Content uploaded by Nagendra Prasad M N
Author content
All content in this area was uploaded by Nagendra Prasad M N on Sep 10, 2015
Content may be subject to copyright.
Volume 1 • Issue 3 • 1000108
J Nutr Food Sci
ISSN: 2155-9600 JNFS, an open access journal
Open Access
Review Article
Nutrition & Food
Sciences
Nagendra Prasad et al., J Nutr Food Sci 2011, 1:3
http://dx.doi.org/10.4172/2155-9600.1000108
*Corresponding author: Dr. M N Nagendra Prasad, Department of Biotechnology,
Sri Jayachamarajendra College of Engineering, Mysore- 570006, INDIA, Tel: +91-
9886480528, Fax: +91-821-2515770; E-mail: npmicro8@yahoo.com
Received June 27, 2011; Accepted August 26, 2011; Published September 22,
2011
Citation: Nagendra Prasad MN, Sanjay KR, Shravya Khatokar M, Vismaya MN,
Nanjunda Swamy S (2011) Health Benets of Rice Bran - A Review. J Nutr Food
Sci 1:108. doi:10.4172/2155-9600.1000108
Copyright: © 2011 Nagendra Prasad MN, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.
Health Benefits of Rice Bran - A Review
Nagendra Prasad MN*, Sanjay KR, Shravya Khatokar M, Vismaya MN and Nanjunda Swamy S
Department of Biotechnology, Sri Jayachamarajendra College of Engineering, Mysore-570006, INDIA
Abstract
Rice bran along with the germ is an inherent part of whole grain which consists of phytonutrients like oryzanols,
tocopherols, tocotrienols, phytosterols and importantly dietary bers. The complete exploitation of its potential has
not been realized due to problems associated with rancidity. However, owing to numerous stabilization procedures,
it has been possible to derive an array of health-promoting value-added products. The applications span over a
wide range starting from cholesterol reduction, combating cancer, alleviating menopausal and postmenopausal
symptoms, masking the signs of ageing to production of PHA substitutes and treating water from agricultural run-off.
The most commonly used form is its oil that has exceptional properties which makes it unparalleled when compared
with other vegetable oils. This article gives a bird’s eye view of rice bran and its distinct properties.
Keywords: Rice bran; rice bran oil; gamma oryzanol; phytosterols;
hypocholesterolemic
Introduction
Rice is the most important cereal product in Asia and is an
overwhelming staple food in most populations of this region [1,2]. It is
grown in more than 100 countries and there are around 18,000 varieties
accounting for about 25% of the world’s food grain production [3]. e
prominent rice producing continents are Asia, Africa and America [4].
Milling of paddy yields 70% of rice (endosperm) as the major product
and by - products consisting of 20% rice husk, 8% rice bran and 2% rice
germ [1,4-6]
e brownish portion of rice which is taken out in ne grain form
during de-husking and milling of paddy is the rice bran [3,7]. e bran
is the hard outer layer of rice consisting of aleurone and pericarp. Rice
bran contains an array of micronutrients like oryzanols, tocopherols,
tocotrienols, phytosterols, 20% oil and 15% protein, 50% carbohydrate
(majorly starch) dietary bers like beta-glucan, pectin, and gum[3,8-
10].
Rice bran, which was earlier used primarily as animal feed, is now
nding major application in the form of rice bran oil [1,11,12]. India
and ailand have been the most successful countries in rice bran oil
production1. In India the solvent extraction process of 40 lakh tons rice
bran yields about 6.5 lakh tons of rice bran oil [4]. Rice bran oil rening
industry produces residues such as wax sludge, gum sludge and soap
stock that are a rich source of many nutraceuticals like oryzanols,
tocopherols, tocotrienols, ferulic acid, phytic acid, lecithin, inositol and
wax [4,13,14]. ough Japan contributes just 2% of total production
of paddy in the world, it is a promising producer of nutraceuticals
and other high value products from the derivatives of paddy [13]. e
rice bran obtained from dierent varieties of colored rice are rice in
antioxidant compounds viz polyphenols, carotenoids, vitamin-E and
tocotrienol which help in preventing the damage of body tissue and
oxidative damage of DNA [123]. As Ling et al. [124,125] study done
reveals feeding bran fractions of certain colored rice varieties to rabbits
improved antioxidant status in their blood and showed signicant
reduction in atherosclerotic plaque.
Stabilizing rice bran
Until recently, rice bran as a source of value-added food product
was under-utilized due to lipase enzyme which is endogenously present
or produced as a result of microbial activity which is activated during
the milling process [15]. ese lipases hydrolyze the oil into glycerol
and free fatty acids which give the product a rancid smell and bitter
taste that renders the bran unsuitable for consumption. Under normal
milling conditions rice bran will degrade in approximately six hours
into an unpalatable material making it unsuitable as human food.
Because of the problem with rancidity, most rice bran is used as a
high protein feed additive for animals or as fertilizer or fuel [16]. Since
oxidative changes aect the oil quality adversely and are not very rapid
in their manifestation, stabilization becomes a pre-requisite. ese
eorts are aimed at destruction or inhibition of lipase–the enzyme
that causes development of free fatty acid (FFA). is is done so as to
reduce oil losses which are directly proportional to the FFA content
[17]. Rice bran can be stabilized by a variety of methods like cold
storage, sun-drying, steaming and expelling. Chemical stabilizers like
sodium metabisulphate can also be used. Properly processed extrusion-
stabilized rice bran from rough rice can be safely stored for up to one
year at ≤22°C in gas-permeable packaging. But the maximum safe
storage life for par-boiled rice bran is estimated at less than 3-4 months
[4,17].
A promising method of stabilizing rice bran is ohmic heating
[18,19]. e passage of alternating current through a food sample
results in ohmic or electrical heating by virtue of the sample’s electrical
resistance [20,21]. In order to stabilize rice bran and improve the oil
extraction yield Lakkakula et al. [18], used ohmic heating, the results
of which showed that, this is an eective method for bran stabilization
when coupled with moisture addition. e concentration of FFA
increased at a slower rate with no corresponding temperature rise,
indicating the non thermal eect of electricity on lipase activity. e
total percentage of lipids extracted were a maximum of 92%.
Citation: Nagendra Prasad MN, Sanjay KR, Shravya Khatokar M, Vismaya MN, Nanjunda Swamy S (2011) Health Benets of Rice Bran - A Review.
