Visualization of anterior skull base defects with intraoperative cone-beam CT

Department of Otolaryngology-Head and Neck Surgery, Department of Surgical Oncology, Princess Margaret Hospital, Toronto, Ontario, Canada.
Head & Neck (Impact Factor: 2.64). 01/2009; 32(4):504-12. DOI: 10.1002/hed.21219
Source: PubMed


The role of cone-beam CT (CBCT) in demonstrating anterior skull base defects (ASBDs), differing in size and location, was investigated. The study was designed to describe the potential advantage of CBCT in the setting of an intraoperative cerebrospinal fluid (CSF) leak.
In all, 120 ASBD were evaluated in 5 cadaver heads. Orthogonal and oblique slices were reconstructed. Observer studies assessed the visibility of ASBD in each location as a function of defect size.
For 1-, 2-, and 4-mm defects, the percentage that were undetectable ranged from 20% to 33%, 0% to 14%, and 0% to 5%, respectively. Confident breach detection increased with defect size and was most challenging in the lateral lamella and cribriform. CBCT permitted confident detection of ASBD as small as about 2 mm in the fovea ethmoidalis and planum. Oblique views were found to be superior to orthogonal planes.
The ability to identify ASBD depended on the size and location of defect. Oblique viewing planes were optimal for ASBD visualization.

Download full-text


Available from: Gil N Bachar
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A system for intraoperative cone-beam CT (CBCT) surgical guidance is under development and translation to trials in head and neck surgery. The system provides 3D image updates on demand with sub-millimeter spatial resolution and soft-tissue visibility at low radiation dose, thus overcoming conventional limitations associated with preoperative imaging alone. A prototype mobile C-arm provides the imaging platform, which has been integrated with several novel subsystems for streamlined implementation in the OR, including: real-time tracking of surgical instruments and endoscopy (with automatic registration of image and world reference frames); fast 3D deformable image registration (a newly developed multi-scale Demons algorithm); 3D planning and definition of target and normal structures; and registration / visualization of intraoperative CBCT with the surgical plan, preoperative images, and endoscopic video. Quantitative evaluation of surgical performance demonstrates a significant advantage in achieving complete tumor excision in challenging sinus and skull base ablation tasks. The ability to visualize the surgical plan in the context of intraoperative image data delineating residual tumor and neighboring critical structures presents a significant advantage to surgical performance and evaluation of the surgical product. The system has been translated to a prospective trial involving 12 patients undergoing head and neck surgery - the first implementation of the research prototype in the clinical setting. The trial demonstrates the value of high-performance intraoperative D imaging and provides a valuable basis for human factors analysis and workflow studies that will greatly augment streamlined implementation of such systems in complex OR environments.
    Preview · Article · Feb 2009 · Proceedings of SPIE - The International Society for Optical Engineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: A prototype mobile C-arm for cone-beam CT (CBCT) has been translated to a prospective clinical trial in head and neck surgery. The flat-panel CBCT C-arm was developed in collaboration with Siemens Healthcare, and demonstrates both sub-mm spatial resolution and soft-tissue visibility at low radiation dose (e. g., < 1/5(th) of a typical diagnostic head CT). CBCT images are available similar to 15 seconds after scan completion (similar to 1 min acquisition) and reviewed at bedside using custom 3D visualization software based on the open-source Image-Guided Surgery Toolkit (IGSTK). The CBCT C-arm has been successfully deployed in 15 head and neck cases and streamlined into the surgical environment using human factors engineering methods and expert feedback from surgeons, nurses, and anesthetists. Intraoperative imaging is implemented in a manner that maintains operating field sterility, reduces image artifacts (e. g., carbon fiber OR table) and minimizes radiation exposure. Image reviews conducted with surgical staff indicate bony detail and soft-tissue visualization sufficient for intraoperative guidance, with additional artifact management (e. g., metal, scatter) promising further improvements. Clinical trial deployment suggests a role for intraoperative CBCT in guiding complex head and neck surgical tasks, including planning mandible and maxilla resection margins, guiding subcranial and endonasal approaches to skull base tumours, and verifying maxillofacial reconstruction alignment. Ongoing translational research into complimentary image-guidance subsystems include novel methods for real-time tool tracking, fusion of endoscopic video and CBCT, and deformable registration of preoperative volumes and planning contours with intraoperative CBCT.
    No preview · Article · Mar 2011 · Proceedings of SPIE - The International Society for Optical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conventional surgical tracking configurations carry a variety of limitations in line-of-sight, geometric accuracy, and mismatch with the surgeon's perspective (for video augmentation). With increasing utilization of mobile C-arms, particularly those allowing cone-beam CT (CBCT), there is opportunity to better integrate surgical trackers at bedside to address such limitations. This paper describes a tracker configuration in which the tracker is mounted directly on the Carm. To maintain registration within a dynamic coordinate system, a reference marker visible across the full C-arm rotation is implemented, and the "Tracker-on-C" configuration is shown to provide improved target registration error (TRE) over a conventional in-room setup - (0.9+/-0.4) mm vs (1.9+/-0.7) mm, respectively. The system also can generate digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool ("x-ray flashlight"), the tracker, or the C-arm ("virtual fluoroscopy"), with geometric accuracy in virtual fluoroscopy of (0.4+/-0.2) mm. Using a video-based tracker, planning data and DRRs can be superimposed on the video scene from a natural perspective over the surgical field, with geometric accuracy (0.8+/-0.3) pixels for planning data overlay and (0.6+/-0.4) pixels for DRR overlay across all C-arm angles. The field-of-view of fluoroscopy or CBCT can also be overlaid on real-time video ("Virtual Field Light") to assist C-arm positioning. The fixed transformation between the x-ray image and tracker facilitated quick, accurate intraoperative registration. The workflow and precision associated with a variety of realistic surgical tasks were significantly improved using the Tracker-on-C - for example, nearly a factor of 2 reduction in time required for C-arm positioning, reduction or elimination of dose in "hunting" for a specific fluoroscopic view, and confident placement of the x-ray FOV on the surgical target. The proposed configuration streamlines the integration of C-arm CBCT with realtime tracking and demonstrated utility in a spectrum of image-guided interventions (e.g., spine surgery) benefiting from improved accuracy, enhanced visualization, and reduced radiation exposure.
    Full-text · Conference Paper · Feb 2012
Show more