The Role of Nucleoside Transporters in the Erythrocyte Disposition and Oral Absorption of Ribavirin in the Wild-Type and Equilibrative Nucleoside Transporter 1(-/-) Mice

Department of Pharmaceutics, University of Washington, Seattle, 98195, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.97). 08/2009; 331(1):287-96. DOI: 10.1124/jpet.109.153130
Source: PubMed


Ribavirin [1-(beta-d-ribofuranosyl)-1H-1,2,4-triazole-3-carboxamide] is the treatment of choice for hepatitis C virus infection. Ribavirin is a substrate of several nucleoside transporters, including the equilibrative nucleoside transporter (Ent) and the concentrative nucleoside transporter 2. To determine the role of Ent1 in ribavirin absorption and erythrocyte distribution, we examined its pharmacokinetics in Ent1-null mice. After intravenous administration, we found that the erythrocyte area under the curve (AUC(0-12 h)) was reduced 3.05-fold along with 2.63-fold reduction of erythrocyte versus plasma AUC ratio in the Ent1(-/-) mice, whereas there was no significant difference in the plasma AUC(0-12 h) between Ent1(+/+) and Ent1(-/-) mice. After 48 h, we found a similar fraction of ribavirin or total radioactivity excreted in the urine between the Ent1(+/+) and Ent1(-/-) mice. After oral administration of three different doses, 0.024, 0.24, and 6.1 mg/kg, we found that the dose-normalized plasma AUC(0-12 h) of ribavirin was 69.7 +/- 12.0, 20.7 +/- 1.5, and 18.3 +/- 2.7 min/l, respectively, in the Ent1(+/+) mice and 18.9 +/- 2.8, 13.0 +/- 0.5, and 12.2 +/- 1.0 min/l, respectively, in the Ent1(-/-) mice. It is interesting that at the highest dose, the dose-normalized plasma AUC(0-30 min), AUC(0-12 h), and C(max) in the Ent1(+/+) mice were decreased 4.0-, 3.8-, and 3.4-fold, respectively, compared with the lowest dose, suggesting absorption was saturated at the highest dose we used. The dose-normalized plasma AUC(0-12 h) was 3.7- and 1.5-fold lower at the lowest and the highest dose, respectively, in the Ent1(-/-) mice compared with those of the Ent1(+/+) mice. Our findings indicate that Ent1 plays a significant role in the oral absorption and erythrocyte distribution of ribavirin.

Download full-text


Available from: Doo-Sup Choi, May 09, 2015
  • Source
    • "The messenger ribonucleic acid (mRNA) for hENT1 is widely distributed in different tissues, including erythrocytes, liver, heart, spleen, kidney, lung, intestine, and brain (Endres et al., 2009; Griffith & Jarvis, 1996; Lum et al., 2000; Pennycooke et al., 2001). mENT1.2 "

    Full-text · Chapter · Apr 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
    Preview · Article · Mar 2010 · Pharmacological reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrimidine and purine nucleosides and their derivatives have critical functions and pharmacological applications in the brain. Nucleosides and nucleobases are precursors of nucleotides, which serve as the energy-rich currency of intermediary metabolism and as precursors of nucleic acids. Nucleosides (e.g., adenosine) and nucleotides are key signaling molecules that modulate brain function through interaction with cell surface receptors. Brain pathologies involving nucleosides and their metabolites range from epilepsy to neurodegenerative disorders and psychiatric conditions to cerebrovascular ischemia. Nucleoside analogs are used clinically in the treatment of brain cancer and viral infections. Nucleosides are hydrophilic molecules, and transportability across cell membranes via specialized nucleoside transporter (NT) proteins is a critical determinant of their metabolism and, for nucleoside drugs, their pharmacologic actions. In mammals, there are two types of nucleoside transport process: bidirectional equilibrative processes driven by chemical gradients, and unidirectional concentrative processes driven by sodium (and proton) electrochemical gradients. In mammals, these processes, both of which are present in brain, are mediated by members of two structurally unrelated membrane protein families (ENT and CNT, respectively). In this Chapter, we review current knowledge of cellular, physiological, pathophysiological and therapeutic aspects of ENT and CNT distribution and function in the mammalian brain, including studies with NT inhibitors and new research involving NT knockout and transgenic mice. We also describe recent progress in functional and molecular studies of ENT and CNT proteins, and summarize emerging evidence of other transporter families with demonstrated or potential roles in the transport of nucleosides and their derivatives in the brain.
    No preview · Article · Mar 2011 · Current Topics in Medicinal Chemistry
Show more