J Nutr Food Sci 1:108. doi:10.4172/2155-9600.1000108
Page 2 of 7
Volume 1 • Issue 3 • 1000108
J Nutr Food Sci
ISSN: 2155-9600 JNFS, an open access journal
e latest invention in this respect has been the use of an acid
having antioxidative properties. is is added to food product
containing parboiled rice bran in amounts of about 0.10% to 2.0%
by weight to maintain the stability of the food product for at least six
months at ambient conditions. Examples of these kinds of acids are
ascorbic, ascorbyl palmitate and phosphoric acid and mixtures of any
of the above. Other examples include acacetin and rosmarinic acid, and
phenolic compounds such as salicylic, cinnamic and trans-cinnamic,
synaptic, chlorogenic, quimic, ferulic, gallic, p-coumaric, vanillic acid
and vanillian, and caeic acids. However, an antioxidant mixture such
as “Petox” (a combination of BHA, BHT and citric acids) has been
found to be ineective when used alone [18-20].
Extraction and rening of rice bran oil
Crude rice bran oil is composed of 4% unsaponiables, 2-4% free
fatty acids and 88-89% neutral lipids. e unsaponiable fraction is
a complex mixture of naturally occurring antioxidant compounds
such as vitamin E and oryzanol [4]. For the commercial extraction of
oil from rice bran, hexane is the solvent of choice [22,23]. Hexane is
directly mixed with stabilized rice bran at 20°C at 2:1 (W/W solvent to
bran ratio) or pre-heated to 60°C at 3:1 (W/W solvent to bran ratio) in
asks capped and immersed in a constant-temperature water bath at
40°C or 60°C for pre-determined time. Vaccum evaporation of solvent
from the miscella yields crude rice bran oil.
However, hexane poses several drawbacks such as potential re,
health and environmental hazards. For this purpose short chain–
alcohols such as ethanol and isopropanol have been proposed
alternatively owing to their greater safety and lower need for regulation
[24]. Alcohols extract more non-glyceride materials due to their
greater polarity. Generally alcohol-extracted oils have greater amounts
of phosphatide and unsaponiable compounds [25,26]. Ethanol has
been used for the extraction of rice bran oil rich in tocopherols and B
vitamins whereas isopropanol has been used for the extraction of rice
bran oil rich in B vitamins alone [10,27].
ough widely accepted, extraction with hexane achieves limited
success in terms of good colour quality, by limiting FFA content. is is
due to the fact that specic group components of oil seed lipids cannot
be controlled. Supercritical uid has more versatile solvent properties
as against liquid extraction agents [28]. is can be attributed to greater
control over lipid solubility and mass transfer properties such as
diusivity of the extraction medium. e regulation of these properties
is expanded to the entire domain of pressure and temperature above the
critical point of SCF being used [29]. RBO yield with SC-CO2 ranged
between 19.2% & 20.4% and the yield increased with temperature at
isobaric conditions [30]. In spite of obvious advantages, this technology
has limitations due to the high cost of equipment for extraction [13, 31-
34].
Introduction of one or two enzymatic reactions prior to solvent
extraction resulted in higher oil yields [35-38]. However when these
enzymatic treatments were used alone the process did not result in
reasonable oil extraction yields [3,39]. Rice bran was treated with
cellulase and pectinase and extracted with n-hexane. e eect of
enzyme concentration was the most important factor for determining oil
and protein extraction yields whereas incubation time and temperature
had no signicant eect [39]. An alternative enzymatic reaction is the
use of alpha-amylase to gelatinize starch prior to a saccharifying step,
while the residual paste containing 66.75% of the original bran may
be subjected to a proteolytic process for the extraction of proteins or
directly treated with solvents to obtain RBO [40].
e oil from the rice bran is stable and t for consumption
aer rening. e capacity of present continuous type rice bran oil
mill is 50-200 t/d and that of batch type mill is 30 t/d. e rening
of RBO improves the quality of edible oil and is economical and
gives byproducts like oryzanol, inositol, phytosterols which are of
pharmaceutical importance. It minimizes the problems of liquid waste
and conserves energy [7,14].
Chemical rening
Conventionally, chemical rening is preferred over physical
rening. e RBO has a variety of minor components such as gamma
oryzanol, tocopherols, tocotrienols and phytosterols which dier in
their composition and renders RBO rening more complicated when
compared with the rening of other oils [1,8,13,42]. Some stages in
the chemical rening of RBO cause signicant losses or changes in
the composition of these minor components [1,13]. For instance,
the oryzanol content for physically rened RBO was the original
amount i.e. from 1.1%-1.74% whereas for chemically rened oil it was
a considerably lower amount i.e. 0.19%-0.20 % [43]. When the eect
of chemical rening was examined on the micronutrients, it showed
that alkali treatment results in signicant loss of gamma oryzanol and
modies the composition of phytosterols. Bleaching shows formation
of some isomers of 24-methylenecycloartanol (a gamma oryzanol
component). During deodorization the highly volatile compounds like
phytosterols and tocotrienols are stripped o while the non volatile
gamma oryzanol is retained that leads to formation of less than 1%
trans FA. e entire process of chemical rening removes 99.5% of the
free fatty acid component [1].
Physical rening
e physical method of rening RBO is appealing because of its
simplicity, lack of environmental impact, low oil losses and good quality
product. e recovery of unsaponiables is more in this method than
in chemical rening. Physical rening reduces neutral oil losses and
eliminates soap stock by removing FFA. e existence of wax, oryzanol
and phosphatides leads to darkening of colour and higher rening
losses of RBO. Removal of undesirable components incompletely
during pre-treatments aects the quality of the nal product [44].
Uses of rice bran
Rice bran has several unique properties that render its suitability
for niche markets like nutraceutical and pharmaceutical industry. One
such feature is the presence of signicant levels of minor-elements such
as oryzanol, tocotrienol and phytosterols that have a large nutraceutical
application. ey are used in the development of value-added healthy
products [4]. Gamma oryzanol has been found to have higher anti-
oxidant action in comparison with tocopherol. Gamma oryzanol
comprises of ferulic acid esters of sterols and triterpene alcohols. e
ferulic acid esters are campesterol, stigmasterol, and beta-cytosterol
and the triterpene alcohols are cycloartenol, cycloartanol, 24-
methylenecycloartanol and cyclobranol [45,46]. Due to its antioxidant
action, it is drawing immense interest in research world as a food
additive. It has been cited as ‘oxidation inhibitor’ in the ‘food additive
list’ [5,10,42].
