Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med

Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, India.
Journal of Cellular and Molecular Medicine (Impact Factor: 4.01). 08/2009; 13(11-12):4385-402. DOI: 10.1111/j.1582-4934.2009.00857.x
Source: PubMed


Mesenchymal stem cells (MSCs), adherent fibroblastoid cells, present in bone marrow and many other tissues can be easily isolated and expanded in vitro. They are capable of differentiating into different cell types such as osteoblasts, chondrocytes, adipocytes, cardiomyocytes, hepatocytes, endothelial cells and neuronal cells. Such immense plasticity coupled with their ability to modulate the activity of immune cells makes them attractive for stem cell-based therapy aimed at treating previously incurable disorders. Preclinical studies have reported successful use of MSCs for delivering therapeutic proteins and repairing defects in a variety of disease models. These studies highlighted the in vivo potential of MSCs and their ability to home to injury sites and modify the microenvironment by secreting paracrine factors to augment tissue repair. Their therapeutic applicability has been widened by genetic modification to enhance differentiation and tissue targeting, and use in tissue engineering. Clinical trials for diseases such as osteogenesis imperfecta, graft-versus-host disease and myocardial infarction have shown some promise, demonstrating the safe use of both allogeneic and autologous cells. However, lack of knowledge of MSC behaviour and responses in vitro and in vivo force the need for basic and animal studies before heading to the clinic. Contrasting reports on immunomodulatory functions and tumorigenicity along with issues such as mode of cell delivery, lack of specific marker, low survival and engraftment require urgent attention to harness the potential of MSC-based therapy in the near future.

Download full-text


Available from: Neeraj K Satija
  • Source
    • "Several studies have addressed the effects of hypoxia on MSCs. The findings have been equivocal101112. Some reports demonstrated that human bone marrow-derived MSCs cultured under hypoxia showed a diminished capacity to differentiate into adipocytes and osteocytes, supporting the notion that low oxygen tension promotes an undifferentiated state[13,14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) in the bone marrow and other somatic tissues reside in an environment with relative low oxygen tension. Cobalt chloride (CoCl2) can mimic hypoxic conditions through transcriptional changes of some genes including hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). This study evaluated the potential role of CoCl2 preconditioning on multi-lineage differentiation of C3H/10T1/2, a murine MSC line to understand its possible molecular mechanisms in vitro. CoCl2 treatment of MSCs markedly increased HIF-1α and VEGF mRNA, and protein expression of HIF-1α. Temporary preconditioning of MSCs with CoCl2 induced up-regulation of osteogenic markers including alkaline phosphatase, osteocalcin, and type I collagen during osteogenic differentiation, followed by enhanced mineralization. CoCl2 also increased chondrogenic markers including aggrecan, sox9, and type II collagen, and promoted chondrocyte differentiation. CoCl2 suppressed the expression of adipogenic markers including PPARγ, aP2, and C/EBPα, and inhibited adipogenesis. Temporary preconditioning with CoCl2 could affect the multi-lineage differentiation of MSCs.
    Full-text · Article · Jan 2016 · Korean Journal of Physiology and Pharmacology
  • Source
    • "Mesenchymal stem cells (MSCs) are immature, unspecialized cells that can be isolated from adult bone marrow, adipose tissue , blood, umbilical cord, skeletal, muscle, dental pulp, deciduous teeth and periodontal ligaments (Egusa, Sonoyama, Nishimura, Atsuta, & Akiyama, 2012; Fawzy El-Sayed et al., 2013; Satija et al., 2009). MSCs are attractive candidates for stem cell-based therapy and tissue regeneration due to the possibility of MSCs isolated from autologous source and their ability to differentiate into various cell and tissue types. "
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) play important roles in the osteogenic differentiation of stem cells. However, the application of miRNA in bone regeneration has been limited by its poor stability, low cellular uptake, and undesired immune response. In this study, chitosan (CS)/tripolyphosphate (TPP)/Hyaluronic Acid (HA) nanoparticles (CTH NPs) were prepared to deliver antimiR-138 to bone marrow mesenchymal stem cells (MSCs). The particle size, polydispersity index, and zeta potential of CTH NPs were related to the weight ratio of CS:TPP:HA. At optimum N/P ratio (20:1), the highest encapsulation efficiency was obtained. Both blank CTH NPs and CTH/antmiR-138 NPs exhibited no cytotoxicity to MSCs. A high transfection efficiency (nearly 70%) and significant enhancement of the osteogenesis of MSCs were observed. Above results demonstrated that CTH NPs was a potential candidate as an efficient non-viral miRNA vector to regulate the osteogenic differentiation of MSCs.
    Full-text · Article · Nov 2015 · Carbohydrate Polymers
  • Source
    • "MSCs can be used in protein therapy and bone tissue engineering therapy, such as attaching MSCs to a biomaterial or nanomaterial scaffold [21] [22] [23]. However, MSCbased protein therapy and bone tissue engineering therapy have problems associated with genetically modified stem cells, as mentioned earlier [16]. MSC-based cell therapy may be used as a therapeutic drug-delivery system. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The therapeutic potential of mesenchymal stem cells (MSCs) has garnered great attention in the expansive diversity of biomedical research. Despite this broad interest in stem cells, limited incorporation and poor viability are major disadvantages for accomplishing therapeutic success in the field of hMSC-based cell therapy, and an optimal approach for hMSC-based cell therapy using non-viral vectors has not been established. Hence, we examined the possibility of performing gene therapy using the biodegradable polymeric non-viral vector Arginine-grafted poly (cystaminebisacrylamide-diaminohexane) (ABP)-conjugated poly (amidoamine) (PAMAM) dendrimer (PAM-ABP) in hMSCs. PAM-ABP formed compact nanosized polyplexes and showed low cytotoxicity compared to bPEI 25k and Lipofectamine® 2000 in hMSCs. Although the cellular uptake was similar, the transfection efficiency and VEGF expression of PAM-ABP using gWiz-Luc and pβ-VEGF were higher than control groups. Although hMSCs were transfected, their stem cell characteristics were retained. Our results suggest that PAM-ABP has the ability to deliver a therapeutic gene in hMSCs.
    Full-text · Article · Sep 2015 · Journal of Controlled Release
Show more