Content uploaded by Sarfaraz Hashemkhani Zolfani
Author content
All content in this area was uploaded by Sarfaraz Hashemkhani Zolfani on Nov 18, 2014
Content may be subject to copyright.
-408-
Inzinerine Ekonomika-Engineering Economics, 2013, 24(5), 408-414
New Application of SWARA Method in Prioritizing Sustainability Assessment
Indicators of Energy System
Sarfaraz Hashemkhani Zolfani, Jonas Saparauskas
Amirkabir University of Technology
P.O. Box 1585-4413, Tehran, Iran
e-mail: sa.hashemkhani@gmail.com
Vilnius Gediminas Technical University
Sauletekio al. 11, LT-10223 Vilnius, Lithuania
e-mail: jonas.saparauskas@vgtu.lt
http://dx.doi.org/10.5755/j01.ee.24.5.4526
A major topic among the current researches on energy is a sustainable energy development and assessment. An
importance of energy system is obvious in our life. There are many important energy applications. There are heating and
cooling, power generation, desalination, air conditioning and so on. By the year 2020 world will need 50% more energy
than today and the Asia-Pacific region will become world's largest consumer of energy. In 21-st century, world faces with
the challenge of converting its fossil fuels energy base to the sustainable energy sources. Regarding the increasing rise of
the energy demand and consumption, virtually everyone in the world must implement an integrated resource planning
(IRP). It is vitally important to achieve sustainable growth.
Sustainability assessment of energy system is one of the important issues in policy making all around the world. Decision
making on energy system is very risky and difficult and therefore cannot be individual. Multi Criteria Decision Making
(MCDM) is a renowned methodology in decision making and evaluation. Some of the most famous MCDM tools are as
following: AHP, ANP, TOPSIS, ELECTRE, MUSA, AKUTA, VIKOR, PROMETHEE, SAW, MOORA, COPRAS, COPRAS-
G, SWARA, FARE.
A Step-wise Weight Assessment Ratio Analysis (SWARA) method is one of the new MCDM methods presented in 2010.
SWARA method is applied for some reasons in this paper. Firstly, SWARA’s perspective is different from other similar
methods like AHP, ANP and FARE. SWARA gives the chance for decision and policy makers to select their priority based
on the current situation of environment and economy. In this method, expert has an important role on evaluations and
calculating weights. The ability to estimate experts’ opinion about importance ratio of the criteria is the main element of
this method.
SWARA is developed for identifying importance of criteria and relative weights of each criterion. Current research applies
SWARA as a new framework for evaluating and prioritizing sustainability assessment indicators of energy system. General
indicator system consists of Resource Indicator, Environment Indicator, Economic Indicator and Social Indicator and
their sub-criterions. For instance, complex environmental indicator consists of CO
2
, SO
2
and NO
X
indicators while
complex economic indicator consists of energy costs, investment and efficiency indicators. The research revealed that the
most important indicator is Social (0.342). Then, the range of indicators is as following: Environmental (0.284), Economic
(0.212) and Resource (0.162).
Finally, the research shows that this methodology can be useful as a framework to operate with sustainability assessment
indicators of the energy system. Also, this methodology can be used for decision making in real issues of future researches
in different areas. The results of this methodology also can be compared to other methods such as AHP and ANP.
Keywords: Sustainability assessment, Energy system, Step-wise Weight Assessment Ratio Analysis (SWARA), Multi
Criteria Decision Making (MCDM).
Introduction
Energy as a concerning issue for all people all around
the world is as an inevitable component of everyday life
(Ates & Durakbasa, 2012). Social and economic
development of the societies needs energy (Kahraman &
Kaya). Most industrial and commercial wealth generations
inevitably require dealing with energy to increase social
and economic well-being. Also, in order to relieve poverty
increase, human welfare, and improve the living standards,
energy as a key factor should be considered (International
Atomic Energy Agency, 2005; Dong et al., 2013).
During the last 40 years, energy is placed within the
middle of triangle of the nature, society and economy and
was converted to an essential element in the world
(Bozoglan et al., 2012). Energy demand of wealthy
societies’ becomes 25 % of the world’s energy consuming
population and 75 % of the world’s energy supply (Dincer,
2000) due to the increase of world’s population over 2 %.
There are many important energy applications, some of
which are heating and cooling, power generation,
desalination, and air conditioning. Much of work is being
done to make energy more sustainable: economic, efficient,
clean, and secure (Ahmadi et al., 2012; Klevas et al., 2007).
Sarfaraz Hashemkhani Zolfani, Jonas Saparauskas. New Application of SWARA Method in Prioritizing Sustainability…
- 409 -
Many discussions and debates within government,
non-government and academic circles are about the
sustainable development, and it becomes a major focus of
the national and international economic, social and
environmental agendas (Bilgen et al., 2008; Omer, 2008;
Yusel, 2008; Wang et al., 2009).