Antioxidant property
e antioxidants at cellular and molecular levels are known to
Citation: Nagendra Prasad MN, Sanjay KR, Shravya Khatokar M, Vismaya MN, Nanjunda Swamy S (2011) Health Benets of Rice Bran - A Review.
J Nutr Food Sci 1:108. doi:10.4172/2155-9600.1000108
Page 3 of 7
Volume 1 • Issue 3 • 1000108
J Nutr Food Sci
ISSN: 2155-9600 JNFS, an open access journal
deactivate the natural by-products of the oxidative metabolism that are
popularly known as free radicals [13,47,48]. e minor components of
the rice bran i.e. gamma oryzanol, phytosterols and other phytosterol
conjugates are examined to have antioxidant property against the
free radicals [49,50]. e ferulic acid ester of the gamma oryzanol is
known to be a potent antioxidant which has stabilizing properties at
elevated temperatures [51]. Studies have shown that one test tube of
gamma oryzanol is four times as eective as vitamin E in inhibiting
the cellular oxidation. When compared with the four vitamin E
components (alpha-tocopherol, beta-tocopherol, alpha-tocotrienol
and beta-tocotrienol) the components of gamma oryzanol showed
higher antioxidant capacities. All these factors can be used to develop
nutraceuticals and other food ingredients from the chemically suitable
and biologically functional compounds of the rice bran that are known
to have antioxidant properties [13,49,52-54].
Rice bran in food products
Rice bran is highly nutritious and hence used as a food additive
[55]. Its major use as an additive in foods is due to the dietary bers
present in it which confer upon it the properties of a good laxative [56-
59]. Sekhon et al. [56], carried out studies which revealed that the bread
volume and cookie spread decreased but mun volume increased with
the addition of dierent types of bran. Interestingly, the addition of
full fat rice bran did not aect the cookie spread factor. Dierent food
products could be produced to contain 5-10% rice bran. Similar studies
were carried out by Dimitra and Constantina [60-63], to examine the
eect of dietary ber and the bran of various cereals like wheat, oat
and rice on cake batter, product shelf life, nal cake quality parameters
such as batter viscosity, specic volume, porosity and crumb moisture
content.
Food grade wax
Wax is an ester of long chain carboxylic acid and a long chain
alcohol. During RBO extraction a certain amount of wax is obtained
by the dewaxing step of rening process and the amount varies with
conditions of extraction like source and history of rice bran, solvent
used and extraction temperature [64]. Rice bran wax (RBW) can be
distinguished as hard wax (38.5%) and so wax (11.2%) [65,66]. e
presence of resinous matter is majorly responsible for the dark reddish
brown colour and characteristic odour of crude RBW [67]. Shaik
Ramjan Vali et al. [68] have outlined a process for purifying crude
wax and the successive preparation of food grade RBW. e potential
applications of RBW can be realized in pharmaceutical, food, cosmetic,
polymer and leather industries [69,70].
Poly Hydroxy Alkanoates (PHA)
PHA are the environment–friendly analogues of petrochemical
derived plastics which show gas barrier properties comparable to those
of poly vinyl chloride and poly ethylene terephthalate [71,72]. In a
study conducted by Ting-Yen Huang et al. [73], extruded rice bran and
extruded corn starch were used in various proportions as the carbon
source by an archae Haloferax mediterranei for procuring PHA. By
varying the culture conditions, various concentrations of PHA were
obtained [74].
e applications of PHA are in manufacture of paper, card board
or food trays or as an alternative to aluminium lms and polyethylene
[74]. Other thrust research areas are controlled drug release, sutures,
wound dressing, bone plates, paramedical disposables and therapeutic
devices [73].
Medical uses
Stabilized rice bran contains large concentrations of several
compounds and has the potential to prevent a range of chronic
diseases. It is believed that RB serves as an important functional food
that has cholesterol lowering properties, cardiovascular health benets
and anti-tumor activity [10,75].
Lowering cholesterol
RBO have hypocholesterolemic inuence resulting from selective
decrease of Low Density Lipoprotein (LDL) Cholesterol (C) fraction.
is eect was far greater than the predicted values (Table 1). is
discrepancy could be attributed to the presence of high concentration
of unsaponiables including phytosterols, oryzanols, and tocotrienols
[10,75-77]. Phytosterols have purported to be cholesterol-lowering
agents since the 1950s. Most studies undertaken thus far have focused
on the action of beta-sitosterol and sitostanol in reducing LDL and
circulating cholesterol levels. ese results indicate that these agents
may be hypolipidemic agents in mild hypercholesterolemia by
altering the lipid metabolism, for instance reducing liver acetyl Co-A
carboxylase and malic acid activities [78-80]. Gamma- oryzanol was
also found to have similar hypocholesterolemic eects. Low and high
gamma-oryzanol containing RBO feeding for four weeks reduced total
plasma cholesterol (6.3%), LDL-C (10.5%), and LDL-C/HDL-C ratio
(18.9%) [81]. Also the unsaponiables present in the rice bran were
shown to signicantly reduce liver cholesterol levels [82-84].
Coronary heart disease (CHD)
e consumption of dietary ber that is present in cereals have
shown to reduce the risk of coronary heart disease (CHD) mortality
by reducing blood pressure, lowering blood cholesterol levels and
improving insulin sensitivity [85-88]. e risk of CHD mortality was
inversely related to the consumption of dietary ber from cereals or
fruits [89-91].
For the assessment of coronary heart diseases, levels of individual
circulating cholesterol are considered more important than total
cholesterol. LDL is directly associated with the development of cardio
vascular diseases, whereas HDL has an inverse relationship [78,92-94].
In human diets, supplementation of soluble sitostanol signicantly
reduced total circulating cholesterol and LDL levels by 7.5% and 10 %
respectively [95,98].
Addition of dietary phytosterols has been found to increase
Lecithin – Cholesterol Acyl Transferase (LCAT) levels in blood [78,96-
99]. is in turn facilitates the sequestration of cholesterol within the
hydrophobic core of HDL cholesterol [100].
