Macrophage colony stimulating factor (M-CSF) exacerbates ALS disease in a mouse model through altered responses of microglia expressing mutant superoxide dismutase

Centre de Recherche du Centre Hospitalier Universitaire de Québec, Department of Psychiatry and Neuroscience of Laval University, Quebec, Pavillon CHUL, 2705 Boulevard Laurier, Quebec, Canada.
Experimental Neurology (Impact Factor: 4.7). 10/2009; 220(2):267-75. DOI: 10.1016/j.expneurol.2009.08.021
Source: PubMed


Macrophage colony stimulating factor (M-CSF) is a cytokine that regulates the survival, proliferation and maturation of microglial cells. Administration of M-CSF can promote neuronal survival in various models of central nervous system (CNS) injury. Here, in an attempt to induce a neuroprotective microglial cell phenotype and enhance motor neuron survival, mutant SOD1(G37R) transgenic mice were treated, weekly, with M-CSF starting at onset of disease. Unexpectedly, M-CSF accelerated disease progression in SOD1(G37R) mouse model of ALS. The shortened survival of M-CSF-treated animals was associated with diminished muscle innervation and enhanced adoption of a macrophage-like phenotype by microglial cells characterised by the upregulation of pro-inflammatory cytokines TNF-alpha and IL-1 beta and of the phagocytic marker CD68.

Download full-text


Available from: Jean-Nicolas Audet
  • Source
    • "The generation of transgenic animals that carry mutated human genes associated with familial ALS, for instance superoxide dismutase (SOD1), tar DNA protein 43 (TDP- 43), fused in sarcoma, and valosin-containing protein genes, has allowed the identification of basic mechanisms underlying neurodegeneration in the disease (McGoldrick et al., 2013). In fact, distinct processes of motor neuron death that are related to toxic glial paracrine (Nagai et al., 2007; Gowing et al., 2009) and autocrine (Ringer et al., 2012) signaling mechanisms have been described using animal models. Furthermore, the early peripheral pathological events of neuromuscular junction loss and motor axon retraction, which may start long before symptom onset, have also been described in these animal models (Rocha et al., 2013; Venkova et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS.
    Full-text · Article · Aug 2015 · Frontiers in Cellular Neuroscience
  • Source
    • "Other alternative approaches have studied the impact of increasing the proliferative activity of microglia with recombinant CSF1. These studies also suggest a detrimental role for microglia in the pathophysiology of ALS (Gowing and others 2009), although these experiments also affected the contribution from CSF1-responsive "
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of the dynamics and functions of microglia in the healthy and diseased brain is a matter of intense scientific activity. The application of new techniques and new experimental approaches has allowed the identification of novel microglial functions and the redefinition of classic ones. In this review, we propose the study of microglial functions, rather than their molecular profiles, to better understand and define the roles of these cells in the brain. We review current knowledge on the role of surveillant microglia, proliferating microglia, pruning/neuromodulatory microglia, phagocytic microglia, and inflammatory microglia and the molecular profiles that are associated with these functions. In the remodeling scenario of microglial biology, the analysis of microglial functional states will inform about the roles in health and disease and will guide us to a more precise understanding of the multifaceted roles of this never-resting cells.
    Full-text · Article · Apr 2014 · The Neuroscientist
  • Source
    • "In addition, microglia can release neurotrophic factors and anti-inflammatory molecules that induce the re-establishment of a functional neuronal environment [15,16]. However, the actions of the resident microglia alone are not sufficient to reverse neurodegenerative progression, and recent research has focused on the application of exogenous microglia precursors or monocytes to promote neuroprotection in the diseased brain and retina [10-13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal microglia can be activated and recruited by chemokines and play a protective role in early retinal degeneration. CC-chemokine ligand 2 (CCL2) and its receptor, CC-chemokine receptor 2 (CCR2), have been implicated as key mediators for the trafficking and accumulation of microglial cells in lesioned tissue. The current study investigates whether the overexpression of CCR2 allows microglia to migrate toward CCL2 more efficiently. Primary microglial cells were transduced with lentivirus carrying green fluorescent protein (GFP)-tagged CCR2 (CCR2-GFP). Overexpression of CCR2 was assessed by western blot analysis and fluorescence-assisted cell sorting. The chemotaxis of primary microglia transduced with lentivirus carrying CCR2-GFP was compared to either those transduced with GFP alone or those not transduced, using a chemotaxis chamber assay. Primary microglia showed a high transduction rate following lentivirus application and maintained normal microglial morphology and a significant overexpression of CCR2 protein. We found that CCL2-mediated chemotaxis is concentration and time dependent in microglia. The chemotactic response of microglia cells overexpressing CCR2-GFP was significantly increased compared to that of nontransduced and GFP-expressing microglia. These findings suggest that microglia can be efficiently transduced with CCR2-GFP lentiviral vectors and that the overexpression of CCR2 in retinal microglia promotes their chemotaxis in response to chemokines, suggesting that these cells may be promising targets for cell-based therapeutic manipulation in retinal disease.
    Full-text · Article · Dec 2012 · Molecular vision
Show more