ArticlePDF AvailableLiterature Review

Abstract

Strength training has become one of the most popular physical activities for increasing characteristics such as absolute muscular strength, endurance, hypertrophy and muscular power. For efficient, safe and effective training, it is of utmost importance to understand the interaction among training variables, which might include the intensity, number of sets, rest interval between sets, exercise modality and velocity of muscle action. Research has indicated that the rest interval between sets is an important variable that affects both acute responses and chronic adaptations to resistance exercise programmes. The purpose of this review is to analyse and discuss the rest interval between sets for targeting specific training outcomes (e.g. absolute muscular strength, endurance, hypertrophy and muscular power). The Scielo, Science Citation Index, National Library of Medicine, MEDLINE, Scopus, Sport Discus and CINAHL databases were used to locate previous original scientific investigations. The 35 studies reviewed examined both acute responses and chronic adaptations, with rest interval length as the experimental variable. In terms of acute responses, a key finding was that when training with loads between 50% and 90% of one repetition maximum, 3-5 minutes' rest between sets allowed for greater repetitions over multiple sets. Furthermore, in terms of chronic adaptations, resting 3-5 minutes between sets produced greater increases in absolute strength, due to higher intensities and volumes of training. Similarly, higher levels of muscular power were demonstrated over multiple sets with 3 or 5 minutes versus 1 minute of rest between sets. Conversely, some experiments have demonstrated that when testing maximal strength, 1-minute rest intervals might be sufficient between repeated attempts; however, from a psychological and physiological standpoint, the inclusion of 3- to 5-minute rest intervals might be safer and more reliable. When the training goal is muscular hypertrophy, the combination of moderate-intensity sets with short rest intervals of 30-60 seconds might be most effective due to greater acute levels of growth hormone during such workouts. Finally, the research on rest interval length in relation to chronic muscular endurance adaptations is less clear. Training with short rest intervals (e.g. 20 seconds to 1 minute) resulted in higher repetition velocities during repeated submaximal muscle actions and also greater total torque during a high-intensity cycle test. Both of these findings indirectly demonstrated the benefits of utilizing short rest intervals for gains in muscular endurance. In summary, the rest interval between sets is an important variable that should receive more attention in resistance exercise prescription. When prescribed appropriately with other important prescriptive variables (i.e. volume and intensity), the amount of rest between sets can influence the efficiency, safety and ultimate effectiveness of a strength training programme.
A preview of the PDF is not available
... set 1: 90%, set 2: 80%, set 3: 70% 1-RM), as research suggests that fatigue is more prevalent after sets performed to failure at lighter loads compared to heavier loads (Sánchez-Medina & González-Badillo, 2011). Second, subjects were granted a prolonged period of rest in between sets to failure (de Salles et al., 2009). For this purpose, each set to momentary failure was immediately followed by 5 min of passive rest. ...
Article
Full-text available
Purpose: To identify the relationship between load and the number of repetitions performed to momentary failure in the pin press exercise, the present study compared different statistical model types and structures using a Bayesian approach. Methods: Thirty resistance-trained men and women were tested on two separate occasions. During the first visit, participants underwent assessment of their one-repetition maximum (1-RM) in the pin press exercise. On the second visit, they performed sets to momentary failure at 90%, 80% and 70% of their 1-RM in a fixed order during a single session. The relationship between relative load and repetitions performed to failure was fitted using linear regression, exponential regression and the critical load model. Each model was fitted according to the Bayesian framework in two ways: using an across-subjects pooled data structure and using a multilevel structure. Models were compared based on the variance explained (R²) and leave-one-out cross-validation information criterion (LOOIC). Results: Multilevel models, which incorporate higher-level commonalities into individual relationships, demonstrated a substantially better fit (R²: 0.97-0.98) and better predictive accuracy compared to generalized pooled-data models (R²: 0.89-0.93). The multilevel 2-parameter exponential regression emerged as the best representation of data in terms of model fit, predictive accuracy and model simplicity. Conclusion: The relationship between load and repetitions performed to failure follows an individually expressed exponential trend in the pin press exercise. To accurately predict the load that is associated with a certain repetition maximum, the relationship should therefore be modeled on a subject-specific level.