Edible Oils Linolenic Acid %
Cholesterol Level
Safower
Sunower
Cottonseed
Soybean
Sesame
Corn
Rice Bran
Groundnut
77.1
61.4
58.0
50.2
45.9
43.0
36.0
35.0
-16
-12
0
+3
+2
-15
-17
+5
Table 1: Cholesterol lowering activity of RBO in comparison to other edible oils
(Sea Handbook, 2009)4.
Citation: Nagendra Prasad MN, Sanjay KR, Shravya Khatokar M, Vismaya MN, Nanjunda Swamy S (2011) Health Benets of Rice Bran - A Review.
J Nutr Food Sci 1:108. doi:10.4172/2155-9600.1000108
Page 4 of 7
Volume 1 • Issue 3 • 1000108
J Nutr Food Sci
ISSN: 2155-9600 JNFS, an open access journal
Colorectal cancer
Phytosterols have shown to inhibit tumors induced by chemicals
in animals. e production of coprostanol and other neutral sterols
and bile acids by colonic micro-ora from dietary cholesterol, have
been established as factors in colon carcinogenesis [101]. Secondary
bile acid products also aid in the development of colon cancer. Studies
have suggested that dietary phytosterols signicantly alter the levels of
faecal cholesterol, cholesterol breakdown products and bile acids by
decreasing the epithelial cell proliferation [102,103]. is may be due
to suppression of bacterial metabolism of cholesterol and/or secondary
bile acid in the colon and by increase of excretion of cholesterol itself
[78,104]. Bingham et al. [105] studied the relationship between dietary
ber consumption and the incidence of colorectal cancer. e amount
of dietary ber consumption gave the relative risk estimates in a set
of individuals who were grouped by sex-specic, cohort-wide quintiles
and from linear models relating the hazard ratio to ber consumption
expressed as a continuous variable. e results showed that the intake
of dietary ber was inversely related to the occurrence of colorectal
cancer. e highest protective eect was shown at the le side of the
colon where as the least protective eect was at rectum. e value of the
adjusted relative risk for the highest versus lowest quintile of dietary
ber was 0.58 (0.41-0.85). Hence it was interpreted that by approximate
doubling of total ber intake in individuals with low average dietary
ber intake, the risk of large bowel cancer reduced greatly by 40%
[106,107].
Anti - Ageing / Cosmetics and Personal Care
e oryzanol component acts as a protective agent against UV light
induced lipid peroxidation and hence can be used as a potent sunscreen
agent. e ferulic acid and its esters present in gamma oryzanol
stimulate hair growth and prevent skin ageing [108,109].
Rice bran contains approximately 500 ppm of tocotrienols [110].
Tocotrienols when applied to the skin penetrate and get absorbed
rapidly. Majorly they get accumulated at the strata corneum of the
skin and act as the rst line of defense with their antioxidant property.
ey stabilize the free radicals generated in the skin when exposed to
oxidative rays. ey protect the skin against UV induced skin damage
and skin ageing and thus help in skin repair. e ecacy of sunscreens
containing compounds that reduce penetration of or absorb ultraviolet
radiation is augmented by using tocotrienols in them [108,109,111].
Health benets
Rice bran oil has shown immunostimulation eects. It is rich
in phytosterols, sterolins and gamma-oryzanol, a compound with
antioxidant properties which may modulate the immune system
[112].e gamma oryzanol of rice bran reduced a prominent amount
of elevated serum levels in hypothyroid patients [13]. It is known to
have a signicant eect on menopause by alleviating the menopausal
symptoms like hot ashes [113,114]. It is used as an ergogenic
supplement by body builders and athletes [115]. Rice bran fraction
derived from driselase treatment prevents high blood pressure,
hyperlipidemia, and hyperglycemia. Driselase is an esterase-free
commercial plant cell wall-degrading enzyme mixture that is made of
cellulase, xylanase, and laminarinase [116]. e derivatives from the
stabilized rice bran are rich in beta-sitosterols which inhibit the growth
and induce apoptosis in breast cancer cells [117]. e nutraceuticals
developed from the soluble and ber fractions of rice bran control
both type I and type II Diabetes Mellitus [118]. Augmenting with rice
bran health foods that contain oryzanol, lead to reduced bone loss in
women who suered from postmenopausal osteoporosis [119]. As per
the studies done Vander Berg et al. the expensive vitamin sources from
animals can be replaced by plant sources. Many colored rice cultivars
have a ray of micronutrients including a rich reserve of β-carotene
which can be converted to vitamin-A which requires the presence of
unsaturated fatty acids which in turn are also present in colored rice
cultivars [126].
Other uses
e ortho, meta and para dicholorobenzenes have been employed
as insecticides for a number of years. Among these the para- isomer
has been used on a very large scale against insects and moths infesting
clothes, hides, furs and museum specimens. Remarkably, rice bran was
found to be an eective adsorbant of para- dicholorobenzene in a broad
pH range of 1-12. e adsorbtion reaction was Freundlich type. is
property of rice bran was attributed to the uptake by the intracellular
particles called spherosomes [120-122].
Conclusions
India is the second largest producer of rice and consequently
majority of the Indian population is dependent on rice as its staple
food. ough the bran is rich in micronutrients like oryzanols,
tocopherols, tocotrienols, phytosterols, and dietary bers like beta-
glucan, pectin, and gum, it has been underutilized due to several
reasons some of them being ignorance, presence of impurities like
arsenic and silica, diculties due to the presence of free fatty acids.
Rice bran has been used to develop many health promoting products
which have hypolipidemic, anti-tumor, anti-oxidant, ergogenic and
laxative properties. An important consumer product from rice bran
is the rice bran oil which is obtained by a series of rening steps that
can be categorized as chemical and physical rening. When compared
it was found that physical rening retains a greater percentage of
phytonutrients. Advanced technologies like super critical uid
extraction can be eectively implemented in developing futuristic
nutraceutical and pharmaceutical products to combat the present
higher incidence of coronary heart diseases and many other ailments.
Acknowledgements
The authors are grateful to the Principal, Sri Jayachamarajendra College
of Engineering, Mysore and the Head of the Department, Department of
Biotechnology for providing facilities for the research work. They also thank The
Institute of Engineers (India), Kolkata for their gracious nancial support.
References
1. Van Hoed V, Depaemelaere G, Villa Ayala J, Santiwattana P , Verhé R,De, et
al. (2006) Inuence of chemical rening on the major & minor components of
rice bran oil. JAOCS 83: 315-321.
