Content uploaded by James W. Fourqurean
Author content
All content in this area was uploaded by James W. Fourqurean on Nov 21, 2014
Content may be subject to copyright.
67
4
© Miguel An gel MAteo
Field Sampling of Vegetative Carbon
Pools in Coastal Ecosystems
LEAD AUTHORS
James Fourqurean, Beverly Johnson, J. Boone Kauman, Hilary Kennedy, Catherine Lovelock, Neil Saintilan
CO-AUTHORS
Daniel M. Alongi, Miguel Cifuentes, Margareth Copertino, Steve Crooks, Carlos Duarte, Miguel Fortes,
Jennifer Howard, Andreas Hutahaean, James Kairo, Núria Marbà, Daniel Murdiyarso, Emily Pidgeon,
Peter Ralph, Oscar Serrano
68
4GENERAL CONSIDERATIONS
org
MANGROVES
et al
(Fig. 4.1
69
4
et al
A B
C D
AB
Figure 4.1
Figure 4.2
4
et alet al
Field Sampling Considerations
Fig. 4.3
4
Biomass Estimates
LIVE TREES
et al
Figure 4.3
Leaf litter
Downed wood
Shrubs
Mangrove trees
SIZE OF SAMPLING AREA
SIZE OF ITEM BEING SAMPLED
72
4et
al
et al
(Chave et al
Table 4.2
Diameter at Breast Height (dbh):
Fig. 4.4
Fig 4.4A)
Fig 4.4B)
(Fig 4.4C)
Fig 4.4D)
Fig 4.4E)
Fig 4.4F
73
4
Rhizophora
above the highest stilt (Fig 4.4G
Wood Density:
3
Figure 4.4 et al
1.3 m
1.3 m
1.3 m
1.3 m
1.3 m
1.3 m
1.3 m
Just
below
fork
Just
above
buttress
A B C D
E F G
433,
33)
Table 4.1
Allometric equations for mangrove tree biomass:
et al
et al
Table 4.2
Table 4.3
4
Table 4.1 33et alet
al
SPECIES n
AVERAGE
WOOD
DENSITY
(TONNES/m3)
STANDARD
ERROR
Avicennia germinans
Avicennia marina 6
Avicennia ocinalis 3
Brugueria gymnorrhiza 8
Ceriops decandra 2
Ceriops tagal 7
Excoecaria agallocha 7
Heritiera fomes 3
Heritiera littoralis 6
Laguncularia racemosa 3
Rhizophora apiculata
Rhizophora mangle 7
Rhizophora mucronata 9
Sonneratia alba 6
Sonneratia apetala 2
Xylocarpus granatum 7
Average 0.71 0.02
76
4Table 4.2
3), D
SPECIES GROUP N Dmax LOCATION BIOMASS EQUATION R2
Asia
Avicennia germinans
Avicennia germinans 8
Bruguiera gymnorrhiza
(leaf)
Australia
Bruguiera gymnorrhiza
326 Micronesia
Laguncularia racemosa
Laguncularia racemosa
Rhizophora apiculata
Rhizophora apiculata
Micronesia
Rhizophora apiculata
stylosa (leaf)
23 23 Australia
Rhizophora apiculata
stylosa (stilt roots)
23 23 Australia
Rhizophora mangle
Rhizophora spp
(racemosa and mangle)
9 32
Sonneratia alba 323 Micronesia
77
4
Table 4.3
3), D
SPECIES GROUP N Dmax Hmax BIOMASS EQUATION R2
2
Bruguiera gymnorrhiza 2H)
Lumnitzera littorea 2H)
Rhizophora apiculata 2H)
Rhizophora mucronata 73 2H)
Rhizophora 2H)
Sonneratia alba 323 2H)
Xylocarpus granatum 2H)
Variance from Allometric equations:
Fig. 4.5
et al
Bruguiera
0 10 20 30 40 50 60 70
80
0 10 20 30 40 50 60 70
80
10K
6K
0
8K
4K
2K
10K
6K
0
8K
4K
2K
Diameter at breast height (cm) Diameter at breast height (cm)
Aboveground biomass (kg)
Aboveground biomass (kg)
Kauffman & Cole (2010) BRGY equ
(max 132 cm)
Komiyama et al. (2008) general eqn
(max 49 cm)
Chave/Komiyama et al. (2008) general eqn
Chave et al. (2005) general eqn (max 42 cm)
Komiyama et al. (2008) BRGY eqn (max 25 cm)
Kauffman & Cole (2010) SOAL equ
(max 323 cm)
Komiyama et al. (2008) general eqn
(max 49 cm)
Chave/Komiyama et al. (2008) general eqn
(max 50 cm)
Chave et al. (2005) general eqn (max 42 cm)
A. Bruguiera gymnorrhiza B. Sonneratia alba
Figure 4.5 Burguiera gymnorrhizaSonneratia alba
et al
et al
78
4
et alSonneratia
alba
et al
Determining the Carbon within the Live Tree Component (kg C/m2): The live tree carbon
2
et al
the carbon content of Bruguiera gymnorrhiza Rhizophora apiculata
and Sonneratia alba
EXAMPLE
2
2)
SCRUB MANGROVES
et alet alet al
et al
Fig. 4.6
79
4
(Fig. 4.2A
2
Determining the Carbon within the Scrub Mangrove Component (kgC/m2): The scrub
2
EXAMPLE
2
2)
W1
Crown
Depth
Height
D30Z
W1
W2
Elliptical crown area = (W1 * W2/2)2*π
Where W1 is the widest length of the plant
canopy through its center, and W2 is the
canopy width perpendicular to W1.
