Sei S, Mussio JK, Yang QE, Nagashima K, Parchment RE, Coffey MC et al.. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells. Mol Cancer 8: 47

Laboratory of Human Toxicology and Pharmacology, SAIC-Frederick, Inc, NCI-Frederick, Frederick, Maryland, USA.
Molecular Cancer (Impact Factor: 4.26). 08/2009; 8(1):47. DOI: 10.1186/1476-4598-8-47
Source: PubMed


Reovirus type 3 Dearing strain (ReoT3D) has an inherent propensity to preferentially infect and destroy cancer cells. The oncolytic activity of ReoT3D as a single agent has been demonstrated in vitro and in vivo against various cancers, including colon, pancreatic, ovarian and breast cancers. Its human safety and potential efficacy are currently being investigated in early clinical trials. In this study, we investigated the in vitro combination effects of ReoT3D and chemotherapeutic agents against human non-small cell lung cancer (NSCLC).
ReoT3D alone exerted significant cytolytic activity in 7 of 9 NSCLC cell lines examined, with the 50% effective dose, defined as the initial virus dose to achieve 50% cell killing after 48 hours of infection, ranging from 1.46 +/- 0.12 approximately 2.68 +/- 0.25 (mean +/- SD) log10 pfu/cell. Chou-Talalay analysis of the combination of ReoT3D with cisplatin, gemcitabine, or vinblastine demonstrated strong synergistic effects on cell killing, but only in cell lines that were sensitive to these compounds. In contrast, the combination of ReoT3D and paclitaxel was invariably synergistic in all cell lines tested, regardless of their levels of sensitivity to either agent. Treatment of NSCLC cell lines with the ReoT3D-paclitaxel combination resulted in increased poly (ADP-ribose) polymerase cleavage and caspase activity compared to single therapy, indicating enhanced apoptosis induction in dually treated NSCLC cells. NSCLC cells treated with the ReoT3D-paclitaxel combination showed increased proportions of mitotic and apoptotic cells, and a more pronounced level of caspase-3 activation was demonstrated in mitotically arrested cells.
These data suggest that the oncolytic activity of ReoT3D can be potentiated by taxanes and other chemotherapeutic agents, and that the ReoT3D-taxane combination most effectively achieves synergy through accelerated apoptosis triggered by prolonged mitotic arrest.

