Article

Caveolin-1 promotes resistance to chemotherapy-induced apoptosis in Ewing's sarcoma cells by modulating PKCα phosphorylation

Institut d'Investigació Biomédica de Bellvitge, Centre d'Oncología Molecular, L'Hospitalet de Llobregat, Barcelona, Spain.
International Journal of Cancer (Impact Factor: 5.09). 08/2009; 126(2):426-36. DOI: 10.1002/ijc.24754
Source: PubMed

ABSTRACT

Caveolin-1 (CAV1) has been implicated in the regulation of several signaling pathways and in oncogenesis. Previously, we identified CAV1 as a key determinant of the oncogenic phenotype and tumorigenic activity of cells from tumors of the Ewing's Sarcoma Family (ESFT). However, the possible CAV1 involvement in the chemotherapy resistance commonly presented by an ESFT subset has not been established to date. This report shows that CAV1 expression determines the sensitivity of ESFT cells to clinically relevant chemotherapeutic agents. Analyses of endogenous CAV1 levels in several ESFT cells and ectopic CAV1 expression into ESFT cells expressing low endogenous CAV1 showed that the higher the CAV1 levels, the greater their resistance to drug treatment. Moreover, results from antisense- and shRNA-mediated gene expression knockdown and protein re-expression experiments demonstrated that CAV1 increases the resistance of ESFT cells to doxorubicin (Dox)- and cisplatin (Cp)-induced apoptosis by a mechanism involving the activating phosphorylation of PKCalpha. CAV1 knockdown in ESFT cells led to decreased phospho(Thr(638))-PKCalpha levels and a concomitant sensitization to apoptosis, which were reversed by CAV1 re-expression. These results were recapitulated by PKCalpha knockdown and re-expression in ESFT cells in which CAV1 was previously knocked down, thus demonstrating that phospho(Thr(638))-PKCalpha acts downstream of CAV1 to determine the sensitivity of ESFT cells to chemotherapeutic drugs. These data, along with the finding that CAV1 and phospho(Thr(638))-PKCalpha are co-expressed in approximately 45% of ESFT specimens tested, imply that targeting CAV1 and/or PKCalpha may allow the development of new molecular therapeutic strategies to improve the treatment outcome for patients with ESFT.

Download full-text

Full-text

Available from: Caitlin Maccarthy
  • Source
    • "Comparative analysis between radiation and chemotherapeutics revealed differential involvement of caveolin-1 in cancer cell death. Here, depletion of caveolin-1 increased the sensitivity of Ewing carcinoma and breast cancer cells to different kinds of chemotherapeutics [158] [159]. Interestingly, APPL1 and APPL2 also regulate radiation survival [157]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Interlocking gene mutations, epigenetic alterations and microenvironmental features perpetuate tumor development, growth, infiltration and spread. Consequently, intrinsic and acquired therapy resistance arises and presents one of the major goals to solve in oncologic research today. Among the myriad of microenvironmental factors impacting on cancer cell resistance, cell adhesion to the extracellular matrix (ECM) has recently been identified as key determinant. Despite the differentiation between cell adhesion-mediated drug resistance (CAMDR) and cell adhesion-mediated radioresistance (CAMRR), the underlying mechanisms share great overlap in integrin and focal adhesion hub signaling and differ further downstream in the complexity of signaling networks between tumor entities. Intriguingly, cell adhesion to ECM is per se also essential for cancer cells similar to their normal counterparts. However, based on the overexpression of focal adhesion hub signaling receptors and proteins and a distinct addiction to particular integrin receptors, targeting of focal adhesion proteins has been shown to potently sensitize cancer cells to different treatment regimes including radiotherapy, chemotherapy and novel molecular therapeutics. In this review, we will give insight into the role of integrins in carcinogenesis, tumor progression and metastasis. Additionally, literature and data about the function of focal adhesion molecules including integrins, integrin-associated proteins and growth factor receptors in tumor cell resistance to radio- and chemotherapy will be elucidated and discussed.
    Full-text · Article · Aug 2014 · Seminars in Cancer Biology
  • Source
    • "Additionally, it promotes tumor growth in mouse models, and is necessary for tumorigenesis in Ewing's sarcoma [20]. Recently, the gene target was shown to have some involvement in the chemoresistance of ES cells [138]. Because CAV1 exists in such high levels in ES, compared to the low amounts found in normal cells, it would be a suitable and efficient target for therapy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ewing's sarcoma tumors are associated with chromosomal translocation between the EWS gene and the ETS transcription factor gene. These unique target sequences provide opportunity for RNA interference(i)-based therapy. A summary of RNAi mechanism and therapeutically designed products including siRNA, shRNA and bi-shRNA are described. Comparison is made between each of these approaches. Systemic RNAi-based therapy, however, requires protected delivery to the Ewing's sarcoma tumor site for activity. Delivery systems which have been most effective in preclinical and clinical testing are reviewed, followed by preclinical assessment of various silencing strategies with demonstration of effectiveness to EWS/FLI-1 target sequences. It is concluded that RNAi-based therapeutics may have testable and achievable activity in management of Ewing's sarcoma.
    Preview · Article · Mar 2012
  • Source
    • "These results were recapitulated by PKCalpha knockdown and re-expression in ESFT cells in which CAV1 was previously knocked down, thus demonstrating that phospho-PKCalpha acts downstream of CAV1 to determine the sensitivity of ESFT cells to chemotherapeutic drugs. These data, along with the finding that CAV1 and phospho-PKCalpha are co-expressed in approximately 45% of ESFT specimens tested [26], implied that targeting CAV1 and/or PKCalpha may allow the development of new molecular therapeutic strategies to improve the treatment outcome for patients with ESFT. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sarcomas represent a heterogeneous group of tumors with a complex and difficult reproducible classification. Their pathogenesis is poorly understood and there are few effective treatment options for advanced disease. Caveolin-1 is a multifunctional scaffolding protein with multiple binding partners that regulates multiple cancer-associated processes including cellular transformation, tumor growth, cell death and survival, multidrug resistance, angiogenesis, cell migration and metastasis. However, ambiguous roles have been ascribed to caveolin-1 in signal transduction and cancer, including sarcomas. In particular, evidence indicating that caveolin-1 function is cell context dependent has been repeatedly reported. Caveolin-1 appears to act as a tumor suppressor protein at early stages of cancer progression. In contrast, a growing body of evidence indicates that caveolin-1 is up-regulated in several multidrug-resistant and metastatic cancer cell lines and human tumor specimens. This review is focused on the role of caveolin-1 in several soft tissue and bone sarcomas and discusses the use of this protein as a potential diagnostic and prognostic marker and as a therapeutic target.
    Full-text · Article · Apr 2011 · Oncotarget
Show more