Mapping the interaction of pro-apoptotic tBID with pro-survival BCL-XL

Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
Biochemistry (Impact Factor: 3.02). 09/2009; 48(36):8704-11. DOI: 10.1021/bi901171n
Source: PubMed


The BH3-only BCL-2 family protein BID is activated by caspase-8 cleavage upon engagement of cell surface death receptors. The resulting 15 kDa C-terminal fragment, tBID, translocates to mitochondria, triggering the release of cytotoxic molecules and cell death. The pro-apoptotic activity of tBID is regulated by its interactions with pro-survival BCL-XL and pro-death BAX, both in the cytosol and at the mitochondrial membrane. In this study, we characterize the molecular interactions between full-length tBID and BCL-XL using NMR spectroscopy and isothermal titration calorimetry (ITC). In aqueous solution, tBID adopts an alpha-helical but dynamically disordered conformation; however, the three-dimensional conformation is stabilized when tBID engages its BH3 domain in the BH3-binding hydrophobic groove of BCL-XL to form a stable heterodimeric complex. Characterization of the binding thermodynamics by ITC reveals that the interaction between tBID and BCL-XL is driven by enthalpy but disfavored by the entropy associated with the conformational order induced in tBID upon binding BCL-XL.

Full-text preview

Available from:
  • Source
    • "The conserved aspartic acid, D, forms a salt bridge with a conserved arginine in the BH1 motif of the pro-survival protein. Analysis of Bim and tBid binding to Bcl-w [21] and Bcl-xL [25] show that helical structure is only induced over the BH3 motif and outside this region the sequence remains poorly ordered. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrinsic cell death is mediated by interaction between pro-apoptotic and pro-survival proteins of the B-cell lymphoma-2 (Bcl-2) family. Members of this family are either intrinsically disordered or contain intrinsically disordered regions/domains that are critical to their function. Alternate splicing and post-translational modifications can determine the extent of these disordered regions and are critical for regulating Bcl-2 proteins. Conformational plasticity and structural transitions characterize the interactions within the Bcl-2 family, with conserved sequence motifs on both binding partners required for their molecular recognition.
    Full-text · Article · Apr 2010 · International Journal of Molecular Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this issue of Molecular Cell, Kim et al. (2009) describe the steps involved in the direct activation of the proapoptotic proteins BAX and BAK by their BH3-only partners, resolving the controversy regarding direct versus indirect activation of these proteins.
    Preview · Article · Nov 2009 · Molecular cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Grant Dewson, Ruth M KluckMolecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, AustraliaAbstract: Apoptotic cell death is essential for embryonic development, tissue homeostasis, and a well-functioning immune system, with aberrant apoptosis contributing to numerous disease conditions. Inadequate cell death is a major contributing factor to tumorigenesis, while excess cell death contributes to neurodegeneration and autoimmune disease. The major pathway of apoptotic cell death, the mitochondrial pathway, is controlled by the Bcl-2 family of proteins. The members of this family, more than 17 in humans, share significant sequence and structural homology, and fulfil either prosurvival or proapoptotic roles. Specific interactions between these functionally polar proteins, and their relative expression levels, govern the susceptibility of each cell to toxic insults. Here we review the current understanding on how apoptotic cell death is controlled by this important protein family. We also discuss how excessive or insufficient cell death can contribute to disease, and how targeting the Bcl-2 family offers novel therapeutic opportunities.Keywords: apoptosis, Bcl-2, cancer, cytochrome c, mitochondria
    Full-text · Article · Jan 2010 · Cell Health and Cytoskeleton
Show more