Expression and Distribution of Cystic Fibrosis Transmembrane Conductance Regulator in Neurons of the Human Brain

Department of Pathology, School of Basic Medical Sciences, Peking (Beijing) University Health Science Center, Beijing, China.
Journal of Histochemistry and Cytochemistry (Impact Factor: 1.96). 09/2009; 57(12):1113-20. DOI: 10.1369/jhc.2009.953455
Source: PubMed


The importance of the molecule cystic fibrosis transmembrane conductance regulator (CFTR) is reflected in the many physiological functions it regulates. It is known to be present in epithelial cells of the lungs, pancreas, sweat glands, gut, and other tissues, and gene mutations of CFTR cause cystic fibrosis (CF). We studied the expression and distribution of CFTR in the human brain with reverse transcriptase polymerase chain reaction, in situ hybridization, and immunohistochemistry. This study demonstrates widespread and abundant expression of CFTR in neurons of the human brain. Techniques of double labeling and evaluation of consecutive tissue sections localized CFTR protein and mRNA signals to the cytoplasm of neurons in all regions of the brain studied, but not to glial cells. The presence of CFTR in central neurons not only provides a possible explanation for the neural symptoms observed in CF patients, but also may lead to a better understanding of the functions of CFTR in the human brain.

  • Source
    • "We also noted that in the developing cerebral cortex, the VZ and CP were faintly labeled at early stages but both became progressively more intensevely labeled during development, suggesting that CFTR may be required for neuronal maturation and differentiation , as well as in ependymal cell maturation in the neuroepithelium. The intracellular pattern of CFTR expression we observed was similar to previous descriptions in adult human and rodent nervous system (Mulberg et al. 1998; Guo et al. 2009a; 2009b). At early stages in control cases, CFTR was predominantly observed around the nucleus. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein has recently been shown to be expressed in the human adult central nervous system (CNS). As CFTR expression has also been documented during embryonic development in several organs, such as the respiratory tract, the intestine and the male reproductive system, suggesting a possible role during development we decided to investigate the expression of CFTR in the human developing CNS. In addition, as some, although rare, neurological symptoms have been reported in patients with CF, we compared the expression of normal and mutated CFTR at several fetal stages. Immunohistochemistry was performed on brain and spinal cord samples of foetuses between 13 and 40 weeks of gestation and compared with five patients with cystic fibrosis (CF) of similar ages. We showed in this study that CFTR is only expressed in neurons and has an early and widespread distribution during development. Although we did not observe any cerebral abnormality in patients with CF, we observed a slight delay in the maturation of several brain structures. We also observed different expression and localization of CFTR depending on the brain structure or the cell maturation stage. Our findings, along with a literature review on the neurological phenotypes of patients with CF, suggest that this gene may play previously unsuspected roles in neuronal maturation or function.
    Full-text · Article · Jul 2014 · Acta histochemica et cytochemica official journal of the Japan Society of Histochemistry and Cytochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cystic fibrosis (CF) is the most common autosomal recessive disease in euro-descendents with an estimated incidence in 1 case in each 2,500 live births. CF is a multisystem disease, characterized mainly by progressive obstructive pulmonary disease, pancreatic insufficiency, and high electrolytes levels of electrolytes in sweat. The gene responsible for CF, named CFTR, is located on chromosome 7 and is organized into 27 exons. Up to date, more than 1,600 sequence variations have been reported in CFTR, and the F508del mutation is the most frequent worldwide. In Brazil, F508del frequency is lower than in other countries probably due to population admixture. This indicates that CFTR locus can be more heterogeneous. Therefore, CF molecular diagnosis can be very hard and new methods for mutation scanning would be useful to improve this task. The aim of this work was to identify allelic variants in CFTR coding regions of CF patients from South Brazil through high-resolution melting (HRM) analysis and DNA sequencing. Eleven exons and adjacent regions were analyzed by HRM, and 10 different sequence variants were identified (R75Q, R334W, F508del, 1717-1G>A, G542X, R553X, 1812-1G>A, A561E, G576A and N1303K). A novel variant (L453X) was detected in CFTR gene through exon 9 DNA sequencing, besides these known mutations. The polyvariant (TG)nTm region at intron 8 was also analyzed and 5T allelic variant was not present in any allele. The strategy described above was able to identify 30 out of 52 CF mutant alleles (57.7%) in 26 patients. Genotype of 7 (26.9%) patients was defined and mutation in one mutant allele was identified in 16 (61.6%) patients. Therefore, application of HRM analysis was efficient to detect sequence variations in specific regions of CFTR gene in this sample population. The methodology can be expanded to cover the whole coding region of this gene. Subsequently, this methodology can be adapted to be applied in the molecular diagnosis of symptomatic CF cases as well as samples from neonatal screening programs. A fibrose cística (FC) é a doença autossômica recessiva mais comum em euro-descendentes, com uma incidência estimada de 1 caso a cada 2.500 nascimentos. A FC é uma doença multissistêmica, caracterizada principalmente por doença pulmonar progressiva, disfunção pancreática exócrina e concentração elevada de eletrólitos no suor. O gene associado a essa doença é denominado CFTR e se localiza no cromossomo 7, sendo dividido em 27 éxons. Até o momento, mais de 1.600 variações de sequência foram identificadas no gene CFTR, sendo que a mutação F508del é a mais frequente entre os pacientes de FC. No Brasil, a frequência da F508del não é tão elevada, devido provavelmente à miscigenação e, consequentemente, o locus CFTR apresenta maior heterogeneidade alélica. Este fato dificulta o diagnóstico molecular dos pacientes com FC e metodologias de varredura para a detecção de mutações precisam ser utilizadas. O objetivo deste trabalho foi identificar alterações em regiões codificantes do gene CFTR em pacientes com FC provenientes da região sul do Brasil, através de análise de dissociação em alta resolução (HRM) e sequenciamento de DNA. Onze éxons e regiões adjacentes foram analisados por HRM e 10 alterações de sequência diferentes foram detectadas (R75Q, R334W, F508del, 1717-1G>A, G542X, R553X, 1812-1G>A, A561E, G576A e N1303K). Além disso, uma alteração denominada L453X, ainda não descrita na literatura, foi identificada em um paciente de FC através do sequenciamento do éxon 9 do CFTR. A região polimórfica (TG)nTm presente no íntron 8 foi caracterizada e nenhum paciente apresentou a variante alélica contendo 5T. Através da estratégia utilizada, 30 dos 52 alelos mutantes (57,7%) nos 26 pacientes incluídos nesse estudo foram identificados. O genótipo de 7 (26,9%) pacientes foi definido e alteração em um dos alelos mutantes foi identificada em 16 (61,6%) pacientes. Portanto, a aplicação do método HRM foi eficaz para identificação de variações de sequência em regiões do gene CFTR na amostra estudada. O método pode ser expandido para análise de toda a região codificante desse gene e, posteriormente, ser usado como metodologia de escolha para diagnóstico molecular de pacientes com suspeita clínica de FC, seja em casos sintomáticos como em programas de triagem neonatal.
    Preview · Article · Jan 2010
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sterility due to bilateral destruction in utero or in early infancy resulting in congenital absence of the vas deferens is the rule in male patients with cystic fibrosis. To understand the developmental pattern of this anomaly, the microscopic morphology of the male excretory system was analyzed during development and the expression of the cystic fibrosis transmembrane conductance regulator protein was explored by immunohistochemistry. We observed that cystic fibrosis fetuses had no excretory ducts agenesis or obstruction until 22 weeks of gestation. However, a focal inflammatory pattern and mucinous plugs in the oldest cystic fibrosis case suggested a disruptive mechanism. Immunolabeling of cytoplasmic epithelial cystic fibrosis transmembrane conductance regulator protein was demonstrated in all cystic fibrosis and control cases with a similar pattern of expression of the protein between age-matched controls and cystic fibrosis cases. At midgestation, an apical intensification appeared in both cystic fibrosis and control cases and was stable during the remainder of fetal life. No gradient of intensity could be detected between the different segments of the excretory tract. These findings are different from those reported in adults. The absence of any morphologic anomaly until 22 weeks of gestation, the focal destruction of the epithelial structures during the second trimester, and the chronological pattern of expression of cystic fibrosis transmembrane conductance regulator are of interest for a better understanding of the pathophysiology of this disease.
    No preview · Article · Aug 2011 · Human pathology
Show more