Variable FZD7 Expression in Colorectal Cancers Indicates Regulation by the Tumour Microenvironment

Cancer Biology Laboratory, Department of Anatomy and Cell Biology, University of Melbourne, Australia.
Developmental Dynamics (Impact Factor: 2.38). 01/2009; 239(1):311-7. DOI: 10.1002/dvdy.22045
Source: PubMed


Recent evidence shows that a sub-population of Wnt/beta-catenin target genes is specifically induced in different tissue contexts. FZD7 is a putative Wnt/beta-catenin target gene and although it is highly expressed in well-differentiated colorectal cancer tumour cells, its expression is decreased in de-differentiated tumour cells at the invasive front despite elevated Wnt/beta-catenin signalling in this area. This variable expression of FZD7 implicates additional regulation by the microenvironment; however, this has not been investigated. To begin to elucidate the role of extracellular matrix in regulating FZD7 expression, we generated a FZD7 promoter reporter and analysed FZD7 promoter activity in colorectal cancer cells grown on different matrices. We demonstrate that the FZD7 promoter is regulated by beta-catenin in colorectal cancer cells and observed decreased promoter activity in cells grown on fibronectin but not collagen I or collagen IV. Thus, expression of FZD7 in colorectal cancer may be regulated by fibronectin in the microenvironment.

Download full-text


Available from: Normand Pouliot, Oct 20, 2014
  • Source
    • "Previously, our laboratory demonstrated that SIRT1 activity has the ability to regulate the expression of Wnt target genes, and was able to reduce the level of active β-catenin protein in T-47D cells (Fig 4A) [11]. Another study had also shown that FZD7 expression was regulated by β-catenin in colorectal cancer cells [25]. So to test whether β-catenin was involved in FZD7 expression in breast cancer cells, we performed chromatin immunoprecipitation (ChIP) followed by quantitative PCR (ChIP-qPCR). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wnt signaling pathway is often chronically activated in diverse human tumors, and the Frizzled (FZD) family of receptors for Wnt ligands, are central to propagating oncogenic signals in a β-catenin-dependent and independent manner. SIRT1 is a class III histone deacetylase (HDAC) that deacetylates histone and non-histone proteins to regulate gene transcription and protein function. We previously demonstrated that SIRT1 loss of function led to a significant decrease in the levels of Dishevelled (Dvl) proteins. To further explore this connection between the sirtuins and components of the Wnt pathway, we analyzed sirtuin-mediated regulation of FZD proteins. Here we explore the contribution of sirtuin deacetylases in promoting constitutive Wnt pathway activation in breast cancer cells. We demonstrate that the use of small molecule inhibitors of SIRT1 and SIRT2, and siRNA specific to SIRT1, all reduce the levels of FZD7 mRNA. We further demonstrate that pharmacologic inhibition of SIRT1/2 causes a marked reduction in FZD7 protein levels. Additionally, we show that β-catenin and c-Jun occupy the 7 kb region upstream of the transcription start site of the FZD7 gene, and SIRT1 inhibition leads to a reduction in the occupancy of both β-catenin and c-Jun at points along this region. This work uncovers a new mechanism for the regulation of FZD7 and provides a critical new link between the sirtuins and FZD7, one of the earliest nodal points from which oncogenic Wnt signaling emanates. This study shows that inhibition of specific sirtuins may provide a unique strategy for inhibiting the constitutively active Wnt pathway at the level of the receptor.
    Full-text · Article · Jun 2014 · PLoS ONE
  • Source
    • "Few studies have examined the role of distinct frizzled receptors in the TME. Factors in the TME have been implicated in the regulation of Fz7 on colorectal cancer cells [13] and Fz7 downregulation has been linked to reduced survival, invasion and metastatic potential [14], suggesting that Fz7 may represent a therapeutic target. In this report, we describe the differential expression of Fz1 in the colon cancer TME and provide evidence of autocrine regulation in tumor cells and paracrine regulation by factors within the TME on Fz1 expression in non-malignant mucosal epithelium, as well as lack of paracrine regulation in proximity to pre-malignant colon adenomas. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Wnt signaling in the colon cancer tumor microenvironment (TME) may affect cancer biologic properties including invasion and metastatic dissemination. Prior reports have suggested that the expression of select frizzled (Fz) receptors may be altered in cancers and in the TME. Methods Colon cancer, colonic adenoma and normal colonic mucosal specimens were obtained under institutional review board approval and analyzed for the expression of Fz1 and Fz2 by confocal fluorescent immunohistochemistry and Wnt-specific membrane array. In vitro, the effect of Wnt3a on Fz1 expression was examined in normal-derived NCM460 cells by qRT-PCR and immunohistochemistry. Results Fz1 was expressed in colon cancer and villous adenomas but not in more benign tubular adenomas. Fz1 expression was seen in normal colonic mucosa in close proximity to colon cancer, but not villous or tubular adenomas. Normal colonic mucosa distant from colon cancer did not express Fz1. Fz2 was expressed ubiquitously in cancer, adenomas and normal colonic mucosa. Fz1 expression was induced by Wnt3a in a normal colon mucosa-derived cell line in vitro. Conclusions Fz1 is a Wnt responsive gene in colon-derived tissues. Fz1 expression exhibited increased expression in normal mucosa only in close proximity to colon cancer. This field effect was not seen with pre-malignant adenomas and may be due to Wnt/β-catenin signaling within the TME. Fz1 may represent a new TME-directed therapeutic target for patients with colon cancer.
    Full-text · Article · Feb 2013 · Journal of Translational Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt proteins are secreted glycoproteins that bind to the N-terminal extra-cellular cysteine-rich domain of the Frizzled (Fzd) receptor family. The Fzd receptors can respond to Wnt proteins in the presence of Wnt co-receptors to activate the canonical and non-canonical Wnt pathways. Recent studies indicated that, among the Fzd family, Fzd7 is the Wnt receptor most commonly upregulated in a variety of cancers including colorectal cancer, hepatocellular carcinoma and triple negative breast cancer. Fzd7 plays an important role in stem cell biology and cancer development and progression. In addition, it has been demonstrated that siRNA knockdown of Fzd7, the anti-Fzd7 antibody or the extracellular peptide of Fzd7 (soluble Fzd7 peptide) displayed anti-cancer activity in vitro and in vivo mainly due to the inhibition of the canonical Wnt signaling pathway. Furthermore, pharmacological inhibition of Fzd7 by small interfering peptides or a small molecule inhibitor suppressed β-catenin-dependent tumor cell growth. Therefore, targeted inhibition of Fzd7 represents a rational and promising new approach for cancer therapy.
    Full-text · Article · Dec 2011 · Cellular Signalling
Show more