетированное воздействие на злокачественно-трансформированные клетки. Следовательно, на повестке дня – клинические испытания очищенных биоактивных комплексов чаги, прежде всего, проапоптотического (инотодиол, бетулиновая кислота) и противовоспалительного (3,4-дигидроксибензалацетон) действия. На основании рассмотренных данных предположено, что углубленное изучение сырья чаги в будущем может привести к созданию на его основе новых и более эффективных лекарств.
... Помимо внешнего древесного материала, частично модифицированного грибными лакказами, гифы фронтального мицелия I. obliquus, участвующего в формировании чаги, поглощают и накапливают синтезируемый клетками дерева бетулин, содержание которого во внешней черной «корке» чаги может достигать 30% [26]. Кроме того, с использованием окислительных ферментов гриб строит из поглощенного в результате разложения лигнина полифенольного материала собственные меланины, которые откладывает снаружи склеритизированных гиф вторичного мицелия [27]. ...
Article
Full-text available
A review of research field related to well-known Russian medicinal fungal material, Chaga, is caused by the need to summarize information about the effects of its individual compounds on molecular targets of cancer cells. Chaga raw material (sterile bodies of the fungus Inonotus obliquus) is a complex fungus tissue which includes wood degradation products, and products of assimilation wood tissue components by the fungus. Chaga raw material is rich in polyphenols, triterpenoids of fungal and plant origin, and polysaccharides. In the early 1960s, Chaga raw material was included in the USSR State Pharmacopoeia and was recommended for use as a non-specific drug for the treatment of gastritis, stomach ulcers, polyposis, precancerous diseases and some forms of malignant tumors in cases where radiation therapy and surgical intervention are not destinated. However, large pharmacological potential of Chaga at the current moment seems to be still not realized. First of all, the multidirectional effect of various Chaga bioactive complexes on the molecular targets of the cancer cell is obvious: inhibiting cyclin-dependent kinases and proapoptotic (triterpenoids), immuno-mediated cytotoxic and pro-inflammatory (polysaccharides), genoprotective and antiapoptotic (polyphenols). It is obviously that complex action of these substances on cancer tissue has less pronounced effect than the targeted one. Consequently, the clinical trials of purified bioactive complexes of chaga, primarily of proapoptotic (inotodiol, betulinic acid) and anti-inflammatory (3,4-dihydroxybenzalacetone) action, are on the agenda. Based on the data reviewed, it is suggested that careful study of Chaga raw material in the future may lead to elaboration of new and more effective pharmaceuticals
... Примечание. * -литературные данные [25]; ** -содержание в лекарственной форме «Полифепан». ...
Article
Full-text available
Chaga (Inonotus obliquus) is an edible herbal mushroom extensively distributed in the temperate to frigid regions of the Northern hemisphere, especially the Baltic and Siberian areas. Chaga parasites itself on the trunk of various angiosperms, especially birch tree, for decades and grows to be a shapeless black mass. The medicinal/nutraceutical use of chaga mushroom has been recorded in different ancient cultures of Ainu, Khanty, First Nations, and other Indigenous populations. To date, due to its prevalent use as folk medicine/functional food, a plethora of studies on bioactive compounds and corresponding compositional analysis has been conducted in the past 20 years. In this contribution, various nutraceutical and pharmaceutical potential, including antioxidant, anti-inflammatory, anti-tumor, immunomodulatory, antimutagenic activity, anti-virus, analgesic, antibacterial, antifungal, anti-hyperglycemic, and anti-hyperuricemia activities/effects, as well as main bioactive compounds including phenolics, terpenoids, polysaccharides, fatty acids, and alkaloids of chaga mushroom have been thoroughly reviewed, and tabulated using a total 171 original articles. However, only key bioactivities and bioactives are selectively discussed. Besides, the up-to-date toxicity concerns and risk assessment about the misuse of chaga, which limit its acceptance and use as medicinal/nutraceutical products, have also been clarified.
ResearchGate has not been able to resolve any references for this publication.