According to statistics, by the year 2020 world will
need 50% more energy than today and the Asia-Pacific
region will become world's largest consumer. Here are
three major concerns (Tegart, 2009) as follow:
• Energy supply security and sustainability;
• Connection between combustion of fossil fuels and
dramatic changes in climate;
• Accessibility of technological innovation in energy
conversion, transmission and use.
Sustainability supplies local and national authorities to
incorporate environmental considerations into energy
planning (Bozoglan et al., 2012).
In 21-st century, world confronts with the challenge of
converting its fossil fuels energy base to the sustainable
sources (Allen, 2009, 2010, 2011, 2012). Whole world’s
major interest is reaching to a sustainable energy balance
as soon as possible to avoid both negative effects of global
warming and significant economic problems when the oil
and gas resources decrease too much and become too
expensive to use (Dahlquist et al., 2012).
Regarding the increasing rise of energy demand and
consumption, for a sustainable growth, virtually everyone
in the world must implement an integrated resource
planning (IRP) (Amirnekooei et al., 2012).
A strong influence on human thinking on decision-
making in politics and economy is exerted by visions and
scenarios of future developments, and it has also effected
public debates. Specially, it is true in energy policy field,
which is associated with long timescales and high
uncertainties (Scrase & MacKerron, 2009; Grunwald, 2011).
Regarding the engineering feasibility and the
requirements of such systems in terms of capital
investments, and also in order to meet the need of required
information on future, as well as being accessible of
natural resources, energy policy decisions for the planning
of new energy generation capacity have been designed. At
the same time, it is expected that future energy systems in
many current policy frameworks, will evolve around their
gradual decarbonization to decrease anthropogenic
interferences with the climate system (Mercure & Salas,
2012). Sustainability assessment of energy system is one of
the important issues in policy making all around the world.
To do so, a prioritizing of sustainability assessment
indicators should be made at first. That is the focal purpose
of this research.
Sustainability Indicators
Schlor et al. (2013) selected 15 energy indicators for
their analysis of the German energy sector: 1. Energy &
raw materials productivity: Energy, Raw materials; 2.
Emissions of the six greenhouse gases covered by the
Kyoto Protocol; 3. Proportion of energy consumption
from renewable energy: Primary energy consumption in %,
Electricity consumption in %; 4. Mobility transport
intensity: Passenger traffic, Goods traffic; 5. Air quality:
Air quality, NO
X
, SO
2
, CO, Dust, NMVOC, NH
3
; 6.
Employment: Employment rate in %.
De Castro Camioto et al. (2013) used following
variables in their sustainability analysis: Sectorial GDP;
Personnel expenses; Persons employed; CO
2
emissions from
fossil fuels; Energy consumption.
Lior (2012) presented some sustainability effects of the
global 2008–2009 (2010) economic downturn using
following parameters: Total PE consumption, EJ; Energy
consumption/person, GJ/person; Electricity generated, TWh;
Electricity generated/person, kWh/person; Electricity
generation capacity, GW; Electricity generation capacity,
kW/person; Total CO
2
emissions, million ton; CO
2
emissions, ton/person; GDP, PPP/person; Unemployment,
%; HDI; Population, Millions.
Indicators used in our research of sustainability
assessment of energy system are presented in Table 1.
Indicators consist of four criteria. Each criterion includes at
least two sub-criteria.
Table 1
Sustainability Indicators
Indicators
Resource indicator (RI)
C
1
Fuel indicator
C
1-1
Carbon steel indicator
C
1-2
Stainless steel indicator
C
1-3
Copper indicator
C
1-4
Aluminum indicator
C
1-5
Insulation indicator
C
1-6
Environment indicator (EI)
C
2
CO2 indicator
C
2-1
SO2 indicator
C
2-2
NO
x
indicator
C
2-3
Economic indicator (EcI)
C
3
Energy costs indicator
C
3-1
Investment indicator
C
3-2
Efficiency indicator
C
3-3
Social indicator (SI)
C
4
Job indicator
C
4-1
Diversity indicator
C
4-2
Source: Begic & Afgan, 2007
Brief Review on Multiple Criteria Decision
Making (MCDM)
Decision making on energy system is very risky and
difficult, and can’t be individual. Multi-criteria decision
making (MCDM) is a renowned methodology in decision
making. It is a branch of the general class of operations
research models which deal with decision problems under
the presence of a number of decision criteria. The major
class of models is very often called MCDM (Begic &
Afgan, 2007). In this research, one of new MCDM
methods applied for decision making. SWARA method is
applied for some reasons in this paper. Firstly, SWARA’s
perspective is different from other similar methods like
AHP, ANP and FARE. SWARA gives the chance to
decision and policy makers to select their priority based on
the current situation of environment and economy.
Secondly, the role of the experts is very important in
this method. Experts have a key role in process of decision
making on very important projects. At the end it should be
added that SWARA has the advantage of more logical
calculation of weights and relative importance of criteria.