... For each exercise, three sets were performed until concentric failure at 75% 1RM, with 3 min rest between each. 16 During the leg press exercise, the participants sat with similar 90° knee angles and, in the back squat, fully extended their lower limbs. In addition to the global orientation of the body, the hip angle for the seated leg press compared with the standing squat differs by about 90°. ...
Article
Background Beetroot juice (BRJ) is used as an ergogenic aid, but no previous study has analyzed the effect this supplement has on the production of explosive force and muscular endurance in physically active women. Hypothesis BRJ improves explosive force and muscular endurance in the lower limbs of physically active women. Study design Randomized double-blind crossover study. Level of evidence Level 3 Methods Fourteen physically active women performed a countermovement jump (CMJ) test, a back squat test for assessing velocity and power at 50% and 75% of one-repetition maximum (1RM), and the number of repetitions on a muscular endurance test consisting of 3 sets at 75% of 1RM in a resistance training protocol comprising 3 exercises (back squat, leg press, and leg extension). The participants performed the test in 2 sessions, 150 minutes after ingesting 70 mL of either BRJ (400 mg of nitrate) or a placebo (PLA). Results A greater maximum height was achieved in the CMJ after consuming BRJ compared with a PLA ( P = 0.04; effect size (ES) = 0.34). After a BRJ supplement at 50% 1RM, a higher mean velocity [+6.7%; P = 0.03; (ES) = 0.39 (–0.40 to 1.17)], peak velocity (+6%; P = 0.04; ES = 0.39 [−0.40 to 1.17]), mean power (+7.3%; P = 0.02; ES = 0.30 [−0.48 to 1.08]) and peak power (+6%; P = 0.04; ES = 0.20 [−0.59 to 0.98]) were attained in the back squat test. In the muscular endurance test, BRJ increased performance compared with the PLA ( P < 0.00; η p ² = 0.651). Conclusion BRJ supplements exert an ergogenic effect on the ability to produce explosive force and muscular endurance in the lower limbs in physically active women. Clinical relevance If physically active women took a BRJ supplement 120 minutes before resistance training their performance could be enhanced.
... Before intervention sessions, participants were familiarized with the experimental protocols, individualized sled load and testing procedures. In testing sessions, 5 min after performing a standardized warm-up [33], participants performed a baseline 30 m sprint from a three-point crouching position followed by the execution of an intervention condition. In EXP, 5 min after the baseline trial, 2 repetitions of 20 m resisted sprints with individualized load were completed with 2 min of recovery between the sprints [19,27,29]. ...
Article
Full-text available
The aim of this study was to investigate the effects of heavy sled towing using a load corresponding to a 50% reduction of the individual theoretical maximal velocity (ranged 57–73% body mass) on subsequent 30 m sprint performance, velocity, mechanical variables (theoretical maximal horizontal force, theoretical maximal horizontal velocity, maximal mechanical power output, slope of the linear force–velocity relationship, maximal ratio of horizontal to total force and decrease in the ratio of horizontal to total force) and kinematics (step length and rate, contact and flight time). Twelve (n = 5 males and n = 7 females) junior running sprinters performed an exercise under two intervention conditions in random order. The experimental condition (EXP) consisted of two repetitions of 20 m resisted sprints, while in the control condition (CON), an active recovery was performed. Before (baseline) and after (post) the interventions, the 30 m sprint tests were analyzed. Participants showed faster 30 m sprint times following sled towing (p = 0.005). Running velocity was significantly higher in EXP at 5–10 m (p = 0.032), 10–15 m (p = 0.006), 15–20 m (p = 0.004), 20–25 m (p = 0.015) and 25–30 m (p = 0.014). No significant changes in sprint mechanical variables and kinematics were observed. Heavy sled towing appeared to be an effective post-activation potentiation stimulus to acutely enhance sprint acceleration performance with no effect on the athlete’s running technique.