Crown volume = elliptical crown area * crown depth
Height is measured from the sediment surface
to the highest point of the canopy.
D30 is the mainstem diameter at 30 cm.
Figure 4.6
et al
4STANDING DEAD TREES
Fig. 4.7
Decay status 1:
Decay status 2:
Decay status 3:
Decay status 1:
et al
Decay status 2:
Decay Status 3:
1 2 3
Figure 4.7
4
dtopbasebase
32
2
3basetopbasetop
3
3
3
3
if that is not practical, a list of standard densities based on size (Table 4.4) can be used for
Table 4.4
Table 4.4
SIZE CLASS
(cm DIAMETER) DENSITY ±SE (g/cm3) SAMPLE SIZE (n)
69
Determining the Carbon within the Standing Dead Tree Component (kg C/m2): The
2
82
4
et al
EXAMPLE
2
2)
LIANAS
Fig 4.8
et al
Figure 4.8
A B
83
4
Determining the Carbon within the Liana Component (kg C/m2):
2
et al
EXAMPLE
2
2)
PALMS AND OTHER NON-TREE VEGETATION
Nypa fruticans, Fig. 4.9
Figure 4.9 Small Nypa fruticans
A B
4
Determining the Carbon within the Palm Component (kg C/m2):
2
et al
EXAMPLE FOR SMALL PALMS
2
2
EXAMPLE FOR LARGE WOODY PALMS
2
2
PNEUMATOPHORES
Avicennia, Brugueira, and Sonneratia
Rhizophora, these
Fig. 4.10
222
4
Sonneratia alba
Determining the Carbon within the Pneumatophore Component (kg C/m2): The
EXAMPLE
2
2
Figure 4.10
AB
86
4LITTER
of the carbon pool due to the high
Fig. 4.11
Determining the Carbon within the Leaf Litter Component (kg C/m2):
et al
2
et alet al
EXAMPLE
2
2)
Figure 4.11
87
4
DEAD AND DOWNED WOOD
Fig. 4.12
Line (or planar) intersect technique for sampling downed wood: The line (or planar)
Table 4.5
Fig. 4.13
Figure 4.12 Rhizophora and Sonneratia
AB
88
4
Table 4.5
DESCRIPTION DIAMETER
Fig. 4.14
Figure 4.13
Transect
1 2 3 4
BC
D
A
Plot Center
Wood
size
Wood size
no
measurement
Counted, measured (diameter), recorded “sound” or “rotten”
2 m – Nested subplot boundary 7 m0 m 10 m 12 m
2.5 – 7.5
cm
0.6 – 2.5
cm
< 0.6
cm
≥ 7.5
cm
Figure 4.14
89
4
2
2
Table 4.6
along the entire transect is recorded (Fig. 4.14
et al
Wood density:
Table 4.6
Rhizophora apiculata, Sonneratia alba, and Bruguiera gymnorrhiza
SIZE CLASS
(cm diam.)
