Article

Wet and dry extraction of coconut oil: Impact on lipid metabolic and antioxidant status in cholesterol coadministered rats

Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695 581, India.
Canadian Journal of Physiology and Pharmacology (Impact Factor: 1.77). 08/2009; 87(8):610-6. DOI: 10.1139/y09-045
Source: PubMed

ABSTRACT

Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague-Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.

Full-text preview

Available from: nrcresearchpress.com
  • Source
    • "It was found that higher FA content could be detected from wet-extracted sample due to the minor loss of short and medium chained FA. A similar finding was described by Nevin and Rajamohan utilizing coconut oil as feedstock [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Biodiesel is commonly produced from vegetable oils, mostly edible and more expensive than petroleum diesel. By considering the cost of the conversion processes, cheap feedstock such as triglycerides and fatty acids (FA) extracted from early stage of food waste liquefaction has become a better choice than vegetable oils, as it could provide high yield of biodiesel without any compromise to food supply and other resources. In this study, FA from early stage of food waste liquefaction was extracted and tested for use as feedstock for biodiesel synthesis. The raw material was not pretreated but extraction was done by dry and wet methods. It was found that wet method could minimized the lost of short and medium-chained FA as well as reducing the number of steps required, thus, yielding higher amount of FA as feedstock. The effects of mixing, methanol ratio, reaction time and catalyst content were investigated for the acid-catalyzed esterification. The maximum biodiesel conversion obtained was 97.4 %.
    Full-text · Article · Dec 2015 · Journal of Material Cycles and Waste Management
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was undertaken to evaluate the effect of a topical application of virgin coconut oil (VCO) on excision wounds in young rats. Three sets of experiments with 3 groups of female Sprague-Dawley rats each consisting of 6 animals were used for studying wound closure time, antioxidant status and biochemical parameters. Group 1 was the control; groups 2 and 3 were treated with 0.5 and 1.0 ml VCO, respectively, 24 h after wound creation for 10 days. After the experimental period, the healing property of VCO was evaluated by monitoring the time taken for complete epithelization as well as levels of various parameters of the wound's granulation tissue. The collagen solubility pattern, glycohydrolase activity, and histopathology of the granulation tissue were also analyzed. The antioxidant status during wound healing was monitored continuously for 14 days. VCO-treated wounds healed much faster, as indicated by a decreased time of complete epithelization and higher levels of various skin components. Pepsin-soluble collagen showed a significant increase in VCO- treated wounds, indicating a higher collagen cross-linking. Glycohydrolase activities were also found to be increased due to a higher turnover of collagen. Antioxidant enzyme activities, and reduced glutathione and malondialdehyde levels were found to be increased on the 10th day after wounding, which were found to have returned to normal levels on day 14 in the treated wounds. The lipid peroxide levels were found to be lower in the treated wounds. A histopathological study showed an increase in fibroblast proliferation and neovascularization in VCO-treated wounds compared to controls. The beneficial effect of VCO can be attributed to the cumulative effect of various biologically active minor components present in it.
    No preview · Article · Sep 2010 · Skin pharmacology and physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Impaired lipid levels and oxidative stress are indicative of malfunction of endogenous antioxidant capacity. The aim of this study was to determine the effect of coconut kernel protein (CKP) on the lipid peroxides and antioxidant enzyme activities in diabetic rats. Diabetes was induced prior to feeding by injecting a single dose of alloxan (150 mg/kg body weight) intraperitoneally. CKP (8% w/w) was administered to these rats along with a semi-synthetic diet for 45 days. After the experimental period, peroxide products and antioxidant enzyme activities were determined. Results show that CKP maintained the antioxidant enzyme activities and levels of peroxides to the normal levels in treated group compared to diabetic rats. This study clearly show that CKP has potential effect in lowering oxidative stress associated with diabetes. This beneficial effect of CKP may be due to the high amount of biologically potent arginine present in it.
    No preview · Article · Nov 2012 · International Journal of Food Sciences and Nutrition
Show more