... In line with previous research, the order of the physical assessments addressed muscular strength followed by muscular power and sprint speed, respectively (Coulson & Archer, 2015;Haff & Triplett, 2016;Tanner & Gore, 2013). Each assessment was separated by a 5-minute rest period to facilitate maximum recovery between tests (de Salles et al., 2009;Haff & Triplett, 2016). Maximal power (Pmax) was recorded for each bench throw and jump squat trial via a linear transducer (GymAware optical encoder, Kinetic Performance Technology, Canberra, Australia), while 10 and 20 m sprint times were measured via single-beam timing gates (Brower TC-System, Brower Timing Systems, Utah, USA) set at consistent heights (1 m) across all trials. ...
Thesis
Full-text available
Punches in boxing are intricate actions requiring the coordinated and synergistic recruitment of leg, trunk and arm musculature. Maximal punches can have a marked impact on the outcomes of boxing contests. Currently, there is an absence of research appraising the biomechanics and physical performance-related qualities associated with boxing punches, and as such, there are no practical guidelines pertaining to resistance training and its impact upon these important characteristics. In this respect, coaches and boxers are reliant consequently upon non-scientific approaches to training and contest preparation. Thus, the purpose of this thesis was to quantify the biomechanics and physical performance-related qualities associated with maximal punching techniques common to amateur boxing, and investigate the extent to which resistance training enhances such features. Study 1 quantified the three-dimensional kinetics and kinematics of maximal punches common to boxing competition to identify the differences between punch types (straights, hooks, and uppercuts), whilst Study 2 investigated the movement variability of these measures across punch types. These studies revealed significant differences for the majority of kinetic and kinematic variables between punch types. High within-subject, between-subject, and biological variability were recorded for the same variables across punch types, independent of the amount of boxing experience. These findings confirm that kinetic and kinematic characteristics vary from punch to punch, with boxers appearing to manipulate kinematic variables in order to achieve a consistent intensity and end-product. Study 3 quantified the relationships between physical performance-related traits and kinetic and kinematic qualities of maximal punches, and revealed moderate-to-large associations with muscular strength and power. From this, Study 4 appraised the extent to which strength and contrast resistance training enhanced maximal punch biomechanics and physical performance-related qualities. The findings highlighted that contrast training was superior among male amateur boxers over a six-week intervention, though strength training alone also brought about improvements. This current research has advanced our understanding of maximal punching and the influence of resistance training on a variety of its determinants. Nonetheless, future research is required to identify if the same findings can be generalised to higher standards of boxing and whether alternative strength and conditioning strategies are equally, or more effective.
... Moreover, the more precise implementation (rest periods between the exercises and the sets and repetition velocity) remained partly unclear. From an exercise science perspective, rest periods in particular are important for both training planning and management (89,90). Also, rest periods are relevant from a transfer point of view, as they determine the detailed implementation in practice, and already brief descriptions (e.g., timing or autoregulatory) would facilitate intervention replication. ...
Article
Full-text available
Background: The workplace is an important setting for adult health promotion including exercise training such as resistance training (RT). Since the reporting of exercise training interventions is generally inconsistent, the objective of this systematic review was to investigate the attention to principles of RT progression and variables of RT exercise prescription in workplace-related RT interventions. Methods: A systematic literature search was conducted in the databases LIVIVO, PubMed, SPORTDiscus, and Web of Science (2000–2020). Controlled trials with apparently healthy “employees” and a main focus on RT were included. RT principles and variables were extracted and rated by two reviewers (reported, not reported, or unclear). Sum scores for each RT intervention and percentages regarding each principle and variable were calculated. Results: Overall, 21 articles were included (18 primary studies, 3 protocols). Summarized narratively, the interventions showed different positive effects on strength- or performance-related and/or health- or complaint-related outcomes. The reporting of the RT principles and variables was varied (progressive overload: 94 % of the studies, specificity: 78 %, variation (periodization): 39 %, muscle action: 94 %, loading: 94 %, volume; 67 %, exercise selection: 89 %, exercise order: 47 %, rest periods between sets: 33 %, rest periods between exercises: 27 %, repetition velocity: 44 %, and frequency: 100 %). Conclusion: Several key RT principles and variables were reported inconsistently, reducing reproducibility and pointing to the need for standardized RT intervention reporting in workplace-related interventions. Exercise science and workplace promotion should be further linked, since accurate reporting is a prerequisite for transferring robust findings into practice.
