Kininogen gene (KNG) variation has a consistent effect on aldosterone response to antihypertensive drug therapy: The GERA study

Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
Physiological Genomics (Impact Factor: 2.37). 08/2009; 39(1):56-60. DOI: 10.1152/physiolgenomics.00061.2009
Source: PubMed Central


Recent experimental and clinical studies suggested that apart from playing an essential role in blood pressure homeostasis, aldosterone is involved in the pathophysiology of cardiovascular and renal diseases by inducing structural changes in the heart, kidney, and vessel wall. The interindividual variation of aldosterone response to antihypertensive treatment is considerable, and is at least partially explained by genetic variation. In this study, we investigated aldosterone response to two antihypertensive drugs-a thiazide diuretic and an angiotensin receptor blocker (ARB). Genetic variations in 50 candidate genes were tested for association with aldosterone response in four independent samples: African American (AA) responders to a diuretic (n = 289), AA responders to an ARB (n = 252), European American (EA) responders to a diuretic (n = 295) and EA responders to an ARB (n = 300). Linear regression was used to test the association with inclusion of age, sex, and body mass index as covariates. The results indicated the existence of one or more variants in the kininogen gene (KNG) that influence interindividual variation in aldosterone response. The significant association was replicated in three of four studied groups. The single nucleotide polymorphism rs4686799 was associated in AA and EA responders to the diuretic (P = 0.04 and P = 0.07, respectively), and rs5030062 and rs698078 were significantly associated in EA responders to the diuretic (P = 0.05 and P = 0.01) and EA responders to the ARB (P = 0.04 and P = 0.02). Although the clinical implication of KNG gene variation to antihypertensive drug response is yet to be determined, this novel candidate locus provides important new insights into drug response physiology.

Download full-text


Available from: Gary L Schwartz
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activated partial thromboplastin time (aPTT) is associated with risk of thrombosis and coagulation disorders. We conducted a genome-wide association study for aPTT and identified significant associations with SNPs in three coagulation cascade genes, F12 (rs2731672, combined p = 2.16 x 10(-30)), KNG1 (rs710446, combined p = 9.52 x 10(-22)), and HRG (rs9898, combined p = 1.34 x 10(-11)). These three SNPs explain approximately 18% of phenotypic variance in aPTT in the Lothian Birth Cohorts.
    Full-text · Article · Mar 2010 · The American Journal of Human Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic kidney disease (CKD) is a significant public health problem, and progression to end-stage renal disease leads to dramatic increases in morbidity and mortality. The mechanisms underlying progression of disease are poorly defined, and current noninvasive markers incompletely correlate with disease progression. Therefore, there is a great need for discovering novel markers for CKD. We utilized a glycoproteomic profiling approach to test the hypothesis that the urinary glycoproteome profile from subjects with CKD would be distinct from healthy controls. N-linked glycoproteins were isolated and enriched from the urine of healthy controls and subjects with CKD. This strategy identified several differentially expressed proteins in CKD, including a diverse array of proteins with endopeptidase inhibitor activity, protein binding functions, and acute-phase/immune-stress response activity supporting the proposal that inflammation may play a central role in CKD. Additionally, several of these proteins have been previously linked to kidney disease implicating a mechanistic role in disease pathogenesis. Collectively, our observations suggest that the human urinary glycoproteome may serve as a discovery source for novel mechanism-based biomarkers of CKD.
    Full-text · Article · Oct 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past few decades, consumption of added sugars has increased dramatically. Studies have linked high sugar intake with increased risk for a number of diseases. Importantly, fructose, a component of sugar, has been linked with the development of features of metabolic syndrome. This study determined if single nucleotide polymorphisms in genes involved in fructose transport (solute carrier family 2 facilitated glucose transporter, member 2 (SLC2A2) and solute carrier family 2 facilitated glucose/fructose transporter, member 5 (SLC2A5)) and metabolism (ketohexokinase (KHK)) affect inter-individual variability in metabolic phenotypes, such as increased serum uric acid levels. The influence of SLC2A2, SLC2A5, and KHK SNPs on metabolic phenotypes was tested in 237 European Americans and 167 African Americans from the Pharmacogenomic Evaluation and Antihypertensive Responses (PEAR) study. Using baseline untreated fasting data, associations were considered significant if p≤0.005. These SNPs were then evaluated for potential replication (p≤0.05) using data from the Genetic Epidemiology of Responses to Antihypertensives (GERA) studies. SLC2A5 rs5438 was associated with an increase in serum uric acid in European American males. However, we were unable to replicate the association in GERA. The minor allele of SLC2A2 rs8192675 showed an association with lower high-density lipoproteins in European Americans (A/A: 51.0 mg/dL, A/G: 47.0 mg/dL, G/G: 41.5 mg/dL, p = 0.0034) in PEAR. The association between rs8192675 and lower high-density lipoproteins was replicated in the combined European American GERA study samples (A/A: 47.6 mg/dL, A/G: 48.6 mg/dL, G/G: 41.9 mg/dL, p = 0.0315). The association between SLC2A2 rs8192675 and high-density lipoproteins suggests the polymorphism may play a role in influencing high-density lipoproteins and thus metabolic risk of cardiovascular disease.
    Full-text · Article · Jan 2013 · PLoS ONE
Show more