To explore the effect of thickness on the fracture strength and failure modes of zirconia crowns, four crown models with different thickness (1.2 mm, 1.0 mm, 0.8 mm, 0.6 mm) with the same shape were designed by Dental Designer software in CAD/CAM system. They were manufactured to 40 zirconia crowns by CAM carving machine. The fracture strength and the failure modes of each crown was measured,
... [Show full abstract] while porcelain fused to metal (PFM) crowns as control. The average fracture strength of different zirconia crowns were recorded as below: 1308.38 ± 111.38 N (Group 0.6 mm), 1841.60 ± 68.21 N (Group 0.8 mm), 2429.88 ± 315.03 N (Group 1.0 mm), 3068.31 ± 233.88 N (Group 1.2 mm). There was no significant difference between Group 1.0 mm and Group 1.2 mm ( P > 0.05), and statistical significance was obtained among every other two groups ( P < 0.05). The failure modes of different thickness zirconium crowns are similar. There are more broken pieces from thicker crowns compared to thinner ones. It is concluded that the thickness can influence the fracture strength of zirconia crown. With the increase of the thickness, the fracture strength of the zirconium crowns also increases. We recommend zirconia crowns thicker than or at least 1.0 mm in dental practice.