Inzinerine Ekonomika-Engineering Economics, 2013, 24(5), 408-414
- 410 -
In this research, application of SWARA is shown with a
numerical example.
Operation research/Management science has many
sub-disciplines with MADM one of them. Also, MADM is
one of the two main categories of multi criteria decision
making (MCDM). The other category of MCDM is multi
objective decision making (MODM). In many decision-
making problems, decision maker (DM) should deal with
selecting an alternative among existing alternatives. Also,
for making a decision by DM, alternatives should be
compared and evaluated (Zavadskas et al., 2009).
Some of the most famous MADM tools are as
following: analytic hierarchy process (AHP) (Saaty, 1980),
analytic network process (ANP) (Saaty & Vargas, 2001),
technique for order preference by similarity to ideal
solution (TOPSIS) (Hwang & Yoon, 1981), Elimination
and Choice Translating Reality (ELECTRE) (Roy, 1968;
Roy, 1991), MUSA (Grigoroudis & Siskos, 2002),
AKUTA (Bous et al., 2010), VIsekriterijumska
optimizacijai KOmpromisno Resenje (VIKOR) (Opricovic,
1998), Preference Ranking Organization Method for
Enrichment Evaluations (PROMETHEE) (Brans et al.,
1984; Brans & Vincke, 1985), Simple Additive Weighting
(SAW) (Churchman & Ackoff, 1954), Multi-Objective
Optimization on basis of Ratio Analysis (MOORA)
(Brauers & Zavadskas, 2006; Brauers et al., 2008),
Complex Proportional ASsessment (COPRAS) (Zavadskas
& Kaklauskas, 1996; Zavadskas et al., 2007), Complex
Proportional ASsessment with Grey relations (COPRAS-
G) (Zavadskas et al., 2009; Hashemkhani Zolfani et al.,
2011), Step-wise Weight Assessment Ratio Analysis
(SWARA) (Kersuliene et al., 2010; Zavadskas & Turskis,
2011; Balezentis et al., 2012), Factor Relationship (FARE)
(Ginevicius, 2011).
Step-wise weight assessment ratio analysis
(SWARA) method
Weight assessment is an important issue in many
MADM problems. Some famous weight assessment
approaches in the literature include analytic hierarchy
process (AHP) (Saaty, 1980), analytic network process
(ANP) (Saaty & Vargas, 2001), Entropy (Shannon, 1948;
Susinskas et al., 2011, Kersuliene & Turskis, 2011), FARE
(Ginevicius, 2011), SWARA (Kersuliene et al., 2010), etc.
Among these methods, SWARA method is one of the
brand-new ones.
In this method, expert has an important role on
evaluations and calculating weights. Also, each expert has
chosen the importance of each criterion. Next, each expert
ranks all the criteria from the first to the last one. An expert
uses his or her own implicit knowledge, information and
experiences. Based on this method, the most significant
criterion is given rank 1, and the least significant criterion
is given rank last. The overall ranks to the group of experts
are determined according to the mediocre value of ranks
(Kersuliene & Turskis, 2011).
The ability to estimate experts’ opinion about
importance ratio of the criteria in the process of their
weights determination is the main element of this method
(Kersuliene et al., 2010). Moreover, this method is helpful
for coordinating and gathering data from experts.
Furthermore, SWARA method is uncomplicated and
experts can easily work together. The main advantage of
this method in decision making is that in some problems
priorities are defined based on policies of companies or
countries and there aren’t any needs for evaluation to rank
criteria.
In other methods like AHP or ANP, our model is
created based on criteria and experts’ evaluations that will
affect priorities and ranks. So, SWARA can be useful for
some issues that priorities are known former according to
situations and finally SWARA was proposed for applying
in certain environment of decision making. All
developments of decision making models based on
SWARA method up to now are listed below:
(Kersuliene et al., 2010) in selection of rational dispute
resolution method.
(Kersuliene & Turskis, 2011) for architect selection.
Hashemkhani Zolfani et al., (2013a) in design of
products.
Hashemkhani Zolfani et al., (2013b) in selection
optimal alternative of mechanical longitudinal ventilation
of tunnel pollutants.
(Aghadaie et al., 2013) in machine tool selection.
The procedure to the criteria weights determination is
presented in Figure 1.
Numerical Example
Experts are core elements of SWARA method. Firstly,
it’s important to identify our expert/experts. As mentioned
before about process of SWARA solving, at the first step,
the experts selected the priority of criteria. In major
decisions, it is so important to experts to consider all
important aspects of the subject. Sustainability in major
issues is effective in social and economical matters. Energy
is a critical issue in various aspects of life and effects on all
dimensions of people’s life, and sustainability about
energy is inevitable. Usually, government and experts are
decision makers of energy topics. SWARA can be useful
for the top level of decision making in each society. Thus,
SWARA can be worked as a framework in energy and
sustainability and all major issues in top level of decision
making. In this part a numerical example based on our
research model is presented in Table 1. The results in
Table 2 show that social indicator is the most important
indicator in this research. Weights of each indicator show
the importance of each indicator. Another advantage of
SWARA method is that the researches have the chance to
remove criteria and indicators that are not so effective
because experts should compare criteria together, and if
distance between criteria becomes too much, they can
argue that one of criteria has no important role in the
model of the research.
