The ankyrin repeat gene family in rice: Genome-wide identification, classification and expression profiling

National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China.
Plant Molecular Biology (Impact Factor: 4.26). 08/2009; 71(3):207-26. DOI: 10.1007/s11103-009-9518-6
Source: PubMed


Ankyrin repeat (ANK) containing proteins comprise a large protein family. Although many members of this family have been implicated in plant growth, development and signal transduction, only a few ANK genes have been reported in rice. In this study, we analyzed the structures, phylogenetic relationship, genome localizations and expression profiles of 175 ankyrin repeat genes identified in rice (OsANK). Domain composition analysis suggested OsANK proteins can be classified into ten subfamilies. Chromosomal localizations of OsANK genes indicated nine segmental duplication events involving 17 genes and 65 OsANK genes were involved in tandem duplications. The expression profiles of 158 OsANK genes were analyzed in 24 tissues covering the whole life cycle of two rice genotypes, Minghui 63 and Zhenshan 97. Sixteen genes showed preferential expression in given tissues compared to all the other tissues in Minghui 63 and Zhenshan 97. Nine genes were preferentially expressed in stamen of 1 day before flowering, suggesting that these genes may play important roles in pollination and fertilization. Expression data of OsANK genes were also obtained with tissues of seedlings subjected to three phytohormone (NAA, GA3 and KT) and light/dark treatments. Eighteen genes showed differential expression with at least one phytohormone treatment while under light/dark treatments, 13 OsANK genes showed differential expression. Our data provided a very useful reference for cloning and functional analysis of members of this gene family in rice.

Download full-text


Available from: Huihui Yu
  • Source
    • "In a similar way, with 149 nucleotide-binding site (NBS-LRR) and 223 receptor-like kinases (LRR-RLKs), LRR repeats were identified as one of the largest gene family in Arabidopsis (Meyers et al., 1999; Gou et al., 2010). The number of ANK proteins has been found to be 175 in rice and 105 in the Arabidopsis thaliana (Becerra et al., 2004; Huang et al., 2009). Another large gene family with 237 representatives in Arabidopsis and closely 200 in Oryza sativa were found to be potential WD40 repeat gene family members (Nocker and Ludwig, 2003; Ouyang et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein–protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants.
    Full-text · Article · Jan 2016 · Frontiers in Plant Science
  • Source
    • "In higher plants, ANK proteins constitute a large multi-gene family. For example, 175 and 105 ANK repeat genes have been found in rice and the Arabidopsis genome, respectively [12], [13]. However, the function and the underlying mechanism of most of the genes of the ANK family of proteins remains poorly understood. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ankyrin repeat-containing protein gene OsPIANK1 (AK068021) in rice (Oryza sativa L.) was previously shown to be upregulated following infection with the rice leaf blight pathogen Xanthomonas oryzae pv oryzae (Xoo). In this study, we further characterized the role of OsPIANK1 in basal defense against Magnaporthe oryzae (M.oryzae) by 5' deletion analysis of its promoter and overexpression of the gene. The promoter of OsPIANK1 with 1,985 bps in length was sufficient to induce the OsPIANK1 response to inoculation with M.oryzae and to exogenous application of methyl jasmonate (MeJA) or salicylic acid (SA), but not to exogenous application of abscisic acid (ABA). A TCA-element present in the region between -563 bp and -249 bp may be responsible for the OsPIANK1 response to both M.oryzae infection and exogenous SA application. The JERE box, CGTCA-box, and two MYB binding sites locating in the region between -1985 bp and -907 bp may be responsible for the response of OsPIANK1 to exogenous MeJA. OsPIANK1 expression was upregulated after inoculation with M.oryzae and after treatment with exogenous SA and MeJA. Overexpression of OsPIANK1 enhanced resistance of rice to M.oryzae, although it did not confer complete resistance. The enhanced resistance to M.oryzae was accompanied by enhanced transcriptional expression of SA- and JA-dependent genes such as NH1, WKRY13, PAL, AOS2, PR1b, and PR5. This evidence suggests that OsPIANK1 acted as a positive regulator in rice basal defense mediated by SA- and JA-signaling pathways.
    Full-text · Article · Mar 2013 · PLoS ONE
  • Source
    • "In Oryza sativa, the other ANK C3HC4-type RF proteins have been named XBOS [25]. To date, studies demonstrate that the transcription levels of XB3, XBOS31, XBOS32 and XBOS35 can be regulated by hormones and stress [26], [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ankyrin repeat (ANK) C3HC4-type RING finger (RF) genes comprise a large family in plants and play important roles in various physiological processes of plant life. In this study, we identified 187 ANK C3HC4-type RF proteins from 29 species with complete genomes and named the ANK C3HC4-type RF proteins the XB3-like proteins because they are structurally related to the rice (Oryza sativa) XB3. A phylogenetic relationship analysis suggested that the XB3-like genes originated from ferns, and the encoded proteins fell into 3 major groups. Among these groups, we found that the spacing between the metal ligand position 6 and 7, and the conserved residues, which was in addition to the metal ligand amino acids, in the C3HC4-type RF were different. Using a wide range of protein structural analyses, protein models were established, and all XB3-like proteins were found to contain two to seven ANKs and a C3HC4-type RF. The microarray data for the XB3-like genes of Arabidopsis, Oryza sative, Zea mays and Glycine max revealed that the expression of XB3-like genes was in different tissues and during different life stages. The preferential expression of XB3-like genes in specified tissues and the response to phytohormone and abiotic stress treatments of Arabidopsis and Zea mays not only confirmed the microarray analysis data but also demonstrated that the XB3-like proteins play roles in plant growth and development as well as in stress responses. Our data provide a very useful reference for the identification and functional analysis of members of this gene family and also provide a new method for the genome-wide analysis of gene families.
    Preview · Article · Mar 2013 · PLoS ONE
Show more