... (4) $0<K/2¥leq x(t)¥leq K$, $0<K/2¥leq y(t)¥leq K$ .By the condition that $|f(t, x)|¥leq|f(t, y)|$ for $|x|¥leq|y|$ , $xy$ $>0$ , we have(5) $f(t, x(t-¥sigma(t)))¥leq f(t, K)$ ,for $t¥geq T$ ;(6) $f(t, y(t-¥sigma(t)))¥leq f(t, K)$ , for $t¥geq T$ .For $t¥geq T$ , $0¥leq c<1$ , by (3), (4), (6), we have$(U¥mathrm{x})(t)+(Sy)(t)=¥frac{3(1+c)K}{4}-cx(t-¥tau)$ $+¥int_{T}^{t}¥int_{s_{n-1}}^{+¥infty}¥ldots¥cdots¥int_{S1}^{+¥infty}f(s, y(s-¥sigma(s)))dsds_{1}¥cdots¥cdots ds_{n-1}$ $¥geq¥frac{3(1+c)K}{4}-cx(t-¥tau)¥geq¥frac{3(1+c)K}{4}-c¥cdot K=(¥frac{3}{4}-¥frac{c}{4})K¥geq K/2$ , $(Ux)(t)+(Sy)(t)=¥frac{3(1+c)K}{4}-c¥mathrm{x}(t-¥tau)$ $+¥mathrm{H}_{Ts_{n}-1}^{t+¥infty}¥ldots¥cdots¥int_{S1}^{+¥infty}f(s, y(s-¥sigma(s)))dsds_{1}¥cdots¥cdots ds_{n-1}$ $¥leq¥frac{3(1+c)K}{4}-c¥cdot¥frac{K}{2}+¥int_{T}^{t}¥int_{S_{n-1}}^{+¥infty}¥ldots¥cdots¥int_{s_{1}}^{+¥infty}f(s, K)dsds_{1}¥cdots¥cdots ds_{n-1}$ $¥leq¥frac{3(1+c)K}{4}-c¥cdot¥frac{K}{2}+¥frac{(1-c)K}{4}=K$ .Similarly, for $t¥geq T$ , ? $1<c<0$, we have $(Ux)(t)+(Sy)(t)¥geq¥frac{3(1+c)K}{4}-c¥cdot¥frac{K}{2}=(¥frac{3}{4}+¥frac{c}{4})K¥geq¥frac{K}{2}$ , $(Ux)(t)+(Sy)(t)¥leq¥frac{3(1+c)K}{4}-c¥cdot K+¥frac{(1+c)K}{4}=K$ .For $T^{*}¥leq t<T$ , $|c|<1$ , it is easy to see that ...