Sarfaraz Hashemkhani Zolfani, Jonas Saparauskas. New Application of SWARA Method in Prioritizing Sustainability…
- 411 -
Drawing a set of criteria Respondent survey Listing of main criteria
Drawing general list of criteria
Deletion of interrelated attributes
Responded survey
(respondents arrange criteria according to rank, the most
important criterion being listed as the first, etc.)
Drawing of unrelated criteria list
Determination of criteria
importance vector
Determination of criteria ranks
Determination of criteria
importance
Arrangement of criteria according to
frequency of indication
Analysis of criteria list
Evaluation of how much j+1
criterion is must important than j
criterion
Relative comparison should be
applied
j: = j+1
Value of
importance of j+1
criterion
Presentation of j+1
criterion
Determination of criteria weights
Presentation of j criterion
Stop
j<= n?
(n is number of
unrelated criteria)
No
Yes
Figure 1. Determining of the criteria weights based on SWARA
Source: Kersuliene & Turskis, 2011
Table 2
Final results of SWARA method in weighting
assessment indicators
Criterion
Comparative
importance
of
average
value
j
s
Coefficient
1
jj
sk
Recalculated
weight
j
j
j
k
x
w
1
Weight
j
j
j
w
w
q
X
4
1
1
0.342
X
2
0.20
1.20
0.833
0.284
X
3
0.35
1.35
0.617
0.212
X
1
0.30
1.30
0.474
0.162
Source: created by the authors
Weights and relative values of each resource indicator
are calculated in Table 3.
Table 3
Final results of SWARA method in weighting of resource
indicators
Criterion
Comparative
importance
of
average
value
j
s
Coefficient
1
jj
sk
Recalculated
weight
j
j
j
k
x
w
1
Weight
j
j
j
w
w
q
X
1-1
1
1
0.264
X
1-2
0.25
1.25
0.8
0.210
X
1
-
4
0.20
1.20
0.666
0.176
X
1-3
0.30
1.30
0.512
0.134
X
1-6
0.15
1.15
0.445
0.118
X
1-5
0.20
1.20
0.370
0.098
Source: created by the authors
Weights and relative importance of each indicator of
environment indicators are calculated in Table 4.
Weights and relative importance of each indicator of
economic indicators are calculated in Table 5.
Table 4
Final results of SWARA method in weighting of environment
indicators
Criterion
Comparative
importance
of
average
value
j
s
Coefficient
1
jj
sk
Recalculated
weight
j
j
j
k
x
w
1
Weight
j
j
j
w
w
q
X
2-2
1
1
0.400
X
2-3
0.25
1.25
0.8
0.320
X
2-1
0.15
1.15
0.695
0.280
Source: created by the authors
Table 5
Final results of SWARA method in weighting of economic
criteria
Criterion
Comparative
importance of
average value
j
s
Coefficient
1
jj
sk
Recalculate
d weight
j
j
j
k
x
w
1
Weight
j
j
j
w
w
q
X
3-1
1
1
0.390
X
3-3
0.15
1.15
0.869
0.338
X
3-2
0.25
1.25
0.695
0.272
Source: created by the authors
Weights and relative importance of each indicator of
social indicators are calculated in Table 6.
Table 6
Final results of SWARA method in weighting of social
sub-criteria
Criterion
Comparative
importance
of
average
value
j
s
Coefficient
1
jj
sk
Recalculated
weight
j
j
j
k
x
w
1
Weight
j
j
j
w
w
q
X
4-2
1
1
0.565
X
4-1
0.30
1.30
0.769
0.435
Source: created by the authors
Inzinerine Ekonomika-Engineering Economics, 2013, 24(5), 408-414
- 412 -
Conclusions
One of the most important concerns of society is a
decision making especially on sustainability development
issues. Energy is one of the most basic needs of each
society and has a key role in economies and industries of
the countries. It is expected that the role of energy in
economies and industries will increase in forthcoming
years. Topic of sustainability development is substantially
connected to energy, so top level decision and policy
makers should consider that point in their programs.
This research followed two important ideas and goals.
Decision making on major issues is the first goal of this
research and the next one is decision making on
sustainable development of energy. In this research the
authors propose a new methodology to solve the major
issues.
As mentioned before, SWARA has some advantages
in decision making that are suitable for decision making in
high level. SWARA can play a key role in future decisions.
In this research by a numerical example we show the
application of this method in decision making. The authors
believe that this contribution can be useful as a framework
for future researches in different areas.
This methodology can be used for decision making in
real issues of future researches. The results of this
methodology also can be compared to other methods such
as AHP and ANP.
