Amino Acid Architecture That Influences dNTP Insertion Efficiency in Y-Family DNA Polymerase V of E. coli

Biology Department, Boston University, Boston, MA 02215, USA.
Journal of Molecular Biology (Impact Factor: 4.33). 08/2009; 392(2):270-82. DOI: 10.1016/j.jmb.2009.07.016
Source: PubMed


Y-family DNA polymerases (DNAPs) are often required in cells to synthesize past DNA-containing lesions, such as [+ta]-B[a]P-N(2)-dG, which is the major adduct of the potent mutagen/carcinogen benzo[a]pyrene. The current model for the non-mutagenic pathway in Escherichia coli involves DNAP IV inserting deoxycytidine triphosphate opposite [+ta]-B[a]P-N(2)-dG and DNAP V doing the next step(s), extension. We are investigating what structural differences in these related Y-family DNAPs dictate their functional differences. X-ray structures of Y-family DNAPs reveal a number of interesting features in the vicinity of the active site, including (1) the "roof-amino acid" (roof-aa), which is the amino acid that lies above the nucleobase of the deoxynucleotide triphosphate (dNTP) and is expected to play a role in dNTP insertion efficiency, and (2) a cluster of three amino acids, including the roof-aa, which anchors the base of a loop, whose detailed structure dictates several important mechanistic functions. Since no X-ray structures existed for UmuC (the polymerase subunit of DNAP V) or DNAP IV, we previously built molecular models. Herein, we test the accuracy of our UmuC(V) model by investigating how amino acid replacement mutants affect lesion bypass efficiency. A ssM13 vector containing a single [+ta]-B[a]P-N(2)-dG is transformed into E. coli carrying mutations at I38, which is the roof-aa in our UmuC(V) model, and output progeny vector yield is monitored as a measure of the relative efficiency of the non-mutagenic pathway. Findings show that (1) the roof-aa is almost certainly I38, whose beta-carbon branching R-group is key for optimal activity, and (2) I38/A39/V29 form a hydrophobic cluster that anchors an important mechanistic loop, aa29-39. In addition, bypass efficiency is significantly lower both for the I38A mutation of the roof-aa and for the adjacent A39T mutation; however, the I38A/A39T double mutant is almost as active as wild-type UmuC(V), which probably reflects the following. Y-family DNAPs fall into several classes with respect to the [roof-aa/next amino acid]: one class has [isoleucine/alanine] and includes UmuC(V) and DNAP eta (from many species), while the second class has [alanine (or serine)/threonine] and includes DNAP IV, DNAP kappa (from many species), and Dpo4. Thus, the high activity of the I38A/A39T double mutant probably arises because UmuC(V) was converted from the V/eta class to the IV/kappa class with respect to the [roof-aa/next amino acid]. Structural and mechanistic aspects of these two classes of Y-family DNAPs are discussed.

Download full-text


Available from: Edward L Loechler, Mar 27, 2015
  • Source
    • "In particular, efficiently generating both phosphoramidite monomers and triphosphate versions of a given modified base can be a significant synthetic challenge. The understanding of DNA polymerase specificity for synthetic nucleobases, discussed in this paper and elsewhere [28, 38, 124, 152, 153], is increasing; in the future, synthetic bases will continue to be used for a variety of purposes including probing proteins and small molecules that bind to DNA, optimizing unnatural bases for coding as a synthetic genetic code [154], synthesizing unnatural biopolymers [155], and improving the prospects of DNA as a nanomaterial and a drug target [156]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.
    Full-text · Article · Jun 2012 · Journal of nucleic acids
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA adducts, which block replicative DNA polymerases (DNAPs), are often bypassed by lesion-bypass DNAPs, which are mostly in the Y-Family. Y-Family DNAPs can do non-mutagenic or mutagenic dNTP insertion, and understanding this difference is important, because mutations transform normal into tumorigenic cells. Y-Family DNAP architecture that dictates mechanism, as revealed in structural and modeling studies, is considered. Steps from adduct blockage of replicative DNAPs, to bypass by a lesion-bypass DNAP, to resumption of synthesis by a replicative DNAP are described. Catalytic steps and protein conformational changes are considered. One adduct is analyzed in greater detail: the major benzo[a]pyrene adduct (B[a]P-N(2)-dG), which is bypassed non-mutagenically (dCTP insertion) by Y-family DNAPs in the IV/κ-class and mutagenically (dATP insertion) by V/η-class Y-Family DNAPs. Important architectural differences between IV/κ-class versus V/η-class DNAPs are discussed, including insights gained by analyzing ~400 sequences each for bacterial DNAPs IV and V, along with sequences from eukaryotic DNAPs kappa, eta and iota. The little finger domains of Y-Family DNAPs do not show sequence conservation; however, their structures are remarkably similar due to the presence of a core of hydrophobic amino acids, whose exact identity is less important than the hydrophobic amino acid spacing.
    Full-text · Article · Sep 2010 · Journal of nucleic acids

  • No preview · Article · Jan 2011 · Frontiers in Bioscience
Show more