Article
Full-text available
Background: In this context, Medicine ball training has been studied to see if it might help basketball players' physical performance and skills. Objectives: Investigated the effects of eight weeks of medicine ball training on physical performance and basketball skill performance among male basketball players aged 18 to 24 years. Materials and Methods: 28 Subjects were recruited into two groups, the experimental group (EG) and the control group (CG), EG=14 (Mean age 21.25 ±1.34) and CG=14 (Mean age 20.52 ±1.77). To detect differences within-between the study groups, repeated-measures ANOVA was used. Results: The analyses demonstrated significant pre-, mid-, and post-test effects on physical performance; all the physical fitness variables examined p<0. 01 and skill performance analyses looked at all variables p<0.01. The medicine ball training EG improves a player's physical performance, which is markable in percentage. The variables such as Overhead Medicine Ball Throw (OHMBT), Standing Long Jump (SLJ), Sprinting 20 m (SPRINT), Agility T-Test (AGILITY), Vertical Jump (VJ), Back and Leg Dynamometer (BLD); 5.11%, 4.52%, 1.34%, 3.49%, 6.45% and 16.40% respectively. Moreover, the study emphasizes that the medicine ball improves basketball skills performance percentage measures in EG, which comprise Control Dribble (CD), Defensive Movement (DM, Passing (PASS) and Speed Spot Shooting (SSS); 2.14%, 3.22%, 6.83% and 13.29% respectively. Conclusion: This research indicates that medicine ball training in conjunction with regular exercise can significantly increase physical performance and basketball skills. It is advised that coaches add medicine balls into players' daily training regimes. The execution of medicine ball workouts free in the direction of skill work improves basketball skill performance. The recommended program for medicine ball workouts is ideal for evaluating improvement in basketball players' physical performance and basketball skill performance.
Article
This article investigates human geometry in design, allowing exploration of unknown geometries in Paralympic sports equipment. By creating a configuration map exploring the solution-space, optimal sit-ski seating positions–in the sense of performance and ergonomics–can efficiently be found for individual athletes. A physical prototype was developed, and an experiment was designed to identify changes in performance due to different geometries. The design method and application make it possible to translate critical angles onto geometries, and test individuals for optimal work ergonomics.
Article
Full-text available
Sarcopenia, an age-related disease characterized by loss of muscle strength and muscle mass, has attracted the attention of medical experts due to its severe morbidity, low living quality, high expenditure of health care, and mortality. Traditionally, persistent aerobic exercise (PAE) is considered as a valid way to attenuate muscular atrophy. However, nowadays, high intensity interval training (HIIT) has emerged as a more effective and time-efficient method to replace traditional exercise modes. HIIT displays comprehensive effects on exercise capacity and skeletal muscle metabolism, and it provides a time-out for the recovery of cardiopulmonary and muscular functions without causing severe adverse effects. Studies demonstrated that compared with PAE, HIIT showed similar or even higher effects in improving muscle strength, enhancing physical performances and increasing muscle mass of elder people. Therefore, HIIT might become a promising way to cope with the age-related loss of muscle mass and muscle function. However, it is worth mentioning that no study of HIIT was conducted directly on sarcopenia patients, which is attributed to the suspicious of safety and validity. In this review, we will assess the effects of different training parameters on muscle and sarcopenia, summarize previous papers which compared the effects of HIIT and PAE in improving muscle quality and function, and evaluate the potential of HIIT to replace the status of PAE in treating old people with muscle atrophy and low modality; and point out drawbacks of temporary experiments. Our aim is to discuss the feasibility of HIIT to treat sarcopenia and provide a reference for clinical scientists who want to utilize HIIT as a new way to cope with sarcopenia.