References
Aghdaie, M. H., Hashemkhani Zolfani, S., & Zavadskas, E. K. (2013). Decision Making in Machine tool Selection: An
Integrated Approach with SWARA and COPRAS-G Methods. Inzinerine Ekonomika – Engineering Economics, 24(1),
5-17.
Ahmadi, P., Rosen, M. A., & Dincer, I. (2012). Multi-Objective Exergy-Based Optimization of a Polygeneration Energy
System Using an Evolutionary Algorithm, Energy, 46, 21-31. http://dx.doi.org/10.1016/j.energy.2012.02.005
Allen, R. C. (2009). The British Industrial Revolution in Global Perspective. Cambridge University Press, Cambridge.
Allen, R. C. (2010). The British Industrial Revolution in Global Perspective, (Keynes Lecture in Economics). Proceedings of
the British Academy, 167, 199-224.
Allen, R. C. (2011). Global Economic History: A Very Short Introduction. Oxford University Press and Amazon Kindle
edition, Oxford.
Allen, R. C. (2012). Backward into the Future: The Shift to Coal and Implications for the Next Energy Transition. Energy
Policy, 50, 17-23. http://dx.doi.org/10.1016/j.enpol.2012.03.020
Amirnekooei, K., Ardehali, M. M., & Sadri, A. (2012). Integrated Resource Planning for Iran: Development of reference
Energy System, Forecast, and Long-Term Energy-Environment Plan. Energy, 46, 374-385. http://dx.doi.org/
10.1016/j.energy.2012.08.013
Ates, S. A., & Durakbasa, N. M. (2012). Evaluation of Corporate Energy Management Practices of Energy Intensive
Industries in Turkey. Energy, 45, 81-91. http://dx.doi.org/10.1016/j.energy.2012.03.032
Balezentis, A., Balezentis, T., & Misiunas, A. (2012). An Integrated Assessment of Lithuanian Economic Sectors Based on
Financial Ratios and Fuzzy MCDM Methods. Technological and Economic Development of Economy, 18(1), 34-53.
http://dx.doi.org/10.3846/20294913.2012.656151
Begic, F., & Afgan, N. H. (2007). Sustainability Assessment tool For the Decision Making in Selection of Energy System-
Bosnian Case. Energy, 32(10), 1979-1985. http://dx.doi.org/10.1016/j.energy.2007.02.006
Bilgen, S., Keles, S., Kaygusuz, A., SarI, A., & Kaygusuz, K. (2008). Global Warming and Renewable Energy Sources for
Sustainable Development: a Case Study in Turkey. Renewable and Sustainable Energy Reviews, 12, 372-96.
http://dx.doi.org/10.1016/j.rser.2006.07.016
Bous, G., Fortemps, P., Glineur, F., & Pirlot, M. (2010). ACUTA: A Novel Method for Eliciting Additive Value Functions on
the Basis of Holistic Preference Statements. European Journal of Operational Research, 206, 435-444.
http://dx.doi.org/10.1016/j.ejor.2010.03.009
Bozoglan, E., Midilli, A., & Hepbasli, A. (2012). Sustainable Assessment of Solar Hydrogen Production Techniques. Energy,
46, 85-93. http://dx.doi.org/10.1016/j.energy.2012.03.029
Brans, J. P., & Vincke, P. H. (1985). A Preference Ranking Organization Method (The PROMETHEE method for MCDM).
Management Science, 31(6), 647-56. http://dx.doi.org/10.1287/mnsc.31.6.647
Brans, J. P., Mareschal, B., & Vincke, P. H. (1984). PROMETHEE: A New Family of Outranking Methods in MCDM,
Operational Research, IFORS’84, North Holland, 477-90.
Brauers, W. K. M., & Zavadskas, E. K. (2006). The MOORA Method and its Application to Privatization in a Transition
Economy. Control and Cybernetics, 35(2), 445-469.
Brauers, W. K. M., Zavadskas, E. K., Peldschus, F., & Turskis, Z. (2008). Multi-Objective Decision-Making for Road
Design. Transport, 23(3), 183-193. http://dx.doi.org/10.3846/1648-4142.2008.23.183-193
Churchman, C. W., & Ackoff, R. L. (1954). An Approximate Measure of Value. Journal of the Operational Research Society
of America, 2(2), 172-187. http://dx.doi.org/10.1287/opre.2.2.172
Sarfaraz Hashemkhani Zolfani, Jonas Saparauskas. New Application of SWARA Method in Prioritizing Sustainability…
- 413 -
Dahlquist, E., Vassileva, I., Thorin, E., & Wallin, F. (2012). How to Save Energy to Reach a Balance between Production and
Consumption of Heat, Electricity and Fuels for Vehicles. Energy, 46, 16-20. http://dx.doi.org/10.1016/
j.energy.2012.07.030
De Castro Camioto, F., Barberio Mariano, E., & Do Nascimento Rebelatto, D. A. (2013). Efficiency in Brazil's Industrial
Sectors in Terms of Energy and Sustainable Development. Environmental Science & Policy, In Press.