2. Wadsworth JI (1992) Rice. In: Hui Y H,ed. Encyclopedia of Food Science &
Technology, 4th ed. New York, Pa: John Wiley & sons, 264-279.
3. Hernandez N, Rodriguez-Alegría ME, Gonzalez F, Lopez-Munguia A (2000)
Enzymatic treatment of rice bran to improve processing. JAOCS 77: 177-180.
4. Anonymous. Sea Handbook-2009. 9th ed. The solvent extractor’s association
of India: India, 885-891.
5. Wells JH (1993) Utilization of rice bran & oil in human diets. Louisiana
Agriculture 36: 4-8.
6. De Deckere EAM, Korver O (1996) Minor constituents of rice brain oil as
functional foods. Nutr Rev 54: S120-S126.
7. Takeshita Yasuhiko, Iwata Fumio (1988) Recent technical advances in rice
bran oil processing (II About rening process). Transactions of the Kokushikan
Univ, Faculty of Engineering 21: 118-124.
8. Jiang Y, Wang T (2005) Phytosterols in cereal by-products. JAOCS 82: 439-
444.
Citation: Nagendra Prasad MN, Sanjay KR, Shravya Khatokar M, Vismaya MN, Nanjunda Swamy S (2011) Health Benets of Rice Bran - A Review.
J Nutr Food Sci 1:108. doi:10.4172/2155-9600.1000108
Page 5 of 7
Volume 1 • Issue 3 • 1000108
J Nutr Food Sci
ISSN: 2155-9600 JNFS, an open access journal
9. Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant Sterols:
biosynthesis, biological function and their importance to human nutrition. J Sci
Food Agric 80: 939-966.
10. Hu W, Wells JH, Tai-Sun S, Godber JS (1996) Comparison of Isopropanol and
Hexane for Extraction of Vitamin E and Oryzanols from Stabilized Rice Bran.
JAOCS 73: 1653-1656.
11. Barber S, Camacho J, Cerni R, Tortosa E, Primo E (1974) Process for the
stabilization of rice bran I Basic research studies. In Proceedings of Rice by-
products utilization (International Conference, Valencia, Spain), 49-62.
12. Hammond N (1994) Functional & nutritional characteristics of rice bran extracts.
Cereal foods world 39: 752-754.
13. Patel M, Naik SN (2004) Gamma–oryzanol from rice bran oil-A Review. J Sci
Ind Research 63: 569-578.
14. Ferrari RA, Schulte E, Esteves W , Brühl L, Mukherjee KD (1996) Minor
constituents of vegetable oils during industrial processing. JAOCS 73: 587-592.
15. Hoogenkamp Henk (2009) Rice bran reinvented. Asia Pacic Food Industry
36-39.
16. Yoon SH, Kim SK (1994) Oxidative stability of high fatty acid rice bran oil at
different stages of rening. JAOCS 75: 227-229.
17. Tao, Jiaxun, US Patent 09/366922, (to Mars Incorporated (McLean, VA), 06
December 2001.
18. Lakkakula RN, Lima M, Walker T (2004) Rice bran stabilization and rice bran oil
extraction using ohmic heating. Bioresource Technology 92: 157-161.
19. Kim J, Pyun Y (1995) Extraction of soymilk using ohmic heating. abstract: (9th
Congress of food sci & tech, Budapest, Hungary).
20. Halden K, de Alwis AAP, Fryer PJ (1990) Changes in the electrical conductivity
of foods during ohmic heating. Int J Food Sci Technol 25: 9-25.
21. Sreenarayanan VV, Chattopadhyay PK (1986) Rice bran stabilization by
dielectric heating. J Food Proc Preserv 10: 89-98.
22. Talwalker RT, Garg NK, Krishnamurti CR (1965) Rice bran-a source material
for pharmaceuticals. J Food Sci Technol 2: 117-119.
23. American Association of Cereal Chemists (AACC) (1995) Approved methods of
the American Association of Cereal Chemists. 9th ed.
24. Meinke WW, Holland BR, Harris WD (1949) Solvent extraction of rice bran,
production of B-vitamin concentrate & oil by isopropanol extraction. JAOCS
26: 532-534.
25. Lusas EW, Watkins LR, Koseoglu S (1991) Isopropyl alcohol to be tested as
solvent. INFORM 2: 970-976.
26. Beckel AC, Belter PA, Smith AK (1948) The non-distillation alcohol extraction
process for soybean oil. J Am Oil Chem Soc 25: 10-11.
27. Seetharamaiah GS, Prabhakar JV (1986) Oryzanol content of Indian rice bran
oil & its extraction from soap stock. J Food Sci Technol 23: 270-273.
28. Ramsay M E, Hsu JT, Novak RA, Reightler WJ (1991) Processing rice bran by
supercritical uid extraction. Food Technol 45: 98-104.
29. Kim H, Lee S, Park K, Hong I (1999) Characterization of extraction and
separation of rice bran oil rich in EFA using SFE process. Sep Purif Technol
15: 1-8.
30. Kuk MS, Dowd MK (1998) Supercritical CO2 extraction of rice bran. J Am Oil
Chem Soc 75: 623-628.
31. Zhao W, Shishikura A, Fujimoto K, Ara K, Saito S (1987) Fractional extraction
of rice bran oil with supercritical CO2. Jpn Agric Biol Chem 51: 1773-1777.
32. Paulitis ME, McHugh MA, Chai CP (1983) Chapter VI. In: Paulitis M E,
Penninger J M L, Gray R D Jr., Davidson P, ed. Solid solubilities in supercritical
uids at elevated pressures. Ann Arbor, Pa: Ann Arbor Science 139-158.
33. Friedrich JP, List GR, Heakin AJ (1982) Petroleum-free extraction of oil from
soybeans with supercritical carbon dioxide. JAOCS 59: 288-292.
34. Czubryt JJ, Myers NM, Giddings JC (1970) Solubility phenomena in dense
carbon dioxide gas in the range of 290-1900 atmospheres. J Phys Chem 74:
4260-4265.
35. Christensen FM (1991) Extraction by aqueous enzymatic processes. INFORM
2: 984-987.
36. Rosenthal A, Pyle DL, Niranjan K (1996) Aqueous & enzymatic processes for
edible oil extraction. Enzyme Microb Technol 19: 402-420.
