MEG evidence that the central auditory system simultaneously encodes multiple temporal cues

York Neuroimaging Centre, University of York, York, UK.
European Journal of Neuroscience (Impact Factor: 3.18). 10/2009; 30(6):1183-91. DOI: 10.1111/j.1460-9568.2009.06900.x
Source: PubMed


Speech contains complex amplitude modulations that have envelopes with multiple temporal cues. The processing of these complex envelopes is not well explained by the classical models of amplitude modulation processing. This may be because the evidence for the models typically comes from the use of simple sinusoidal amplitude modulations. In this study we used magnetoencephalography (MEG) to generate source space current estimates of the steady-state responses to simple one-component amplitude modulations and to a two-component amplitude modulation. A two-component modulation introduces the simplest form of modulation complexity into the waveform; the summation of the two-modulation rates introduces a beat-like modulation at the difference frequency between the two modulation rates. We compared the cortical representations of responses to the one-component and two-component modulations. In particular, we show that the temporal complexity in the two-component amplitude modulation stimuli was preserved at the cortical level. The method of stimulus normalization that we used also allows us to interpret these results as evidence that the important feature in sound modulations is the relative depth of one modulation rate with respect to another, rather than the absolute carrier-to-sideband modulation depth. More generally, this may be interpreted as evidence that modulation detection accurately preserves a representation of the modulation envelope. This is an important observation with respect to models of modulation processing, as it suggests that models may need a dynamic processing step to effectively model non-stationary stimuli. We suggest that the classic modulation filterbank model needs to be modified to take these findings into account.

Download full-text


Available from: Arjan Hillebrand
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The millisecond time resolution of magnetoencephalography (MEG) is instrumental for investigating the brain basis of sensory processing, motor planning, cognition, and social interaction. We review the basic principles, recent progress, and future potential of MEG in noninvasive tracking of human brain activity. Cortical activation sequences from tens to hundreds of milliseconds can be followed during, e.g., perception, motor action, imitation, and language processing by recording both spontaneous and evoked brain signals. Moreover, tagging of sensory input can be used to reveal neuronal mechanisms of binaural interaction and perception of ambiguous images. The results support the emerging ideas of multiple, hierarchically organized temporal scales in human brain function. Instrumentation and data analysis methods are rapidly progressing, enabling attempts to decode the four-dimensional spatiotemporal signal patterns to reveal correlates of behavior and mental contents.
    Full-text · Article · Mar 2010 · Annals of the New York Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Right-handed participants respond more quickly and more accurately to written words presented in the right visual field (RVF) than in the left visual field (LVF). Previous attempts to identify the neural basis of the RVF advantage have had limited success. Experiment 1 was a behavioral study of lateralized word naming which established that the words later used in Experiment 2 showed a reliable RVF advantage which persisted over multiple repetitions. In Experiment 2, the same words were interleaved with scrambled words and presented in the LVF and RVF to right-handed participants seated in an MEG scanner. Participants read the real words silently and responded "pattern" covertly to the scrambled words. A beamformer analysis created statistical maps of changes in oscillatory power within the brain. Those whole-brain maps revealed activation of the reading network by both LVF and RVF words. Virtual electrode analyses used the same beamforming method to reconstruct the responses to real and scrambled words in three regions of interest in both hemispheres. The middle occipital gyri showed faster and stronger responses to contralateral than to ipsilateral stimuli, with evidence of asymmetric channeling of information into the left hemisphere. The left mid fusiform gyrus at the site of the 'visual word form area' responded more strongly to RVF than to LVF words. Activity in speech-motor cortex was lateralized to the left hemisphere, and stronger to RVF than LVF words, which is interpreted as representing the proximal cause of the RVF advantage for naming written words.
    Full-text · Article · Oct 2010 · Brain and Language

  • No preview · Chapter · Dec 2013