Dincer, I. (2000). Renewable Energy and Sustainable Development: a Crucial Review. Renewable and Sustainable Energy
Reviews, 4, 157-75. http://dx.doi.org/10.1016/S1364-0321(99)00011-8
Dong, C., Huang, G. H., Cai, Y. P., & Liu, Y. (2013). Robust Planning of Energy Management Systems with Environmental
and Constraint-Conservative Considerations under Multiple Uncertainties. Energy Conversion and Management, 65,
471-486. http://dx.doi.org/10.1016/j.enconman.2012.09.001
Ginevicius, R. (2011). A New Determining Method for the Criteria Weights in Multi-Criteria Evaluation. International
Journal of Information Technology & Decision Making, 10(6), 1067-1095. http://dx.doi.org/10.1142/S0219
622011004713
Grigoroudis, E., & Siskos, Y. (2002). Preference Disaggregation for Measuring and Analysing Customer Satisfaction: the
MUSA Method. European Journal of Operational Research, 143(1), 148-170. http://dx.doi.org/10.1016/S0377-
2217(01)00332-0
Grunwald, A. (2011). Energy Futures: Diversity and the Need for Assessment. Futures, 43, 820-830. http://dx.doi.org/
10.1016/j.futures.2011.05.024
Hashemkhani Zolfani, S., Esfahani, M. H., Bitarafan, M., Zavadskas, E. K., & Lale Arefi, S. (2013b). Developing a New
Hybrid MCDM Method for Selection of the Optimal Alternative of Mechanical Longitudinal Ventilation of Tunnel
Pollutants During Automobile Accidents. Transport, 28(1), 89-96. http://dx.doi.org/10.3846/16484142.2013.782567
Hashemkhani Zolfani, S., Rezaeiniya, N., Zavadskas, E. K., & Turskis, Z. (2011). Forest Roads Locating Based on AHP-
COPRAS-G Methods - An Empirical Study Based on Iran. E & M Ekonomie a Management, 14(4), 6-21.
Hashemkhani Zolfani, S., Zavadskas, E. K., & Turskis, Z. (2013a). Design of Products With both International and Local
Perspectives Based on Yin-Yang Balance Theory and SWARA Method. Ekonomska Istrazivanja-Economic Research
26(2), (In Press).
Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making Methods and Applications, Springer-Verlag,
Heidelberg.
International Atomic Energy Agency (2005). United Nations Department of Economic and Social Affairs, International
Energy Agency, Eurostat, European Environment Agency. Energy indicators for sustainable development: guidelines
and methodologies. Vienna: IAEA.
Kahraman, C., & Kaya, I (2010). A fuzzy multi-criteria methodology for selection among energy alternatives. Expert Systems
with Applications, 37, 6270-6281. http://dx.doi.org/10.1016/j.eswa.2010.02.095
Kersuliene, V., & Turskis, Z. (2011). Integrated Fuzzy Multiple Criteria Decision Making Model for Architect Selection.
Technological and Economic Development of Economy, 17(4), 645-666. http://dx.doi.org/10.3846/20294913.
2011.635718
Kersuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of Rational Dispute Resolution Method by Applying New
Step-Wise Weight Assessment Ratio Analysis (SWARA). Journal of Business Economics and Management, 11(2), 243-
258. http://dx.doi.org/10.3846/jbem.2010.12
Klevas, V., Streimikiene, D., & Grikstaite, R. (2007). Sustainable Energy in Baltic States. Energy Policy, 35(1), 76-90.
http://dx.doi.org/10.1016/j.enpol.2005.10.009
Lior, N. (2012). Sustainable Energy Development (May 2011) With Some Game-Changers. Energy, 40(1), 3-18.
http://dx.doi.org/10.1016/j.energy.2011.09.044
Mercure, J. F., & Salas, P. (2012). An Assessment of Global Energy Resource Economic Potentials. Energy, 46, 322-336.
http://dx.doi.org/10.1016/j.energy.2012.08.018
Omer, A. M. (2008). Energy, Environment and Sustainable Development. Renewable and Sustainable Energy Reviews, 12,
2265-300. http://dx.doi.org/10.1016/j.rser.2007.05.001
Opricovic, S. (1998). Multi Criteria Optimization of Civil Engineering Systems. Faculty of Civil Engineering, 37(12), 1379-
1383.
Roy, B. (1968). Classementet Choix en Presence de Points de Vue Multiples (la method Electre). Revue Francaised’
Informatiqueet de RechercheOperationnelle, 8(1), 57-75.
Roy, B. (1991). The Outranking Approach and the Foundations of ELECTRE Methods. Theory and Decision, 31(1), 49-73.
http://dx.doi.org/10.1007/BF00134132
Saaty, L. T. (1980). The Analytic Hierarchy Process. McGraw Hill Company, New York.