37. Sengupta R, Bhattacharyya DK (1996) Enzymatic extraction of mustard seed &
rice bran. JAOCS 73: 687-692.
38. Johnson LA, Lusas EW (1983) Comparison of alternative solvents for oil
extraction. JAOCS 60: 229-242.
39. Hanmoungjai P, Pyle DL, Niranjan K (2001) Enzymatic process for extracting
oil & protein from rice bran. JAOCS 78: 817-821.
40. Association of Ofcial Analytical Chemists (AOAC). (1995) Ofcial methods of
analysis of the Association of Ofcial Analytical Chemists. vol XVI.Cunniff P,
ed.Gaithersburg, Pa: AOAC International.
41. Mishra A, Gopalakrishna AG, Prabhakar JV (1988) Factors affecting rening
losses in rice ( Oryza sativa L. ) bran oil. JAOCS 65: 1605-1609.
42. Bucci V, Magrì AD, Magrì AL, Marini F (2003) Comparison of three
spectrophotometric methods for the determination of γ- oryzanol in rice bran
oil. Anal Bioanal Chem 375: 1254-1259.
43. Gopala Krishna AG, Khatoon S, Sheila PM, Sarmandal CV, Indira TN, et al.
(2001) Effect of rening crude rice bran oil on the retention of oryzanol in the
rened oil. JAOCS 78: 127-131.
44. De BK, Bhattacharyya DK (1998) Physical rening of rice bran oil in relation to
degumming & dewaxing. JAOCS 75: 1683-1686.
45. Bucci R, Magrí AD, Magrí AL, Marini D, Marini F (2002) Chemical authentication
of extra virgin olive oil varieties by supervised chemometric procedures. J Agric
Food Chem 50: 413-418.
46. Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi A (2000) Plant sterols:
biosynthesis, biological function & their importance to human nutrition. J Sci
Food Agric 80: 939-966.
47. Higash–Okai K, Kanbara K, Amano K, Hagiwara A, Sugita C, et al. (2004)
Potent antioxidative and antigenotoxic activity in aqueous extract of Japanese
rice bran - association with peroxidase activity. Phytotherapy Res 18 b: 628-
633.
48. Graf E, Eaton JW (1990) Antioxidant functions of phytic acid. Free Radic Biol
Med 8: 61-69.
49. Wang T, Hicks KB, Moreau R (2002) Antioxidant activity of phytosterols,
oryzanol & other phytosterol conjugates. JAOCS 79: 1201-1206.
50. Kochhar SP (2000) Stable and healthful frying oil for the 21st century. INFORM
11: 642-647.
51. Xu Zhimin, Godber JS, Xu Z (2001) Antioxidant activities of major components
of gamma-oryzanol from rice bran using a linolenic acid model. JAOCS 78:
465-469.
52. Fukushi J (1966) Antioxidant effects of oryzanol. In Edible rice bran oil part – III,
Pa : Hokkaido-Ritsu Eisei Kenkyushoho, 111-114.
53. Nakatani N, Tachibana Y, Kikuzaki H (2001) Establishment of a model
substrate oil for antioxidant activity assessment by oil stability index method.
JAOCS 78: 19-23.
54. Xu Z, Hua N, Godber JS (2001) Antioxidant activity of tocopherols, tocotrienols
& γ-oryzanol components from rice bran against cholesterol oxidation
accelerated by 2,2’-Azo-bis (2-methylpropionamidin) Dihydrochloride. J Agric
Food Chem 49: 2077-2081.
55. Luh BS, Liu YK (1980) Rice ours in baking. Juliano B O, ed. 470-485.
56. Sekhon KS, Dhillon SS, Singh N, Singh B (1997) Functional suitability of
commercially milled rice bran in India for use in different food products. Plant
foods for human nutrition 50: 127-140.
57. Nesaretnam K, Stephen R, Dils R, Darbre P (1998) Tocotrienols inhibit the
growth of human breast cancer cells irrespective of estrogen receptor status.
Lipids 33: 461–469.
58. McCaskill DR, Zhang F (1999) Use of rice bran oil in foods. Food Technol
53:50-54.
59. Sharp CQ, Kitchens KJ (1990) Using rice bran in yeast bread in a home baker.
Cereal foods world 35: 1021-1024.
60. Lebesi DM, Tzia C (2009) Effect of the addition of dietary ber & edible cereal
bran sources on the baking & sensory characteristics of cupcakes. Food
Bioprocess Technol 4: 710-722.
Citation: Nagendra Prasad MN, Sanjay KR, Shravya Khatokar M, Vismaya MN, Nanjunda Swamy S (2011) Health Benets of Rice Bran - A Review.
J Nutr Food Sci 1:108. doi:10.4172/2155-9600.1000108
Page 6 of 7
Volume 1 • Issue 3 • 1000108
J Nutr Food Sci
ISSN: 2155-9600 JNFS, an open access journal
61. Gordon DT (1989) Functional properties vs. physiological action of total dietary
ber. Cereal Foods World 34: 517-525.
62. Hallén E, Ibanoglu S, Ainsworth P (2004) Effect of fermented/germinated
cowpea our addition on the rheological and baking properties of wheat our.
Journal of Food Engineering 63: 177-184.
63. International Organization for Standardization, Geneva, Switzerland (ISO)
13299 Sensory Analysis Methodology (1998) General guidance for establishing
a sensory prole.
64. Firestone D (1997) Ofcial methods & recommended practices of the AOCS.
5th ed. AOCS Press: Champaign IL.
65. Iwama F, Maruta S (1969) Composition of hard portion of crude rice bran wax.
Kogyo Kagaku Zassh 722: 605-2608.
66. Yoon SH, Rhee JS (1982) Composition of waxes from crude rice bran oil.
JAOCS 59: 561-563.
67. Henon G, Recseg K, Kovari K (2001) Wax analysis of vegetable oils using
liquid chromatography on a double adsorbent layer of silica gel & silver nitrate-
impregnated silica gel. JAOCS 78: 401-410.
68. Vali SR, Ju Y, Kaimal TNB, Chern Y (2005) A process for the preparation of
food grade rice bran wax & determination of its composition. JAOCS 82: 57-64.
69. Ito M (2003) Characterization of natural waxes & their application to cosmetic
foundations. Fragrance J 31: 38-46.