Article
Full-text available
Background Metabolic stress is considered a key factor in the activation of hypertrophy mechanisms which seems to be potentiated under hypoxic conditions.This study aimed to analyze the combined effect of the type of acute hypoxia (terrestrial vs simulated) and of the inter-set rest configuration (60 vs 120 s) during a hypertrophic resistance training (R T ) session on physiological, perceptual and muscle performance markers. Methods Sixteen active men were randomized into two groups based on the type of hypoxia (hypobaric hypoxia, HH: 2,320 m asl; vs normobaric hypoxia, NH: FiO 2 of 15.9%). Each participant completed in a randomly counterbalanced order the same R T session in four separated occasions: two under normoxia and two under the corresponding hypoxia condition at each prescribed inter-set rest period. Volume-load (load × set × repetition) was calculated for each training session. Muscle oxygenation (SmO 2 ) of the vastus lateralis was quantified during the back squat exercise. Heart rate (HR) was monitored during training and over the ensuing 30-min post-exercise period. Maximal blood lactate concentration (maxLac) and rating of perceived exertion (RPE) were determined after the exercise and at the end of the recovery period. Results Volume-load achieved was similar in all environmental conditions and inter-set rest period length did not appreciably affect it. Shorter inter-set rest periods displayed moderate increases in maxLac, HR and RPE responses in all conditions. Compared to HH, NH showed a moderate reduction in the inter-set rest-HR (ES > 0.80), maxLac (ES > 1.01) and SmO 2 (ES > 0.79) at both rest intervals. Conclusions Results suggest that the reduction in inter-set rest intervals from 120 s to 60 s provide a more potent perceptual, cardiovascular and metabolic stimulus in all environmental conditions, which could maximize hypertrophic adaptations in longer periods of training. The abrupt exposure to a reduced FiO 2 at NH seems to reduce the inter-set recovery capacity during a traditional hypertrophy R T session, at least during a single acute exposition. These results cannot be extrapolated to longer training periods.
Article
Purpose: This study investigated the effects of transcranial direct current stimulation (tDCS) on velocity loss in a typical resistance exercise session. Methods: Twelve recreationally resistance-trained males (age = 24.8 ± 3.0 years, body mass = 78.9 ± 13.6 kg, and height = 174.3 ± 7.3 cm) completed two experimental trials in a counterbalanced crossover design: anodal tDCS and sham conditions. The stimuli were applied over the left dorsolateral prefrontal cortex for 20 minutes, using a 2 mA current intensity in anodal tDCS and a 1-minute active stimulus in the sham condition. After stimulation, subjects performed three sets of the bench press at a 70% of 1 maximum repetition intensity and 1 min of inter-set rest. The velocity loss was calculated as the relative difference between the fastest repetition velocity (usually first) and the velocity of the last repetition of each set and averaged over all three sets. Results: The results found no interaction between conditions and sets (P = .122), and no effect for conditions (P = .323) or sets (P = .364) for the velocity loss in each set. Also, no differences were found between the average velocity loss of the three sets in the anodal tDCS (-25.0 ± 4.7%) and sham condition (-23.3 ± 6.4%; P = .323). Conclusion: Anodal tDCS does not affect movement velocity in a typical strength training protocol in recreationally trained subjects.