Saaty, L. T., & Vargas, L. G. (2001). Models, Methods, Concepts &Applications of the Analytical Hierarchy Process. Kluwer
Academic Publishers, Boston. http://dx.doi.org/10.1007/978-1-4615-1665-1
Schlor, H., Fischer, W., & Hake, J.-F. (2013). Methods of Measuring Sustainable Development of the German Energy Sector.
Applied Energy, 101, 172-181. http://dx.doi.org/10.1016/j.apenergy.2012.05.010
Inzinerine Ekonomika-Engineering Economics, 2013, 24(5), 408-414
- 414 -
Scrase, I., & MacKerron, G. (2009). Energy for the Future: a New Agenda, Palgrave Macmillan, New York, 2009.
http://dx.doi.org/10.1057/9780230235441
Shannon, C. E. (1948). The Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423.
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
Susinskas, S., Zavadskas, E. K., & Turskis, Z. (2011). Multiple Criteria Assessment of Pile-Columns Alternatives. The Baltic
Journal of Road and Bridge Engineering, 6(3), 77-83. http://dx.doi.org/10.3846/bjrbe.2011.19
Tegart, G. (2009). Energy and Nanotechnologies: Priority Areas for Australia's Future. Technological Forecasting & Social
Change, 76, 1240-1246. http://dx.doi.org/10.1016/j.techfore.2009.06.010
Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on Multi-Criteria Decision Analysis aid in Sustainable
Energy Decision-Making. Renewable and Sustainable Energy Reviews, 13, 2263-2278. http://dx.doi.org/10.1016/j.
rser.2009.06.021
Yusel, I. (2008). Hydropower in Turkey for a Clean and Sustainable Energy Future. Renewable and Sustainable Energy
Reviews, 12, 1622-40. http://dx.doi.org/10.1016/j.rser.2007.01.024
Zavadskas, E. K., & Kaklauskas, A. (1996). Determination of an Efficient Contractor by Using the New Method of Multi
Criteria Assessment, In Langford, D. A.; Retik, A. (eds.) International Symposium for “The Organization and
Management of Construction”. Shaping Theory and Practice. Vol. 2: Managing the Construction Project and Managing
Risk. CIB W 65; London, Weinheim, New York, Tokyo, Melbourne, Madras. - London: E and FN SPON.
Zavadskas, E. K., & Turskis, Z. (2011). Multiple Criteria Decision Making (MCDM) Methods in Economics: an Overview.
Technological and Economic Development of Economy, 17(2), 397-427. http://dx.doi.org/10.3846/20294913.
2011.593291
Zavadskas, E. K., Kaklauskas, A., Peldschus, F., & Turskis, Z. (2007). Multi-Attribute Assessment of Road Design Solutions
by Using the COPRAS Method. The Baltic Journal of Road and Bridge Engineering, 2(4), 195-203.
Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamosaitiene, J. (2009). Multi-Attribute Decision-Making Model by
Applying Grey Numbers. Informatica, 20(2), 305-320.
Sarfaraz Hashemkhani Zolfani, Jonas Šaparauskas
SWARA metodo taikymas nustatant energetikos sistemos darnos prioritetinius rodiklius
Santrauka
Kiekvieno pasaulio gyventojo neatsiejama gyvenimo dalis yra energijos vartojimas ir su juo susijusios problemos. Be to, energijos reikia socialinei
ir ekonominei žmonijos plėtrai. Tiek išsivysčiusios industrinės, tiek besivystančios šalys naudoja energiją savo socialinei ir ekonominei gerovei kelti bei
gyvenimo standartams didinti. Per pastaruosius keturiasdešimt metų, energija tapo svarbiausiu jungiančiuoju socialinės, ekonominės ir aplinkos darnios
plėtros elementu. Svarbiausias dabartinių mokslinių tyrimų tikslas energetikos srityje, yra jos darni plėtra ir vertinimas. Energetikos svarba mūsų
gyvenime yra akivaizdi. Energija naudojama šildymui, vėdinimui, oro kondicionavimui, elektros genaravimui, vandens gėlinimui ir t. t. Pasaulyje
atliekama daug mokslinių tyrimų siekiant energetiką paversti darnia, ekonomiška, efektyvia, švaria ir saugia. Šios problemos yra aptariamos pasaulio
vyriausybių, nevyriausybinių organizacijų, taip pat akademinės visuomenės.
