Proteomics Analysis Reveals Novel Components in the Detergent-Insoluble Subproteome in Alzheimer's Disease

Department of Neurology, Emory University, Atlanta, Georgia 30322, USA.
Journal of Proteome Research (Impact Factor: 4.25). 09/2009; 8(11):5069-79. DOI: 10.1021/pr900474t
Source: PubMed


Neurodegenerative diseases are often defined pathologically by the presence of protein aggregates. These aggregates, including amyloid plaques in Alzheimer's disease (AD), result from the abnormal accumulation and processing of proteins, and may ultimately lead to neuronal dysfunction and cell death. To date, conventional biochemical studies have revealed abundant core components in protein aggregates. However, rapidly improving proteomics technologies offer opportunities to revisit pathologic aggregate composition, and to identify less abundant but potentially important functional molecules that participate in neurodegeneration. The purpose of this study was to establish a proteomic strategy for the profiling of neurodegenerative disease tissues for disease-specific changes in protein abundance. Using high resolution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), we analyzed detergent-insoluble frontal cortex samples from AD and unaffected control cases. In addition, we analyzed samples from frontotemporal lobar degeneration (FTLD) cases to identify AD-specific changes not present in other neurodegenerative diseases. We used a labeling-free quantification technique to compare the abundance of identified peptides in the samples based on extracted ion current (XIC) of their corresponding ions. Of the 512 identified proteins, quantitation demonstrated significant changes in 81 AD-specific proteins. Following additional manual filtering, 11 proteins were accepted with high confidence as increased in AD compared to control and FTLD brains, including beta-amyloid, tau and apolipoprotein E, all well-established AD-linked proteins. In addition, we identified and validated the presence of serine protease 15, ankyrin B, and 14-3-3 eta in the detergent-insoluble fraction. Our results provide further evidence for the capacity of proteomics applications to identify conserved sets of disease-specific proteins in AD, to enhance our understanding of disease pathogenesis, and to deliver new candidates for the development of effective therapies for this, and other, devastating neurodegenerative disorders.

Download full-text


Available from: Duc Duong, Jun 03, 2014
  • Source
    • "Postmortem AD brain samples have been extensively investigated by numerous proteomics platforms [33] [34] [35] [36] [37] [38], but systematic analysis of AD phosphoproteome has rarely reported [39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive loss of cognitive function. One of the pathological hallmarks of AD is the formation of neurofibrillary tangles composed of abnormally hyperphosphorylated tau protein, but global deregulation of protein phosphorylation in AD is not well analyzed. Here we report a pilot investigation of AD phosphoproteome by titanium dioxide enrichment coupled with high resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). During the optimization of the enrichment method, we found that phosphate ion at a low concentration (e.g. 1 mM) worked efficiently as a non-phosphopeptide competitor to reduce background. The procedure was further tuned with respect to peptide-to-bead ratio, phosphopeptide recovery and purity. Using this refined method and 9 h LC-MS/MS, we analyzed phosphoproteome in one milligram of digested AD brain lysate, identifying 5243 phosphopeptides containing 3715 non-redundant phosphosites on 1455 proteins, including 31 phosphosites on the tau protein. This modified enrichment method is simple and highly efficient. The AD case study demonstrates its feasibility of dissecting phosphoproteome in a limited amount of postmortem human brain.This article is protected by copyright. All rights reserved
    Full-text · Article · Oct 2014 · Proteomics
  • Source
    • "Fifty micrograms of protein from the insoluble pellet of 5 AD pathology free human controls and 6 human presenilin 1 mutation carriers were subject to dual mass-spectrometry analysis followed by quantitative proteomic analysis as previously described [3,15,22]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently identified U1 small nuclear ribonucleoprotein (snRNP) tangle-like aggregates and RNA splicing abnormalities in sporadic Alzheimer's disease (AD). However little is known about snRNP biology in early onset AD due to autosomal dominant genetic mutations or trisomy 21 in Down syndrome. Therefore we investigated snRNP biochemical and pathologic features in these disorders. We performed quantitative proteomics and immunohistochemistry in postmortem brain from genetic AD cases. Electron microscopy was used to characterize ultrastructural features of pathologic aggregates. U1-70k and other snRNPs were biochemically enriched in the insoluble fraction of human brain from subjects with presenilin 1 (PS1) mutations. Aggregates of U1 snRNP-immunoreactivity formed cytoplasmic tangle-like structures in cortex of AD subjects with PS1 and amyloid precursor protein (APP) mutations as well as trisomy 21. Ultrastructural analysis with electron microscopy in an APP mutation case demonstrated snRNP immunogold labeling of paired helical filaments (PHF). These studies identify U1 snRNP pathologic changes in brain of early onset genetic forms of AD. Since dominant genetic mutations and trisomy 21 result in dysfunctional amyloid processing, the findings suggest that aberrant beta-amyloid processing may influence U1 snRNP aggregate formation.
    Full-text · Article · Apr 2014 · Molecular Neurodegeneration
  • Source
    • "Indeed, 14-3-3 levels can be modulated by integrins [34]. Furthermore, several isoforms of 14-3-3 have been found to be increased in the brains of patients with AD [35], and a recent proteomic approach confirms that 14-3-3 can be a disease-specific protein in AD [36]. Our data indicate that intracellular 14-3-3 levels are similar in cultures treated with either altered glycoforms of Reelin or with Reelin blocked by the CR50 antibody, demonstrating further that altered Reelin glycoforms may sequester active Reelin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Reelin is a signaling protein increasingly associated with the pathogenesis of Alzheimer's disease that relevantly modulates tau phosphorylation. We have previously demonstrated that β-amyloid peptide (Aβ) alters reelin expression. We have now attempted to determine whether abnormal reelin triggered by Aβ will result in signaling malfunction, contributing to the pathogenic process. Here, we show that reelin forms induced by β-amyloid are less capable of down-regulating tau phosphorylation via disabled-1 and GSK3β kinase. We also demonstrate that the scaffold protein 14-3-3 that increases tau phosphorylation by modulating GSK3β activity, is up-regulated during defective reelin signaling. Binding of reelin to its receptor, mainly ApoER2 in the brain, relays the signal into the cell. We associate the impaired reelin signaling with inefficiency of reelin in forming active homodimers and decreased ability to bind efficiently to its receptor, ApoER2. More remarkably, reelin from Alzheimer cortex shows a tendency to form large complexes instead of homodimers, the active form for signaling. Our results suggest that reelin expression is altered by Aβ leading to impaired reelin signaling.
    Full-text · Article · Aug 2013 · PLoS ONE
Show more