Article
Full-text available
Overweight and obesity affects more than 66% of the adult population and is associated with a variety of chronic diseases. Weight reduction reduces health risks associated with chronic diseases and is therefore encouraged by major health agencies. Guidelines of the National Heart, Lung, and Blood Institute (NHLBI) encourage a 10% reduction in weight, although considerable literature indicates reduction in health risk with 3% to 5% reduction in weight. Physical activity (PA) is recommended as a component of weight management for prevention of weight gain, for weight loss, and for prevention of weight regain after weight loss. In 2001, the American College of Sports Medicine (ACSM) published a Position Stand that recommended a minimum of 150 min wk(-1) of moderate-intensity PA for overweight and obese adults to improve health; however, 200-300 min wk(-1) was recommended for long-term weight loss. More recent evidence has supported this recommendation and has indicated more PA may be necessary to prevent weight regain after weight loss. To this end, we have reexamined the evidence from 1999 to determine whether there is a level at which PA is effective for prevention of weight gain, for weight loss, and prevention of weight regain. Evidence supports moderate-intensity PA between 150 and 250 min wk(-1) to be effective to prevent weight gain. Moderate-intensity PA between 150 and 250 min wk(-1) will provide only modest weight loss. Greater amounts of PA (>250 min wk(-1)) have been associated with clinically significant weight loss. Moderate-intensity PA between 150 and 250 min wk(-1) will improve weight loss in studies that use moderate diet restriction but not severe diet restriction. Cross-sectional and prospective studies indicate that after weight loss, weight maintenance is improved with PA >250 min wk(-1). However, no evidence from well-designed randomized controlled trials exists to judge the effectiveness of PA for prevention of weight regain after weight loss. Resistance training does not enhance weight loss but may increase fat-free mass and increase loss of fat mass and is associated with reductions in health risk. Existing evidence indicates that endurance PA or resistance training without weight loss improves health risk. There is inadequate evidence to determine whether PA prevents or attenuates detrimental changes in chronic disease risk during weight gain.
Article
Full-text available
This study investigated the effects of a high volume 5-wk weight training program and different exercise/rest intervals on measures of power, high intensity exercise endurance (HIEE), and maximum strength. Subjects, 33 weight trained men (M age 20.4+/-3.5 yrs), were divided into 3 equal groups. The groups used the same exercises and set-and-repetition scheme. Rest intervals were 3 min for Gp 1, 1.5 min for Gp 2, and 0.5 min for Gp 3. Pre/post changes were analyzed using G x T ANOVA. Peak power, average peak power, and average total work, as measured during 15 five-sec cycle max-efforts rides and the 1-RM squat, increased significantly (N = 33, p < 0.05). The vertical jump and vertical jump power index did not show a statistically significant change. The 1-RM squat increased significantly more in Gp 1 (7%) than in Gp 3 (2%). Data suggest that, except for maximum strength, adaptations, to short-term, high-volume training may not be dependent on the length of rest intervals. (C) 1995 National Strength and Conditioning Association
Article
Fifty college women were randomly assigned to one of three resistance training protocols that employed progressive resistance with high resistance/low repetitions (HRLR), medium resistance/medium repetitions (MRMR), and low resistance/high repetitions (LRHR). The three groups trained on the same resistance exercises for 9 weeks at 3 sets of 6 to 8 RM, 2 sets of 15 to 20 RM, and 1 set of 30 to 40 RM, respectively. Training included free weights and multistation equipment. The 1-RM technique was used for strength testing, and muscular endurance tests consisted of maximum repetitions either at a designated resistance or at a percentage of 1-RM. There were significant pre/post strength increases in both upper and lower body tests, but no significant posttreatment difference in muscular strength among the three protocols. Absolute muscular endurance increased significantly on 4 of 6 pre/post comparisons, while relative endurance increased significantly on only 4 of 12 comparisons. HRLR training yielded greater strength gains. LRHR training generally produced greater muscular endurance gains, and the percentage increase in absolute endurance was approximately twice the increase in strength for all groups. Lower body gains in both strength and endurance were greater than upper body gains.
