Kinetic and motor functions mediated by distinct regions of the regulatory light chain of smooth muscle myosin

Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 08/2009; 1794(11):1599-605. DOI: 10.1016/j.bbapap.2009.07.009
Source: PubMed


To understand the importance of selected regions of the regulatory light chain (RLC) for phosphorylation-dependent regulation of smooth muscle myosin (SMM), we expressed three heavy meromyosins (HMMs) containing the following RLC mutants; K12E in a critical region of the phosphorylation domain, GTDP(95-98)/AAAA in the central hinge, and R160C a putative binding residue for phosphorylated S19. Single-turnover actin-activated Mg(2+)-ATPase (V(max) and K(ATPase)) and in vitro actin-sliding velocities were examined for both unphosphorylated (up-) and phosphorylated (p-) states. Turnover rates for the up-state (0.007-0.030 s(-1)) and velocities (no motion) for all constructs were not significantly different from the up-wild type (WT) indicating that they were completely turned off. The apparent binding constants for actin in the presence of ATP (K(ATPase)) were too weak to measure as expected for fully regulated constructs. For p-HMM containing GTDP/AAAA, we found that both ATPase and motility were normal. The data suggest that the native sequence in the central hinge between the two lobes of the RLC is not required for turning the HMM off and on both kinetically and mechanically. For p-HMM containing R160C, all parameters were normal, suggesting that R160C is not involved in coordination of the phosphorylated S19. For p-HMM containing K12E, the V(max) was 64% and the actin-sliding velocity was approximately 50% of WT, suggesting that K12 is an important residue for the ability to sense or to promote the conformational changes required for kinetic and mechanical activation.

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the regulatory importance of interactions between regulatory light chain (RLC), essential light chain (ELC), and adjacent heavy chain (HC) in the regulatory domain of smooth muscle heavy meromyosin. After mutating the HC, RLC, and/or ELC to disrupt their predicted interactions (using scallop myosin coordinates), we measured basal ATPase, Vmax, and KATPase of actin-activated ATPase, actin-sliding velocities, rigor binding to actin, and kinetics of ATP binding and ADP release. If unphosphorylated, all mutants were similar to wild type showing turned-off behaviors. In contrast, if phosphorylated, mutation of RLC residues smM129Q and smG130C in the F-G helix linker, which interact with the ELC (Ca2+ binding in scallop), was sufficient to abolish motility and diminish ATPase activity, without altering other parameters. ELC mutations within this interacting ELC loop (smR20M and smK25A) were normal, but smM129Q/G130C-R20M or -K25A showed a partially recovered phenotype suggesting that interaction between the RLC and ELC is important. A molecular dynamics study suggested that breaking the RLC/ELC interface leads to increased flexibility at the interface and ELC-binding site of the HC. We hypothesize that this leads to hampered activation by allowing a pre-existing equilibrium between activated and inhibited structural distributions (Vileno, B., Chamoun, J., Liang, H., Brewer, P., Haldeman, B. D., Facemyer, K. C., Salzameda, B., Song, L., Li, H. C., Cremo, C. R., and Fajer, P. G. (2011) Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 108, 8218–8223) to be biased strongly toward the inhibited distribution even when the RLC is phosphorylated. We propose that an important structural function of RLC phosphorylation is to promote or assist in the maintenance of an intact RLC/ELC interface. If the RLC/ELC interface is broken, the off-state structures are no longer destabilized by phosphorylation.
    Preview · Article · May 2012 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: This chapter provides an overview of how the mechanism of phosphorylation-dependent regulation of smooth muscle was deduced. It describes how electron microscopic studies of the inhibited state provided a structural context to interpret over a decade of mutational studies on various regions of the smooth muscle myosin molecule (motor domain, light chains, coiled-coil rod). Unique features of the smooth muscle myosin molecule and of smooth muscle are highlighted, as well as the role that isoforms play in the plasticity of smooth muscles. Diseases caused by mutations in smooth muscle myosin are discussed.
    No preview · Article · Dec 2012