70. Buffa CW (1976) Rice bran wax, a new wax for cosmetics, drugs & toiletries.
Cosmet Toiletries 91: 14-16.
71. Anderson AJ, Wynn JP (2001) Microbial polyhydroxyalkanoates,
polysaccharides and lipids. In: Ratl edge C, Kristiansen B, ed. Basic
Biotechnology. New York, Pa: Cambridge University Press, pages: 325-333.
72. Choi HJ, Kim J, Jhon MS (1999) Viscoelastic characterization of biodegradable
poly (3-hydroxy butyrate-co-3-hydroxy valerate). Polymer 40: 4135-4138.
73. Huang T, Duan K, Huang S, Chen CW (2006) Production of
polyhydroxyalkanoates from inexpensive extruded rice bran & starch by
Haloferax mediterranei. J Ind Microbiol Biotechnol 33: 701-706.
74. Anton J, Meseguer I, Rodriguez-Valera F (1988) Production of an extracellular
polysaccharide by Haloferax mediterranei. Appl Environ Microbiol 54: 2381-
2386.
75. Lichtenstein AH, Ausman LM, Carrasco W, Gualtieri LJ, Jenner JL, et
al. (1994) Rice bran oil consumption & plasma lipid levels in moderately
hypercholesterolemic humans. Arterioscler Thromb 14: 549-556.
76. Hegsted M, Windhauser MM (1993) Reducing human heart disease risk with
rice bran. Louisiana Agriculture 36: 22-23.
77. Orthoefer FT (1996) Rice Bran Oil: Healthy Lipid Source. Food Tech 50: 62-64.
78. Ling WH, Jones PJH (1995) Dietary Phytosterols: A review of metabolism,
benets and side effects. Life Sciences 57: 195-206.
79. Kahlon TS, Saunders RM, Sayre RN, Chow FI, Chiu MM, et al. (1992)
Cholesterol-lowering effects of rice bran & rice bran oil fractions in
hypercholesterolemic hamsters. Cereal Chem 69: 485-489.
80. Yoshino G, Kazumi T, Amano M, Tateiwa M, Yamasaki T, et al. (1989) Effects
of γ-oryzanol on hyperlipidemic subjects. Curr Therapeutic Res 45: 543-552.
81. Berger A, Rein D, Schäfer A, Monnard I, Gremaud G, et al. (2005) Similar
cholesterol-lowering properties of rice bran oil, with varied γ-oryzanol, in mildly
hypercholesterolemic men. Eur J Nutr 44: 163-173.
82. Kahlon TS, Chow FI, Chiu MM, Hudson CA, Sayre RN (1996) Cholesterol-
lowering by rice bran & rice bran oil unsaponiable matter in hamsters. Cereal
Chem 73: 69-74.
83. Nicolosi RJ, Austrain LM, Hegsted DM (1991) Rice bran oil lowers serum total
and low density lipoprotein cholesterol and apo B levels in nonhuman primates.
Atherosclerosis 88: 133-142.
84. Nakamura H (1966) Effect of γ-oryzanol on hepatic cholesterol biosynthesis &
fecal excretion of cholesterol metabolites. Radioisotopes 25: 371-374.
85. Truswell AS (2002) Cereal grains & coronary heart diseases. Eur J Clin Nutr
56: 1-14.
86. Mellen PB, Walsh TF, Herrington DM (2008) Whole grain intake & cardiovascular
disease: a meta-analysis. Nutr Metab Cardiovasc Dis 18: 283-290.
87. Whelton SP, Hyre AD, Pedersen B, Yi Y, Whelton PK, et al. (2005) Effect
of dietary bre intake on blood pressure: a meta-analysis of randomized,
controlled clinical trials. J Hypertens 23: 475-481.
88. Rimm E B, Ascherio A, Giovannucci E, Spiegelman D, Stampfer M J, et al.
(1996) Vegetable, fruit & cereal ber intake & risk of coronary heart disease
among men. JAMA 275: 447-451.
89. Martinette TS, Marga CO, Hendriek CB, Frans JK, Daan K (2008) Dietary ber
intake in relation to coronary heart disease and all-cause mortality over 40 yr:
the Zutphen Study. Am J Clin Nutr 88: 1119-1125.
90. Mark AP, Eilis O, Katarina A, Gary EF, Uri G, et al. (2004) Dietary ber and
risk of coronary heart disease: a pooled analysis of cohort studies. Arch Intern
Med 164: 370–376.
91. Kromhout D, Bosschieter EB, de Lezenne Coulander C (1982) Dietary bre
&10-year mortality from coronary heart disease, cancer & all causes-The
Zutphen Study. Lancet 320: 518-522.
92. Sayre B, Saunders R (1990) Rice bran & rice bran oil. Lipid Technol 272-76.
93. Margolis S, Dobs AS (1989) Nutritional management of plasma lipid disorders.
J Am Coll Nutr 8: 33S-45S.
94. Laraki L, Pelletier X, Mourot J, Derby G (1993) Effects of Dietary Phytosterols
on Liver Lipids and Lipid Metabolism Enzymes. Ann Nutr Metab 37: 129-133.
95. Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects
of dietary ber: a meta-analysis. Am J Clin Nutr 69: 30-42.
96. Moghadasian MH, Frohlich JJ (1999) Effects of dietary phytosterols on
cholesterol metabolism & atherosclerosis: clinical & experimental evidence.
Am J Med 107: 588-594.
97. Laraki L, Pelletier X, Derby G (1991) Effects of dietary cholesterol & phytosterol
overload on Wistar Rat plasma lipids. Ann Nutr Metab 35: 221-225.
98. Vanhanen HT, Blomqvist S, Ehnholm C, Hyvönen M, Jauhiainen M, et
al. (1993) Serum cholesterol, cholesterol precursors, and plant sterols in
hypercholesterolemic subjects with different apoE phenotypes during dietary
sitostanol ester treatment. J Lipid Res 34: 1535-1544.
99. Shephard J, Packard CHJ (1989) Human plasma lipoproteins Walter de
Gruyter, Berlin: 55-78.
100. Vanhanen H, Miettinen TA (1992) Pravastatin & lovastatin similarly reduce
serum cholesterol and its precursor levels in familial hypercholesterolaemia.
Eur J Clin Pharmacol 42: 127–130.
