Article

Basic mechanisms for recognition and transport of synaptic cargos

Department of Neuroscience, Erasmus Medical Center, 3015GE, Rotterdam, The Netherlands.
Molecular Brain (Impact Factor: 4.9). 09/2009; 2(1):25. DOI: 10.1186/1756-6606-2-25
Source: PubMed

ABSTRACT

Synaptic cargo trafficking is essential for synapse formation, function and plasticity. In order to transport synaptic cargo, such as synaptic vesicle precursors, mitochondria, neurotransmitter receptors and signaling proteins to their site of action, neurons make use of molecular motor proteins. These motors operate on the microtubule and actin cytoskeleton and are highly regulated so that different cargos can be transported to distinct synaptic specializations at both pre- and post-synaptic sites. How synaptic cargos achieve specificity, directionality and timing of transport is a developing area of investigation. Recent studies demonstrate that the docking of motors to their cargos is a key control point. Moreover, precise spatial and temporal regulation of motor-cargo interactions is important for transport specificity and cargo recruitment. Local signaling pathways Ca2+ influx, CaMKII signaling and Rab GTPase activity regulate motor activity and cargo release at synaptic locations. We discuss here how different motors recognize their synaptic cargo and how motor-cargo interactions are regulated by neuronal activity.

Download full-text

Full-text

Available from: Max Schlager
  • Source
    • "Together with MAP2 and MAP4 [4] [5], MAPT belongs to the family of microtubuleassociated proteins, which stabilize microtubule tracks [6] [7] [8]. Microtubules represent the rails for neurotransmitter vesicle trafficking towards the synapses [9] and for insulin granules maturation, processing, and prepriming them for exocytosis [10] [11] [12] [13] [14]. MAPT is present not only in the central nervous system (CNS) but also in pancreas, breast, prostate, and renal tubules [15] [16] (http://www.proteinatlas.org/). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural and biochemical alterations of the microtubule-associated protein tau (MAPT) are associated with degenerative disorders referred to as tauopathies. We have previously shown that MAPT is present in human islets of Langerhans, human insulinomas, and pancreatic beta-cell line models, with biophysical similarities to the pathological MAPT in the brain. Here, we further studied MAPT in pancreatic endocrine tissue to better understand the mechanisms that lead to functional dysregulation of pancreatic beta cells. We found upregulation of MAPT protein expression in human insulinomas when compared to human pancreatic islets of Langerhans and an imbalance between MAPT isoforms in insulinomas tissue. We cloned one 3-repeat domain MAPT and transduced this into a beta-cell derived rodent cell line Rin-5F. Proliferation experiments showed higher growth rates and metabolic activities of cells overexpressing MAPT protein. We observed that a MAPT overexpressing cell line demonstrates altered insulin transcription, translation, and insulin secretion rates. We found the relative insulin secretion rates were significantly decreased in a MAPT overexpressing cell line and these findings could be confirmed using partial MAPT knock-down cell lines. Our findings support that MAPT may play an important role in insulin granule trafficking and indicate the importance of balanced MAPT phosphorylation and dephosphorylation for adequate insulin release.
    Full-text · Article · Jan 2016 · Journal of Diabetes Research
  • Source
    • "The balance between G-actin and F-actin participates in actin dynamics, which play an important role in growth cone morphology and motility, in neurite outgrowth and in axonal guidance [1]. In mature neurons, actin contributes to the formation of synapses [2], dendritic spine dynamics [3] [4] and receptor trafficking and anchorage [5] [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) regulate actin dynamics by phosphorylating cofilin. In this review, we outline studies that have shown an involvement of LIMKs in neuronal function and we detail some of the pathways and molecular mechanisms involving LIMKs in neurodevelop-ment and synaptic plasticity. We also review the involvement of LIMKs in neuronal diseases and emphasize the differences in the regulation of LIMKs expression and mode of action. We finally present the existence of a cofilin-independent pathway also involved in neuronal function. A better understanding of the differences between both LIMKs and of the precise molecular mechanisms involved in their mode of action and regulation is now required to improve our understanding of the physiopathology of the neuronal diseases associated with LIMKs.
    Full-text · Article · Nov 2015 · FEBS Letters
  • Source
    • "Dysregulation of DCV transport and fusion is associated with cognitive and post-traumatic stress disorders (Sadakata et al., 2007b; Meyer-Lindenberg et al., 2011; Sah and Geracioti, 2013). DCVs bud off at the Golgi network (Kim et al., 2006) and are transported via microtubule-based motor proteins (Hirokawa et al., 2009; Schlager and Hoogenraad, 2009). High-frequency firing facilitates DCV fusion and the resultant calcium influx triggers SNARE complex-dependent DCV secretion (Bartfai et al., 1988; Hartmann et al., 2001; de Wit et al., 2009; van de Bospoort et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropeptides released from dense-core vesicles (DCVs) modulate neuronal activity, but the molecules driving DCV secretion in mammalian neurons are largely unknown. We studied the role of calcium-activator protein for secretion (CAPS) proteins in neuronal DCV secretion at single vesicle resolution. Endogenous CAPS-1 co-localized with synaptic markers but was not enriched at every synapse. Deletion of CAPS-1 and CAPS-2 did not affect DCV biogenesis, loading, transport or docking, but DCV secretion was reduced by 70% in CAPS-1/CAPS-2 double null mutant (DKO) neurons and remaining fusion events required prolonged stimulation. CAPS deletion specifically reduced secretion of stationary DCVs. CAPS-1-EYFP expression in DKO neurons restored DCV secretion, but CAPS-1-EYFP and DCVs rarely traveled together. Synaptic localization of CAPS-1-EYFP in DKO neurons was calcium dependent and DCV fusion probability correlated with synaptic CAPS-1-EYFP expression. These data indicate that CAPS-1 promotes fusion competence of immobile (tethered) DCVs in presynaptic terminals and that CAPS-1 localization to DCVs is probably not essential for this role. DOI: http://dx.doi.org/10.7554/eLife.05438.001
    Full-text · Article · Feb 2015 · eLife Sciences
Show more