Genome-wide Study of Families with Absolute Pitch Reveals Linkage to 8q24.21 and Locus Heterogeneity

Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
The American Journal of Human Genetics (Impact Factor: 10.93). 08/2009; 85(1):112-9. DOI: 10.1016/j.ajhg.2009.06.010
Source: PubMed


Absolute pitch (AP) is the rare ability to instantaneously recognize and label tones with their musical note names without using a reference pitch for comparison. The etiology of AP is complex. Prior studies have implicated both genetic and environmental factors in its genesis, yet the molecular basis for AP remains unknown. To locate regions of the human genome that may harbor AP-predisposing genetic variants, we performed a genome-wide linkage study on 73 multiplex AP families by genotyping them with 6090 SNP markers. Nonparametric multipoint linkage analyses were conducted, and the strongest evidence for linkage was observed on chromosome 8q24.21 in the subset of 45 families with European ancestry (exponential LOD score = 3.464, empirical genome-wide p = 0.03). Other regions with suggestive LOD scores included chromosomes 7q22.3, 8q21.11, and 9p21.3. Of these four regions, only the 7q22.3 linkage peak was also evident when 19 families with East Asian ancestry were analyzed separately. Though only one of these regions has yet reached statistical significance individually, we detected a larger number of independent linkage peaks than expected by chance overall, indicating that AP is genetically heterogeneous.

Download full-text


Available from: Analabha Basu
  • Source
    • "The nature vs. nurture debate around musical practiceinduced plasticity goes on and has begun to gain momentum as the number of neuroimaging studies continues to grow and recent genome-wide association studies have confirmed that many attributes of musicality are hereditary. Musical pitch perception (Drayna et al., 2001), absolute pitch (Theusch et al., 2009), as well as creativity in music (Ukkola et al., 2009), and perhaps even sensitivity to music (Levitin et al., 2004), have all been found to have genetic determinants. Importantly, these predispositions are typically tested for in children in a music school entrance exam. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Musical training has recently gained additional interest in education as increasing neuroscientific research demonstrates its positive effects on brain development. Neuroimaging revealed plastic changes in the brains of adult musicians but it is still unclear to what extent they are the product of intensive music training rather than of other factors, such as preexisting biological markers of musicality. In this review, we synthesize a large body of studies demonstrating that benefits of musical training extend beyond the skills it directly aims to train and last well into adulthood. For example, children who undergo musical training have better verbal memory, second language pronunciation accuracy, reading ability and executive functions. Learning to play an instrument as a child may even predict academic performance and IQ in young adulthood. The degree of observed structural and functional adaptation in the brain correlates with intensity and duration of practice. Importantly, the effects on cognitive development depend on the timing of musical initiation due to sensitive periods during development, as well as on several other modulating variables. Notably, we point to motivation, reward and social context of musical education, which are important yet neglected factors affecting the long-term benefits of musical training. Further, we introduce the notion of rhythmic entrainment and suggest that it may represent a mechanism supporting learning and development of executive functions. It also hones temporal processing and orienting of attention in time that may underlie enhancements observed in reading and verbal memory. We conclude that musical training uniquely engenders near and far transfer effects, preparing a foundation for a range of skills, and thus fostering cognitive development.
    Full-text · Article · Mar 2014 · Frontiers in Neuroscience
  • Source
    • "genes that contribute to this trait. As a step in this direction, Theusch et al. (2009) have provided preliminary evidence for a genome-wide linkage on chromosome 8 in families with European ancestry that include AP possessors. "

    Full-text · Chapter · Dec 2013
  • Source
    • "Recent studies have shown that there is a substantial genetic component to music perception, including absolute pitch (Theusch et al., 2009), congenital amusia (Peretz et al., 2007), auditory structuring ability (Ukkola et al., 2009), and musical ability (Peretz, 2006; Morley et al., 2012; Park et al., 2012; Kanduri et al., 2013; Ukkola-Vuoti et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies have shown that music confers plasticity to the brain. In a preliminary pilot study, we examined the effect of music listening on steroid hormones and the relationship between steroid hormone receptor polymorphisms and musical ability. Twenty-one subjects (10 males and 11 females) were recruited and divided into musically talented and control groups. The subjects selected (1) music they preferred (chill-inducing music) and (2) music they did not like. Before and after the experiments, saliva was collected to measure the levels of steroid hormones such as testosterone, estradiol, and cortisol. DNA was also isolated from the saliva samples to determine the androgen receptor (AR) and arginine vasopressin receptor 1A genotypes. Advanced Measures of Music Audiation (AMMA) was used to determine the musical ability of the subjects. With both types of music, the cortisol levels decreased significantly in both sexes. The testosterone (T) levels declined in males when they listened to both types of music. In females, the T levels increased in those listening to chill-inducing music but declined when they listened to music they disliked. However, these differences were not significant. The 17-beta estradiol levels increased in males with both types of music, whereas the levels increased with chill-inducing music but declined with disliked music in females. The AMMA scores were higher for the short repeat length-type AR than for the long repeat length-type. Comparisons of AR polymorphisms and T levels before the experiments showed that the T levels were within the low range in the short repeat length-type group and there was a positive relationship with the repeat length, although it was not significant. This is the first study conducted in humans to analyze the relationships between the AR gene, T levels, and musical ability.
    Full-text · Article · Dec 2013 · Frontiers in Psychology
Show more