101. Cummings JH, Macfarlane GT (1997) Colonic microora: nutrition and health.
Nutrition 13: 476-478.
102. Fuchs CS, Giovannucci EL, Colditz GA, Hunter DJ, Stampfer MJ, et al. (1999)
Dietary ber and the risk of colorectal cancer and adenoma in women. N Engl
J Med 340: 169-176.
103. Pietinen P, Malila N, Virtanen M, Hartman TJ, Tangrea JA, et al. (1999) Diet
and the risk of colorectal cancer in a cohort of Finnish men. Cancer Causes
Control 10: 387-396.
104. Faivre J, Bonithon-Kopp C (1999) Chemoprevention of colorectal cancer.
Recent Results Cancer Res 151: 122-133.
105. Bingham SA, Day NE, Luben R, Ferrari P, Slimani N, et al. (2003) Dietary ber
in food & protection against colorectal cancer in the European Prospective
Investigation into Cancer & Nutrition (EPIC) : an observational study. Lancet
361: 1496-1501.
106. Bonithon-Kopp C, Kronborg O, Giacosa A, Ulrich R, Jean F, et al. (2000)
Calcium and bre supplementation in prevention of colorectal adenoma
recurrence: a randomised intervention trial. Lancet 356: 1300-1306.
107. Agudo A, Slimani N, Ocke MC, Naska A, Miller AB, et al. (2002) Consumption
of vegetables, fruit and other plant foods in the European Prospective
Investigation into Cancer and Nutrition (EPIC) cohorts from 10 European
countries. Publ Health Nutr 5: 1179-1196.
108. Noboru K & Yusho T (1970) Oryzanol Containing Cosmetics. Japanese Patent
70: 32078.
109. Shugo M (1979) Anti-dandruff and anti-itching shampoo. Japanese Patent 79:
36306.
Citation: Nagendra Prasad MN, Sanjay KR, Shravya Khatokar M, Vismaya MN, Nanjunda Swamy S (2011) Health Benets of Rice Bran - A Review.
J Nutr Food Sci 1:108. doi:10.4172/2155-9600.1000108
Page 7 of 7
Volume 1 • Issue 3 • 1000108
J Nutr Food Sci
ISSN: 2155-9600 JNFS, an open access journal
110. Eitenmiller RR (1997) Vitamin E Content of fats and oils: nutritional implications.
Food Technol 51: 78-81.
111. Tomeo AC, Geller M, Watkins TR, Gapor A, Bierenbaum ML (1995)
Antioxidant effects of tocotrienols in patients with hyperlipidemia and carotid
stenosis. Lipid 30: 1179-1183.
112. Sierra S, Lara-Villoslada F, Olivares M, Jiménez J, Boza J, et al. (2005)
Increased immune response in mice consuming rice bran oil. Eur J Nutr 44:
509-516.
113. Yamuchi J, Takahara J, Uneki T, Ofuki T (1981) Inhibition of LH secretion by
gamma oryzanol in rat. Horm Metab Res 13:185.
114. Ishihara M, Ito Y, Nakakita T, Maehama T, Hieda S, et al. (1982) Clinical effect
of gamma–oryzanol on climacteric disturbance - on serum lipid peroxidases.
Nihon Sanka Fujinka Gakkai Zasshi 34: 243-251.
115. Fry AC, Bonner E, Lewis DL, Johnson RL, Stone MH, et al. (1997) The effects
of gamma-oryzanol supplementation during resistance exercise training. Int J
Sport Nutr 7: 318-329.
116. Ardiansyah, Shirakawa H, Koseki T, Hashizume K, Komai M (2007) The
driselase-treated fraction of rice bran is a more effective dietary factor
to improve hypertension, glucose and lipid metabolism in stroke-prone
spontaneously hypertensive rats compared to ferulic acid. Br J Nutr 97: 67–76.
117. Awad AB, Downie AC, Fink CS (2000) Inhibition of growth & stimulation of
apoptosis by beta-sitosterol treatment of MDA – MB-231 human breast cancer
cells in culture. Int J Mol Med 5: 541-545.
118. Qureshi AA, Sami SA, Khan FA (2002) Effects of stabilized rice bran, its
soluble & ber fractions on blood glucose levels & serum lipid parameters in
humans with diabetes mellitus types I & II. J Nutr Biochem 13: 175-187.
119. Heli Roy RD, Shanna Lundy BS (2005) Rice Bran. Pennington Nutrition Series
8.
120. Adachi A, Kunieda K, Okano T (2007) Efciency of rice bran for removal of
p-dichlorobenzene from water. J of Health Science 53: 604-607.
121. Shepard HH (1951) Chemistry & action of insecticides. New York: Mc Graw-
Hill, 271-272.
122. Loeser E, Litcheld MH (1983) Review of recent toxicology studies on
p-dichlorobenzene. Food Chem Toxicol 21: 825-832.
123. Frei M, Becker K. A novel correlation between lipid components and all-trans-
β-carotene in differently colored rice landraces. Submitted to Journal of the
Science of Food and Agriculture.
124. Ling WH, Cheng QX, Ma J, Wang T (2001) Red and black rice decrease
artherosclerotic plaque formation and increase antioxidant status in rabbits.
J Nutr 131: 1421-1426.
125. Ling WH, Wang LL, Ma J (2002) Supplementation of the black rice outer
layer fraction to rabbits decreases the atherosclerotic plaque formation and
increases antioxidant status. J Nutr 132: 20-26.
126. Nagao A (2004) Oxidative conversion of carotenoids to retinoids and other
products. J Nutr 134: 237S-240S.
Submit your next manuscript and get advantages of OMICS
Group submissions
Unique features:
• Userfriendly/feasiblewebsite-translationofyourpaperto50world’sleadinglanguages
• AudioVersionofpublishedpaper
• Digitalarticlestoshareandexplore
Special features:
• 100OpenAccessJournals
• 10,000editorialteam
• 21daysrapidreviewprocess
• Qualityandquickeditorial,reviewandpublicationprocessing
• IndexingatPubMed(partial),Scopus,DOAJ,EBSCO,IndexCopernicusandGoogleScholaretc
• SharingOption:SocialNetworkingEnabled
• Authors,ReviewersandEditorsrewardedwithonlineScienticCredits
• Betterdiscountforyoursubsequentarticles
Submityourmanuscriptat:http://www.editorialmanager.com/lifesciences