Article

Soluble Guanylate Cyclase Agonists Inhibit Expression and Procoagulant Activity of Tissue Factor

Department of Medicine, University Hospital of Northern Norway, Tromsø, Norway.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 6). 08/2009; 29(10):1578-86. DOI: 10.1161/ATVBAHA.109.192690
Source: PubMed

ABSTRACT

Tissue factor (TF), a major initiator of blood coagulation, contributes to inflammation, atherosclerosis, angiogenesis, and vascular remodeling. Pharmacological agonists of soluble guanylate cyclase (sGC) attenuate systemic and pulmonary hypertension, vascular remodeling, and platelet aggregation. However, the influence of these novel pharmacophores on TF is unknown.
We evaluated effects of BAY 41-2272 and BAY 58-2667 on expression and activity of TF in human monocytes and umbilical vein endothelial cells (HUVECs). Both compounds reduced expression of active TF protein in monocytes stimulated with lipopolysaccharide, as demonstrated by immunoblotting and a TF procoagulant activity assay. In-cell Western assay revealed that this effect was associated with a marked reduction of total and surface TF presentation. Furthermore, BAY 41-2272 and BAY 58-2667 decreased TF protein expression and the TF-dependent procoagulant activity in HUVECs stimulated with TNF-alpha. The sGC agonists also suppressed transcriptional activity of NF-kappaB. A siRNA-mediated knockdown of the alpha1-subunit of sGC in monocytes and HUVECs confirmed that the inhibitory effect of BAY 41-2272 and BAY 58-2667 on TF expression is mediated through the sGC-dependent mechanisms.
Inhibition of TF expression and activity by sGC agonists might provide therapeutic benefits in cardiovascular diseases associated with enhanced procoagulant and inflammatory response.

Download full-text

Full-text

Available from: John-Bjarne Hansen
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery of nitric oxide (NO), which is released from endothelial cells as the main mediator of vasodilation, its target, the soluble guanylyl cyclase (sGC), has become a focus of interest for the treatment of diseases associated with endothelial dysfunction. NO donors were developed to suppress NO deficiency; however, tolerance to organic nitrates was reported. Non-NO-based drugs targeting sGC were developed to overcome the problem of tolerance. In this review, we briefly describe the process of sGC activation by its main physiological activator NO and the advances in the development of drugs capable of activating sGC in a NO-independent manner. sGC stimulators, as some of these drugs are called, require the integrity of the reduced heme moiety of the prosthetic group within the sGC and therefore are called heme-dependent stimulators. Other drugs are able to activate sGC independent of heme moiety and are hence called heme-independent activators. Because pathologic conditions modulate sGC and oxidize the heme moiety, the heme-independent sGC activators could potentially become drugs of choice because of their higher affinity to the oxidized enzyme. However, these drugs are still undergoing clinical trials and are not available for clinical use.
    Preview · Article · Sep 2010 · Journal of cardiovascular pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine-3',5'-monophosphate (cGMP) pathway plays an important role in cardiovascular regulation by producing vasodilation and inhibiting platelet aggregation and vascular smooth muscle proliferation. The NO/SGC/cGMP pathway is disrupted in patients with heart failure as a result of a decrease in NO bioavailability and an increase in NO-insensitive forms of sGC, resulting in insufficient vasodilation. Drugs that activate sGC in a NO-independent manner may provide considerable therapeutic advantages in treating these patients. Cinaciguat (BAY-58-2667), currently in development by Bayer AG, preferentially activates sGC in its oxidized or heme-free state, when the enzyme is insensitive to both NO and nitrovasodilators. Cinaciguat exhibits potent vasodilator and antiplatelet activity, a long-lasting antihypertensive effect and a hemodynamic profile similar to that of nitrates. In clinical trials in patients with acute decompensated heart failure, cinaciguat potently unloaded the heart, increased cardiac output and renal blood flow, and preserved renal function and sodium and water excretion without further neurohumoral activation. The pharmacokinetics of cinaciguat demonstrated dose-proportionality with low individual variability and a low incidence of adverse events. The phase I and II clinical trials performed with cinaciguat so far, however, are insufficient to provide convincing evidence on the efficacy and safety of the drug. Thus, caution should be exerted before extrapolating the present preliminary data to the clinical practice.
    Full-text · Article · Sep 2010 · Current opinion in investigational drugs (London, England: 2000)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept of sGC stimulation as a treatment for cardiopulmonary disease has developed rapidly since its inception in the mid-1990s, and preclinical studies continue to shed new light on the properties of this drug class in a wide range of cardiopulmonary diseases (Figure 3). Riociguat, the first sGC stimulator to enter clinical development, has shown promising phase II results in CTEPH, PAH, and PH associated with interstitial lung disease and chronic obstructive pulmonary disease, whereas a phase II study of BAY 60-4552 has suggested that sGC stimulation may also have potential as a treatment for PH associated with biventricular heart failure. The ongoing phase III randomized controlled trials of riociguat in CTEPH and PAH are the first of many clinical studies of sGC stimulators. If successful, these studies will herald a new generation of treatments for cardiopulmonary disease.
    Full-text · Article · May 2011 · Circulation
Show more