Article
Acute and long-term hormonal and neuromuscular adaptations to hypertrophic strength training were studied in 13 recreationally strength-trained men. The experimental design comprised a 6-month hypertrophic strength-training period including 2 separate 3-month training periods with the crossover design, a training protocol of short rest (SR, 2 minutes) as compared with long rest (LR, 5 minutes) between the sets. Basal hormonal concentrations of serum total testosterone (T), free testosterone (FT), and cortisol (C), maximal isometric strength of the leg extensors, right leg 1 repetition maximum (1RM), dietary analysis, and muscle cross-sectional area (CSA) of the quadriceps femoris by magnetic resonance imaging (MRI) were measured at months 0, 3, and 6. The 2 hypertrophic training protocols used in training for the leg extensors (leg presses and squats with 10RM sets) were also examined in the laboratory conditions at months 0, 3, and 6. The exercise protocols were similar with regard to the total volume of work (loads 3 sets 3 reps), but differed with regard to the intensity and the length of rest between the sets (higher intensity and longer rest of 5 minutes vs. somewhat lower intensity but shorter rest of 2 minutes). Before and immediately after the protocols, maximal isometric force and electro-myographic (EMG) activity of the leg extensors were measured and blood samples were drawn for determination of serum T, FT, C, and growth hormone (GH) concentrations and blood lactate. Both protocols before the experimental training period (month 0) led to large acute increases (p < 0.05-0.001) in serum T, FT, C < and GH concentrations, as well as to large acute decreases (p < 0.05-0.001) in maximal isometric force and EMG activity. However, no significant differences were observed between the protocols. Significant increases of 7% in maximal isometric force, 16% in the right leg 1RM, and 4% in the muscle CSA of the quadriceps femoris were observed during the 6-month strength-training period. However, both 3-month training periods performed with either the longer or the shorter rest periods between the sets resulted in similar gains in muscle mass and strength. No statistically significant changes were observed in basal hormone concentrations or in the profiles of acute hormonal responses during the entire 6-month experimental training period. The present study indicated that, within typical hypertrophic strength-training protocols used in the present study, the length of the recovery times between the sets (2 vs. 5 minutes) did not have an influence on the magnitude of acute hormonal and neuromuscular responses or long-term training adaptations in muscle strength and mass in previously strength-trained men.
Article
Fifty college women were randomly assigned to one of three resistance training protocols that employed progressive resistance with high resistance/low repetitions (HRLR), medium resistance/medium repetitions (MRMR), and low resistance/high repetitions (LRHR). The three groups trained on the same resistance exercises for 9 weeks at 3 sets of 6 to 8 RM, 2 sets of 15 to 20 RM, and 1 set of 30 to 40 RM, respectively. Training included free weights and multistation equipment. The 1-RM technique was used for strength testing, and muscular endurance tests consisted of maximum repetitions either at a designated resistance or at a percentage of 1-RM. There were significant pre/post strength increases in both upper and lower body tests, but no significant post-treatment difference in muscular strength among the three protocols. Absolute muscular endurance increased significantly on 4 of 6 pre/post comparisons, while relative endurance increased significantly on only 4 of 12 comparisons. HRLR training yielded greater strength gains. LRHR training generally produced greater muscular endurance gains, and the percentage increase in absolute endurance was approximately twice the increase in strength for all groups. Lower body gains in both strength and endurance were greater than upper body gains. (C) 1994 National Strength and Conditioning Association
Article
The purpose of this series of investigations was to gain insight on resistance training in American football and address some of the myths. Many theories about resistance training have been proposed, yet there has been little if any research on some of these training philosophies. This series of studies represents an accumulation of data that helped to formulate a training approach. Rather than having a training philosophy, it might be more productive to have a training approach based on facts and critical monitoring of test variables representative of the physical development possible through strength and conditioning programs. It was demonstrated that football players are capable of multiple maximal efforts in resistance training and that the length of the rest period was a determining factor. In general, multiple sets and various periodized training programs were superior to single-set programs in the rate and magnitude of improvements in body composition, strength, local muscular endurance, and power. Such data indicate that for building programs in previously trained football players, multiple-set programs that provide variation are more appropriate. (C) 1997 National Strength and Conditioning Association
Article
This study examined the effect of rest interval length on repeated one-repetition maximum (1-RM) bench press performance. Sixteen male college students (age = 22+/-2 yrs) who were experienced in the bench press exercise volunteered for this investigation. On the first laboratory visit the subjects' 1-RM was determined. The next four test sessions involved performing the 1-RM attempt two times, with the intertrial interval being 1, 3, 5, or 10 min. The results of a Cochran Q test found on significant (p > 0.05) difference in the ability to repeat a successful maximal bench press based on the rest interval lengths tested. These findings are consistent with previous research indicating a rapid return in maximal force production capabilities following a fatiguing task. These results indicate that 1-min rest intervals are sufficient for recovery between maximal strength tests. (C) 1994 National Strength and Conditioning Association