The wake-promoting effects of hypocretin-1 are attenuated in old rats

Biosciences Division, SRI International, CA 94025, USA.
Neurobiology of aging (Impact Factor: 5.01). 09/2009; 32(8):1514-27. DOI: 10.1016/j.neurobiolaging.2009.07.017
Source: PubMed


Disruption of sleep is a frequent complaint among elderly humans and is also evident in aged laboratory rodents. The neurobiological bases of age-related sleep/wake disruption are unknown. Given the critical role of the hypocretins in sleep/wake regulation, we sought to determine whether the wake-promoting effect of hypocretin changes with age in Wistar rats, a strain in which age-related changes in both sleep and hypocretin signaling have been reported. Intracerebroventricular infusions of hypocretin-1 (10 and 30 μg) significantly increased wake time relative to vehicle in both young (3 mos) and old (25 mos) Wistar rats. However, the magnitude and duration of the wake-promoting effects were attenuated with age. An increase of parameters associated with homeostatic sleep recovery after sleep deprivation, including non-rapid eye movement (NR) sleep time, NR delta power, the ratio of NR to rapid eye movement (REM) sleep, and NR consolidation, occurred subsequent to Hcrt-induced waking in young but not old rats. ICV infusions of hypocretin-2 (10 and 30 μg) produced fewer effects in both young and old rats. These data demonstrate that activation of a major sleep/wake regulatory pathway is attenuated in old rats.

Download full-text


Available from: Stephen R Morairty
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serotonergic (5-HT) cells in the rat dorsal raphe nucleus (DRN) appear in topographically organized groups. Based on cellular morphology, expression of other neurotransmitters, afferent and efferent connections and functional properties, 5-HT neurons of the DRN have been grouped into six cell clusters. The subdivisions comprise the rostral, ventral, dorsal, lateral, caudal and interfascicular parts of the DRN. In addition to 5-HT cells, neurons containing γ-aminobutyric acid (GABA), glutamate, dopamine, nitric oxide and the neuropeptides corticotropin-releasing factor, substance P, galanin, cholecystokinin, neurotensin, somatostatin, vasoactive intestinal peptide, neuropeptide Y, thyrotropin-releasing hormone, growth hormone, leu-enkephalin, met-enkephalin and gastrin have been characterized in the DRN. Moreover, numerous brain areas have neurons that project to the DRN and express monoamines (norepinephrine, histamine), amino acids (GABA, glutamate), acetylcholine or neuropeptides (orexin, melanin-concentrating hormone, corticotropin-releasing factor and substance P) that directly or indirectly, through local circuits, regulate the activity of 5-HT cells. The 5-HT cells predominate along the midline of the rostral, dorsal and ventral subdivisions of the DRN and outnumber the non-5-HT cells occurring in the raphe nucleus. The GABAergic and glutamatergic neurons are clustered mainly in the lateral and dorsal subdivisions of the DRN, respectively. The 5-HT(1A) receptor is located on the soma and the dendrites of 5-HT neurons and at postsynaptic sites (outside the DRN). It is expressed, in addition, by non-5-HT cells of the DRN. The 5-HT(1B) receptor is located at presynaptic and postsynaptic sites (outside the boundaries of the DRN). It has been described also in the ventromedial DRN where it is expressed by non-5-HT cells. The 5-HT(2A) and 5-HT(2C) receptors are located within postsynaptic structures. At the level of the DRN the 5-HT(2A) and 5-HT(2C) receptor-containing cells are predominantly GABAergic interneurons and projection neurons. Within the boundaries of the DRN the 5-HT(3) receptor is expressed by, among others, glutamatergic interneurons. 5-HT(7) receptors in the DRN are not localized to serotonergic neurons but, at least in part, to GABAergic cells and terminals. The complex structure of the DRN may have important implications for neural mechanisms underlying 5-HT modulation of wakefulness and REM sleep.
    Full-text · Article · Feb 2010 · Sleep Medicine Reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obstructive sleep apnea (OSA) is a complicated disease with an unrecognized mechanism. Obesity, sex, age, and smoking have been found to be independent correlates of OSA. Orexin (also named hypocretin) mainly secreted by lateral hypothalamus neurons, has a wide array of biological functions like regulating sleep, energy-levels and breathingl. Several clinical studies found ties between orexin and OSA. Because of the close correlation between orexin and obesity, sex, age and smoking (which are the key risk factors for OSA patients), we hypothesize that orexin may play a key role in the pathogenesis of OSA.
    No preview · Article · Jan 2013 · Peptides
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the neural circuitry underlying homeostatic sleep regulation is little understood, cortical neurons immunoreactive for neuronal nitric oxide synthase (nNOS) and the neurokinin-1 receptor (NK1) have been proposed to be involved in this physiological process. By systematically manipulating the durations of sleep deprivation and subsequent recovery sleep, we show that activation of cortical nNOS/NK1 neurons is directly related to non-rapid eye movement (NREM) sleep time, NREM bout duration, and EEG δ power during NREM sleep, an index of preexisting homeostatic sleep drive. Conversely, nNOS knockout mice show reduced NREM sleep time, shorter NREM bouts, and decreased power in the low δ range during NREM sleep, despite constitutively elevated sleep drive. Cortical NK1 neurons are still activated in response to sleep deprivation in these mice but, in the absence of nNOS, they are unable to up-regulate NREM δ power appropriately. These findings support the hypothesis that cortical nNOS/NK1 neurons translate homeostatic sleep drive into up-regulation of NREM δ power through an NO-dependent mechanism.
    Full-text · Article · Nov 2013 · Proceedings of the National Academy of Sciences
Show more