We describe the formal methodology we are using to verify components of a commercial 64-bit, x86-compatible microprocessor design at Centaur Technology. This methodology is based on the ACL2 theorem prover. In this methodology, we mechanically translate the RTL design into a formal HDL for which we have an interpreter in ACL2. We use AIG-and BDD-based symbolic simulation and theorem proving techniques to show that the hardware models satisfy their specifications, which are ACL2 functions. Completed verifications yield theorems admitted by ACL2, ensuring that the verification is based on sound reasoning. We have used this methodology to verify instructions such as SIMD floating-point addition and subtraction, integer and floating-point multiplication, comparisons, bit-wise logical operations, and integer/float conversions. We discuss our floating-point addition verification as a case study.
Figures - uploaded by
Anna SlobodovaAuthor contentAll figure content in this area was uploaded by Anna Slobodova
Content may be subject to copyright.