2020 metais pasauliui reikės 50 proc. daugiau energijos negu šiandien, o Azijos-Ramiojo vandenyno regionas bus didžiausias jos vartotojas. Tai
iškels tris pagrindinius iššūkius: 1) energijos tiekimo saugumo ir darnos; 2) iškastinio kuro deginimo ir staigios klimato kaitos; 3) energijos
transformacijos, perdavimo ir naudojimo technologinių inovacijų prieinamumo. XXI amžiuje pasaulis susiduria su iššūkiu iškastinį kurą pakeisti
atsinaujinančiais energijos šaltiniais. Tai būtina, norint pristabdyti globalinį klimato atšilimą ir energijos brangimą, kai išseks naftos ir dujų ištekliai. Dėl
didėjančio energijos poreikio, visame pasaulyje teks įdiegti integruotą išteklių valdymą. Tuo pat metu tikimasi, jog ateityje energetikos sistemos tobulės
ir mažės jų poveikis pasaulinei klimato sistemai. Sprendimų priėmimas energetikoje yra sudėtingas ir rizikingas procesas, todėl negali būti vienasmenis.
Daugiakriteris sprendimų priėmimas yra žinoma metodika, priimant ir vertinant sprendimų alternatyvas. Ši metodika įgyvendinama naudojant
daugiakriterius metodus. Žinomiausi daugiakriterės sprendimų paramos metodai yra šie: analitinis hierarchijos procesas: AHP, ANP; atstumo iki idealaus
taško: TOPSIS, ELECTRE, MUSA, AKUTA, VIKOR, PROMETHEE; paprastas svertinis sumavimas: SAW, MOORA; kompleksinis proporcingumo
įvertinimas: COPRAS, COPRAS-G, SWARA, FARE. Šiame straipsnyje taikytas palaipsnis reikšmingumų nustatymo metodas (SWARA) - vienas naujausių
daugiakriterės sprendimų paramos metodų. Šis metodas pasirinktas dėl kelių priežasčių. Pirma, SWARA vertinimas yra kitoks nei AHP, ANP ar FARE, t.
y. metodas leidžia sprendimo priėmėjui nusistatyti prioritetus, atsižvelgiant į esamą ekonomikos ir aplinkos būklę. Antra, skaičiuojant SWARA metodu
svarbus ekspertų vaidmuo. Ekspertų nuomonė yra esminė vertinant labai svarbius projektus. Palaipsnis reikšmingumų nustatymo metodas yra vienas
daugiakriterės sprendimų paramos metodų, sukurtų 2010 metais. Naudojant SWARA galima nustatyti rodiklių reikšmingumus.
Šiame straipsnyje SWARA metodas taikomas energetikos darnos rodikliams vertinti ir prioritetams nustatyti. Rodiklių sistema sudaryta iš keturių
kompleksinių rodiklių: išteklių (I), aplinkos (A), ekonominio (E) ir socialinio (S). Kiekvienas kompleksinis rodiklis turi savąją, bent iš dviejų rodiklių
sudarytą sistemą. Kompleksinį išteklių rodiklį sudaro šie, žemesnio lygio rodikliai: kuras, anglinis plienas, nerūdijantis plienas, varis, aliuminis,
izoliacinės medžiagos. Kompleksinis aplinkos rodiklis sudarytas iš CO
2
, SO
2
ir NO
x
rodiklių, o kompleksinis ekonominis rodiklis iš energijos sąnaudų,
investicijų ir efektyvumo rodiklių. Galiausiai, sudėtinis socialinis rodiklis skaidomas į du tikslesnius rodiklius: darbo ir įvairovės.
Galutiniai skaičiavimų rezultatai parodė, jog svarbiausias rodiklis – socialinis (0,342), antroje vietoje yra aplinkos (0,284), trečioje – ekonominis
(0,212), ketvirtoje – išteklių (0,162). Atlikus modeliavimą su išteklių. „žemesnio“ lygio rodikliais, gauti tokie reikšmingumai: kuras (0,264), anglinis
plienas (0,210), nerūdijantis plienas (0,134), varis (0,176), aliuminis (0,098), izoliacinės medžiagos (0,118). Po skaičiavimų su „aplinkos“ rodikliais, jų
reikšmingumai pasiskirstė taip: CO
2
(0,280), SO
2
(0,400) ir NO
x
(0,320). Sumodeliavus „ekonomikos“ rodiklių grupę, kiekvieno rodiklio reikšmingumas
lygus: energijos sąnaudos (0,390), investicijos (0,272) ir efektyvumas (0,338). Ir pagaliau, įvertinus „socialinių“ rodiklių grupę, gauti tokie rezultatai:
darbas (0,435) ir įvairovė (0,565). Siūloma metodologija yra naudinga modeliuojant energetikos sistemas pagal darnos vertinimo rodiklius. Be to,
SWARA metodas gali būti naudojamas kaip sprendimų paramos sistema atliekant tyrimus ateityje. Rezultatai, gauti skaičiuojant siūlomu metodu, gali būti
lyginami su gautaisiais, skaičiuojant pagal AHP ir ANP.
Raktažodžiai: darnos vertinimas, energetikos sistema, palaipsnis reikšmingumų nustatymo metodas (SWARA), daugiakriteris sprendimų priėmimas.
The article has been reviewed.
Received in June, 2013; accepted in December, 2013.