Suppressive effect of dexamethasone on TIMP-1 production involves murine osteoblastic MC3T3-E1 cell apoptosis

Institute of Endocrinology and Metabolism, Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
Amino Acids (Impact Factor: 3.29). 08/2009; 38(4):1145-53. DOI: 10.1007/s00726-009-0325-9
Source: PubMed


High dose glucocorticoid (GC) treatment induces osteoporosis partly via increasing osteoblast apoptosis. However, the mechanism of GC-induced apoptosis has not been fully elucidated. Osteoblast-derived tissue inhibitor of metalloproteinase-1 (TIMP-1) was recently reported to be involved in bone metabolism. Our previous study demonstrated that TIMP-1 suppressed apoptosis of the mouse bone marrow stromal cell line MBA-1 (pre-osteoblast) induced by serum deprivation. Therefore, we tested the effect of the GC dexamethasone (Dex) on TIMP-1 production in murine osteoblastic MC3T3-E1 cells and further determined whether this action is associated with Dex-induced osteoblast apoptosis. Dex decreased TIMP-1 production in MC3T3-E1 cells, and this effect was blocked by the glucocorticoid receptor (GR) antagonists, RU486 and RU40555. Recombinant TIMP-1 protein reduced caspase-3 activation and apoptosis induced by Dex in MC3T3-E1 cells. In addition, the pro-apoptotic effect of the Dex was augmented by suppression of TIMP-1 with siRNA. Furthermore, mutant TIMP-1, which has no inhibitory effects on MMPs, yet protects MC3T3-E1 cells against Dex-induced apoptosis. Our study demonstrates that Dex suppresses TIMP-1 production in osteoblasts through GR, and this effect is associated with its induction of osteoblast apoptosis. The anti-apoptotic action of TIMP-1 is independent of its inhibitory effects on MMPs activities. The decrease in TIMP-1 production caused by Dex may contribute to the mechanisms of Dex-induced bone loss.

5 Reads
  • Source
    • "The effects of GCs are primarily considered to be mediated by cytosolic glucocorticoid receptor (GR) activation [5], but the events leading from the activated GR to growth arrest are not yet elucidated completely. Previous studies have reported that GCs treatment induce osteoblast apoptosis by enhancing the expression of BH3-only protein Bim [6], down-regulation of TIMP-1 [7], and activation of glycogen synthase kinase 3 beta (GSK-3β) [8]. But to the best of our knowledge, there is no direct relationship between GR and these proteins, such as transcription-control or protein-protein interaction. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids play a pivotal role in the proliferation of osteoblasts, but the underlying mechanism has not been successfully elucidated. In this report, we have investigated the molecular mechanism which elucidates the inhibitory effects of dexamethasone on murine osteoblastic MC3T3-E1 cells. It was found that the inhibitory effects were largely attributed to apoptosis and G1 phase arrest. Both the cell cycle arrest and apoptosis were dependent on glucocorticoid receptor (GR), as they were abolished by GR blocker RU486 pre-treatment and GR interference. G1 phase arrest and apoptosis were accompanied with a p53-dependent up-regulation of p21 and pro-apoptotic genes NOXA and PUMA. We also proved that dexamethasone can't induce apoptosis and cell cycle arrest when p53 was inhibited by p53 RNA interference. These data demonstrate that proliferation of MC3T3-E1 cell was significantly and directly inhibited by dexamethasone treatment via aberrant GR activation and subsequently P53 activation.
    Preview · Article · Jun 2012 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies demonstrated that taurine inhibits osteoblastic differentiation of vascular smooth muscular cells (VSMCs) via the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, but the underlying mechanism is not elucidated. The tyrosine kinase receptor Axl and its ligand growth arrest-specific protein 6 (Gas6) are expressed in VSMCs. Axl/Gas6 signaling system is known to inhibit VSMCs calcification. We herein showed that taurine partially restored Axl and Gas6 expression in beta-glycerophosphate (beta-GP)-induced VSMC calcification model. Taurine also induced activation of ERK, but not other two MAPKs including c-jun N-terminal Kinase (JNK) and p38 in VSMCs. Either knockdown of the taurine transporter (TAUT) or treatment with the ERK-specific inhibitor PD98059 blocked the activation of ERK by taurine and abolished taurine-induced Axl/Gas6 expression and calcium deposition reduction in beta-GP-induced VSMC calcification model. These results demonstrate for the first time that taurine stimulates expression of Axl and Gas6 via TAUT/ERK signaling pathway in beta-GP-induced VSMC calcification model.
    No preview · Article · Jul 2010 · Amino Acids
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arterial calcification is positively associated with visceral adiposity, but the mechanisms remain unclear. Omentin is a novel adipokine that is selectively expressed in visceral adipose tissue. The levels of circulating omentin are decreased in obesity, and they correlate negatively with waist circumference. This study investigated the effects of omentin on the osteoblastic differentiation of calcifying vascular smooth muscle cells (CVSMCs), a subpopulation of aortic smooth muscle cells putatively involved in vascular calcification. Omentin inhibited mRNA expression of alkaline phosphatase (ALP) and osteocalcin; omentin also suppressed ALP activity, osteocalcin protein production, and the matrix mineralization. Furthermore, omentin selectively activated phosphatidylinositol 3-kinase (PI3K) downstream effector Akt. Moreover, inhibition of PI3K or Akt activation reversed the effects of omentin on ALP activity and the matrix mineralization. The present results demonstrate for the first time that omentin can inhibit osteoblastic differentiation of CVSMCs via PI3K/Akt signaling pathway, suggesting that the lower omentin levels in obese (specially visceral obese) subjects contribute to the development of arterial calcification, and omentin plays a protective role against arterial calcification.
    No preview · Article · Nov 2010 · Amino Acids
Show more