Leptin Affects Intestinal Epithelial Cell Turnover in Correlation With Leptin Receptor Expression Along the Villus-Crypt Axis After Massive Small Bowel Resection in a Rat

Department Pediatric Surgery, Bnai Zion Medical Center, 47 Golomb St., P.O.B. 4940, Haifa 31048, Israel.
Pediatric Research (Impact Factor: 2.31). 10/2009; 66(6):648-53. DOI: 10.1203/PDR.0b013e3181be9f84
Source: PubMed


In this study, we examine the responsiveness of intestinal epithelial cell turnover to leptin (LEP) in correlation with leptin receptor (LEPr) expression along the villus-crypt axis in a rat with short bowel syndrome (SBS). Adult rats underwent either a 75% intestinal resection or a transection. SBS-LEP rats underwent bowel resection and were treated with LEP starting from the fourth postoperative day. Parameters of intestinal adaptation, enterocyte proliferation, and enterocyte apoptosis were determined at sacrifice. RT-PCR technique was used to determine Bax and Bcl-2 gene expression in ileal mucosa. Villus tips, lateral villi, and crypts were separated using laser capture microdissection. LEPr expression for each compartment was assessed by quantitative real-time PCR (Taqman). Treatment with LEP significantly stimulated all parameters of adaptation. LEPr expression in crypts significantly increased in SBS rats (vs Sham rats) and was accompanied by a significant increase in enterocyte proliferation and decreased apoptosis after LEP administration. A significant increase in LEPr expression at the tip of the villus in SBS rats was accompanied by decreased cell apoptosis. In conclusion LEP accelerated enterocyte turnover and stimulated intestinal adaptation. The effect of LEP on enterocyte proliferation and enterocyte apoptosis correlated with receptor expression along the villus-crypt axis.

Download full-text


Available from: Jorge G Mogilner, Sep 18, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Semiconductor devices have limited power handling capabilities at high frequencies, particularly at millimeter-wave frequencies. A method is presented for overcoming this problem by combining the outputs of several devices quasi-optically in a resonator cavity. This method has been applied to a number of solid-state devices, including Gunn diodes and MESFETs. The devices do not require an external locking signal because they lock to a mode of the resonator cavity. Effective radiated powers of 22 W for a 4×4 array of Gunn diodes and 25 W for a 10×10 array of MESFETs have been achieved
    Full-text · Conference Paper · Jun 1990
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptin was discovered in 1994 as a hormone produced by adipose tissue with a modulatory effect on feeding behavior and weight control. Recently, the stomach has been identified as an important source of leptin and growing evidence has shown diverse functions for leptin in the gastrointestinal tract. Using leptin as a keyword in PubMed, more than 17 000 articles were identified, of which more than 500 articles were related to the role of leptin in the gastrointestinal tract. Available abstracts were reviewed and more than 200 original articles were reviewed in detail. The available literature demonstrated that leptin can modulate several important functions of the gastrointestinal tract. Leptin interacts with the vagus nerve and cholecystokinin to delay gastric emptying and has a complex effect on motility of the small bowel. Leptin modulates absorption of macronutrients in the gastrointestinal tract differentially in physiologic and pathologic states. In physiologic states, exogenous leptin has been shown to decrease carbohydrate absorption and to increase the absorption of small peptides by the PepT1 di-/tripeptide transporter. In certain pathologic states, leptin has been shown to increase absorption of carbohydrates, proteins, and fat. Leptin has been shown to be upregulated in the colonic mucosa in patients with inflammatory bowel disease. Leptin stimulates gut mucosal cell proliferation and inhibits apoptosis. These functions have led to speculation about the role of leptin in tumorigenesis in the gastrointestinal tract, which is complicated by the multiple immunoregulatory effects of leptin. Leptin is an important modulator of major aspects of gastrointestinal tract functions, independent of its more well-described roles in appetite regulation and obesity.
    Full-text · Article · Oct 2010 · Nutrition
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malnutrition substantially increases susceptibility to Entamoeba histolytica in children. Leptin is a hormone produced by adipocytes that inhibits food intake, influences the immune system, and is suppressed in malnourished children. Therefore we hypothesized that diminished leptin function may increase susceptibility to E. histolytica infection. We prospectively observed a cohort of children, beginning at preschool age, for infection by the parasite E. histolytica every other day over 9 years and evaluated them for genetic variants in leptin (LEP) and the leptin receptor (LEPR). We found increased susceptibility to intestinal infection by this parasite associated with an amino acid substitution in the cytokine receptor homology domain 1 of LEPR. Children carrying the allele for arginine (223R) were nearly 4 times more likely to have an infection compared with those homozygous for the ancestral glutamine allele (223Q). An association of this allele with amebic liver abscess was also determined in an independent cohort of adult patients. In addition, mice carrying at least 1 copy of the R allele of Lepr were more susceptible to infection and exhibited greater levels of mucosal destruction and intestinal epithelial apoptosis after amebic infection. These findings suggest that leptin signaling is important in mucosal defense against amebiasis and that polymorphisms in the leptin receptor explain differences in susceptibility of children in the Bangladesh cohort to amebiasis.
    Full-text · Article · Feb 2011 · The Journal of clinical investigation
Show more