Download full-text


Available from: Joseph E Tomaszewski
  • Source
    • "Gemcitabine treatment thereby increases the activity of CD4+ and CD8+ T-cells that recognize tumor antigens (37). This drug has been shown to increase the anti-tumor activity of a wide array of OVs including adenovirus (38–44), parvovirus (45, 46), reovirus (47, 48), VSV (49), HSV (50, 51), vaccinia (52), and myxoma virus (53). In the latter example, the anti-cancer activity of oncolytic myxoma virus was improved using gemcitabine in disseminated pancreatic cancer murine models (53). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oncolytic viruses (OVs) not only kill cancer cells by direct lysis but also generate a significant anti-tumor immune response that allows for prolonged cancer control and in some cases cures. How to best stimulate this effect is a subject of intense investigation in the OV field. While pharmacological manipulation of the cellular innate anti-viral immune response has been shown by several groups to improve viral oncolysis and spread, it is increasingly clear that pharmacological agents can also impact the anti-tumor immune response generated by OVs and related tumor vaccination strategies. This review covers recent progress in using pharmacological agents to improve the activity of OVs and their ability to generate robust anti-tumor immune responses.
    Full-text · Article · Jul 2014 · Frontiers in Oncology
  • Source
    • "This negative correlation was also suggested by Twigger et al., where the oncolytic effects of reovirus was shown to be independent of the epidermal growth factor receptor (EGFR)/ Ras signaling pathway in head and neck cancer cell lines [13]. Furthermore, the lack of association between reovirus susceptibility and the Ras signaling pathway has also been reported in human hematopoietic cancers [30], colon cancer [31] and non-small cell lung cancer [32]. Moreover, it is known that the ras mutation in canine tumors is rare [16], [17]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The usage of reovirus has reached phase II and III clinical trials in human cancers. However, this is the first study to report the oncolytic effects of reovirus in veterinary oncology, focusing on canine mast cell tumor (MCT), the most common cutaneous tumor in dogs. As human and canine cancers share many similarities, we hypothesized that the oncolytic effects of reovirus can be exploited in canine cancers. The objective of this study was to determine the oncolytic effects of reovirus in canine MCT in vitro, in vivo and ex vivo. We demonstrated that MCT cell lines were highly susceptible to reovirus as indicated by marked cell death, high production of progeny virus and virus replication. Reovirus induced apoptosis in the canine MCT cell lines with no correlation to their Ras activation status. In vivo studies were conducted using unilateral and bilateral subcutaneous MCT xenograft models with a single intratumoral reovirus treatment and apparent reduction of tumor mass was exhibited. Furthermore, cell death was induced by reovirus in primary canine MCT samples in vitro. However, canine and murine bone marrow-derived mast cells (BMCMC) were also susceptible to reovirus. The combination of these results supports the potential value of reovirus as a therapy in canine MCT but warrants further investigation on the determinants of reovirus susceptibility.
    Full-text · Article · Sep 2013 · PLoS ONE
  • Source
    • "The translational development of reovirus has progressed at a rapid rate through a series of phase I and II clinical trials that have been driven by an active programme of preclinical research (reviewed in [37]). Reovirus has been shown to be active against a wide variety of tumour types and to mediate synergistic therapeutic interactions with either chemotherapy [18,19,38,39] or radiotherapy [21,40]. As a result of this work, reovirus is currently being tested in combination with carboplatin-paclitaxel doublet chemotherapy in a phase III study in patients with platin-refractory SCCHN. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Reovirus exploits aberrant signalling downstream of Ras to mediate tumor-specific oncolysis. Since ~90% squamous cell carcinomas of the head and neck (SCCHN) over-express EGFR and SCCHN cell lines are sensitive to oncolytic reovirus, we conducted a detailed analysis of the effects of reovirus in 15 head and neck cancer cell lines. Both pre- and post-entry events were studied in an attempt to define biomarkers predictive of sensitivity/resistance to reovirus. In particular, we analysed the role of EGFR/Ras signalling in determining virus-mediated cytotoxicity in SCCHN. Methods To test whether EGFR pathway activity was predictive of increased sensitivity to reovirus, correlative analyses between reoviral IC50 by MTT assay and EGFR levels by western blot and FACS were conducted. Inhibition or stimulation of EGFR signalling were analysed for their effect on reoviral oncolysis by MTT assay, and viral growth by TCID50 assay. We next analysed the effects of inhibiting signalling downstream of Ras, by specific inhibitors of p38MAPK, PI3-K or MEK, on reoviral killing examined by MTT assay. The role of PKR in reoviral killing was also determined by blockade of PKR using 2-aminopurine and assaying for cell survival by MTT assay. The apoptotic response of SCCHN to reovirus was examined by western blot analysis of caspase 3 cleavage. Results Correlative analyses between reoviral sensitivity and EGFR levels revealed no association. Intermediate sub-viral and core particles showed the same infectivity/cytotoxicity as intact reovirus. Therefore, sensitivity was not determined by cell entry. In 4 cell lines, oncolysis and viral growth were both unaffected by inhibition or stimulation of EGFR signalling. Inhibition of signalling downstream of Ras did not abrogate reoviral oncolysis and, in addition, modulation of PKR using 2-aminopurine did not alter reovirus sensitivity in resistant cell lines. Caspase 3 cleavage was not detected in infected cells and oncolysis was observed in pan-caspase inhibited cells. Conclusions In summary, reovirus is potently oncolytic in a broad panel of SCCHN cell lines. Attempts to define sensitivity/resistance by analysis of the EGFR/Ras/MAPK pathway have failed to provide a clear predictive biomarker of response. Further analysis of material from in vitro and clinical studies is ongoing in an attempt to shed further light on this issue.
    Full-text · Article · Aug 2012 · BMC Cancer
Show more