DENSITY ±SE
(g/cm3) SAMPLE SIZE
DIAMETER
(cm)
QUADRATIC
MEAN
DIAMETER (cm)
SAMPLE
SIZE
69
na na na
4
3
22
322
3
22
322222
33)
Determining the Carbon within the Downed Wood Component (kg C/ha):
EXAMPLE
BELOWGROUND TREE BIOMASS
et al
et
alet al
3)
et al
4
EXAMPLE
2
2)
TIDAL SALT MARSHES
Fig 4.15
Low or none
High
TNC: Conservation Maps and GIS Data
Figure 4.15 et al
92
4
Fig. 4.16
et al et al
et al
2
et al
et al
BRACKISH
MARSH
HIGHER HIGH
MARSH
HIGH MARSH LOW MARSH
hydroperiod
elevation
Figure 4.16
93
4
et al
Field Sampling Considerations
Fig. 4.17
Vegetation Sampling
A
B
C
20 m
50 m
135
246
Figure 4.17
vegetation or other structural gradients,
4
et al
et al
Biomass Estimates
GRASSES, SEDGES AND OTHER HERBACEOUS PLANTS
the green height (Fig 4.18
Total height
Living height
Single Stem Single StemStem Cluster
Separate clusters
into stems
Figure 4.18
4
Fig. 4.19
Determining the carbon pool in tidal salt marsh grasses (kg C/m2): The grass carbon
2
et al
EXAMPLE
2
2)
Stem Biomass (g)
Stem Height (cm)
Figure 4.19
96
4SHRUBS
genus Atriplex, Borricha, and Iva
Tecticornia
et al
Fig. 4.20
Determining the carbon pool in shrubby tidal salt marsh (kg C/m2): The shrub carbon
2
Figure 4.20
et al
W1
Crown
Depth Height
D30Z
W1
W2
Elliptical crown area = (W1 * W2/2)2*π
Where W1 is the widest length of the plant
canopy through its center, and W2 is the
canopy width perpendicular to W1.
Crown volume = elliptical crown area * crown depth
Height is measured from the sediment surface
to the highest point of the canopy.
D30 is the mainstem diameter at 30 cm.
97
4
EXAMPLE
2
2
BELOWGROUND BIOMASS
et al et al
et al
Table 4.7
S. alterniora
Table 4.7
Spartina alternioraet al
EQUATION
ABOVE-GROUND COMPONENTS
INCLUDED (FOR AN ENTIRE PLOT) r2
All live and dead aboveground
et al
(Saunders et al
98
4et al
2
2
2
Determining the carbon within the belowground biomass (kg/m2):
EXAMPLE (BIOMASS DETERMINED BY ALLOMETRIC EQUATIONS)
2
2)
EXAMPLE (BIOMASS DETERMINED BY SAMPLING)
2
LITTER
99
4
EXAMPLE
2
2)
DEAD AND DOWNED WOOD
SEAGRASS MEADOWS
Fig. 4.22
Figure 4.21
4
et alet
alet alet alet al
et al
et al
et al
et al
et al
2
et al
et al
in Table 4.8
Zostera
marina
Cymodocea
rotundata
Posidonia
oceanica
Thalassia
hemprichii
Figure 4.22
4
Table 4.8 et al
REGION
LIVING SEAGRASS BIOMASS
(MgC/ha)
SOIL ORGANIC CARBON
(MgC/ha)
n Mean ± 95% CI n Mean ± 95% CI
ND ND
North Atlantic
Mediterranean 29
South Atlantic
8
ND ND
South Australia 9
Field Sampling Considerations
2)
Biomass Estimates and Carbon Content
LIVING BIOMASS
4
Fig. 4.23
Fig. 4.24
Figure 4.23
Figure 4.24 Ruppia maritime
Belowground Biomass Aboveground Biomass
4
Determining the Carbon within the Living Vegetation Component (kg C/m2): In the
2
EXAMPLE
2
2)
EPIPHYTE BIOMASS
Fig. 4.25
Fig. 4.26
or it can abrade the surface of the
Figure 4.25
4
Determining the Carbon within the Epiphyte Component (kg C/m2):
(Fig. 4.26
2
Figure 4.26
(© Oscar Serrano, ECU)
AC
B
4
LITTER
EXAMPLE
2
EXAMPLE
2
2)
TOTAL CARBON STOCK
Step 1:
Step 2:
2
2
2
REPEAT FOR EACH VEGETATIVE TYPE MEASURED
Step 3:
4REPEAT FOR ALL PLOTS
Step 4:
Standard Deviation
(XX) 2 2 X) 2 nX) 2
]
X
X2
Step 5:
Step 6:
) = AN)2
T
A
N
Step 7:
(calculated in Step 6)
4
QUICK GUIDE
Step 1: Plot design
Step 2: Measure vegetative components (above- and belowground as well as living and
dead components)
Mangrove forests
■
■
■ Standing dead trees
■
■
■
■
■
■
Tidal Marshes
■ Shrubs
■
■
■
■
■
■
Step 3: Calculate Total Vegetative Carbon Stock
4