Content uploaded by Cédric Vermeulen
Author content
All content in this area was uploaded by Cédric Vermeulen on Oct 03, 2014
Content may be subject to copyright.
BA
SE Biotechnol. Agron. Soc. Environ.201418(3),446-454 Focus on:
Useofcameratrapsforwildlifestudies.Areview
FranckTrolliet(1),Marie-ClaudeHuynen(1),CédricVermeulen(2),AlainHambuckers(1)
(1)UniversitédeLiège.UnitédeBiologieduComportement.22,QuaiVanBeneden.B-4020Liège(Belgique).E-mail:
franck.trolliet@ulg.ac.be
(²)UniversitédeLiège-GemblouxAgro-BioTech.UnitédeGestiondesRessourcesForestièresetdesMilieuxNaturels.
LaboratoiredeForesterietropicaleetsubtropicale.PassagedesDéportés,2.B-5030Gembloux(Belgique).
ReceivedonMarch13,2013;acceptedonFebruary11,2014.
As human threats continue to impact natural habitats, there is an increasing need to regularly monitor the trends in large
vertebratepopulations.Conservationeffortsmustbedirectedappropriately, but eld work necessary for data collection is
oftenlimitedbytimeandavailabilityofpeople.Cameratrapsareusedasanefcientmethodtoinsurecontinuoussampling
andtowork in difcult toaccessareas.In the present study,we illustratehowthisinstrumentis serving a diverseeldof
studies,suchasanimalbehavior,populationmonitoringandfauna-orainteraction.Bylookingatthematerialandtechnical
aspectsofvariousmodelsofcameratrapforimplementationindifferenteldstudiesinanimalecology,wehighlighttheneed
tochooseappropriatecameratrapmodelsforthetargetspeciesandtosetupsolidsamplingprotocolstosuccessfullyachieve
studyobjectives.
Keywords.Wildlifemanagement,populationcensus,animalbehaviour,photography,traps,surveillancesystems.
Utilisation des pièges photographiques pour l’étude de la faune sauvage (synthèsebibliographique). Alors que les
pressions anthropiques continuent de dégrader les habitats naturels, le besoin de suivre régulièrement les tendances des
populationsdegrands vertébrés augmente.Lesefforts de conservationdoiventêtrede plus enplusciblésmais les travaux
deterrainsnécessairesàlarécoltededonnéessontsouventlimitésparletempsetlenombredepersonnesdisponibles.Les
piègesphotographiquesapparaissentainsicommeuneméthodeefcacepourassurerunéchantillonnagecontinuetdansdes
zonesdifcilementaccessibles.Nousillustronsicilamanièredontcetoutilestutilisépourunediversitédethèmesd’études
deterraintels que lecomportementanimal,lesuivi de populations etlesinteractionsfaune-ore. En analysant lesaspects
techniques et matériels permettant d’assurer différents types de travaux d’écologie animale, nous mettons en évidence la
nécessitédesélectionnerdumatérieletdemettreenplaceunprotocoled’échantillonnageadaptéàl’espèce etauxobjectifs
xésdel’étude.
Mots-clés.Gestionde la fauneetdela ore sauvages,recensementdelapopulation, comportement animal,photographie,
piège,systèmedesurveillance.
1. INTRODUCTION
Theobservedrapiddeclineinbiodiversity,particularly
among large vertebrates, throughout the world and
the degradation of natural habitats hosting their
populationsare nowadays widelyaccepted as fact.It
has therefore never been so important to understand
how animal populations respond to modern threats
and to document the functioning of ecosystems and
intra-communityinteractions(Barrowsetal.,2005)as
tobeable to implementappropriatemanagementand
conservation strategies. Regular updating of data on
animalpopulationdensity and on the degreeofinter-
speciesinteractionsisthuscrucialtoassessthespatio-
temporal variations in populations and communities
(Bouché et al., 2012). Camera traps are increasingly
beingused to study wildlife behaviorand to conduct
populationestimations(Cutleretal.,1999;Longetal.,
2008;O’Connell etal.,2011;Roveroetal., 2013).In
thepresentstudy,weundertookaliteraturereviewon
camera trapping studies, to present some technical
aspectsofcommerciallyavailablecameramodelsand
provideanoverviewofsamplingproceduresanduses
ofcameratrappingdata.
2. MATERIALS AND METHODS
We conducted a general literature review on camera
trapping using the SciVerse Scopus® database and
GoogleScholar®.Thelistofscienticpapersconsulted
isnotexhaustiveandwedonotclaimtodocumentall
Useofcameratrapsforwildlifestudies.Areview 447
thestudiesdealingwithcameratrapping.However,the
list of documents consulted has enabled us to gain a
goodoverviewofthediversityofusesofcameratraps
over recent decades and of the main issues regarding
sampling and data analysis. To conduct our study on
thetechnicalaspectsof cameratraps, we searchedfor
cameratrapbrandssoldandadvertisedontheInternet,
as wellas those usedin recent scientic publications.
WenallyconsultedTrailCamPro.com®(TrailCamPro.
com, 2013) and Camera Traps cc®’s (Camera Traps
cc,2013)websitestoretrievetechnicalinformationon
the different models. Those two companies distribute
together 18brands of camera traps, which, to our
knowledge, include the vast majority of camera trap
models on the market. We could get the price for
61differentmodels(15brands).
3. RESULTS AND DISCUSSION
3.1. Diversity of uses of camera traps
Whileremote photographies have been used for more
thanacentury,aspresentedbyO’Connelletal.(2011),
theautomatedcameratrapasitisnowknowncameonto
themarketattheendofthe1980s.Savidgeetal.(1988)
usedalmcameraconnectedtoaninfraredtransmitter,
whichwasabletoshootapictureassoonasthebeamwas
interruptedbyananimal.Thesystemwasautomatic;after
apicturehadbeentaken,thelmwasreloadedandthe
camerawasreadytotakemorepictures.Thistechnique
wasusedtoidentifypredatorsvisitingbirdnests.Some
years later, Carthew et al. (1991) and Kucera et al.
(1993) listed the advantages of the automated camera
trap system for anarray of different eld applications
suchasthestudyofactivitypatterns,intra-community
interactionsandlargecarnivorespopulations.
Therststudiesusingcameratrapsforthepurpose
of large mammal conservation appeared in the 1990s
andfocusedonthetiger,Panthera tigris(e.g.,Grifths,
1993; Karanth, 1995). Following the designation of
P. tigris as endangered (Chundawat et al., 2011), one
of thefew “agship”species listed on the IUCN red-
listasearlyas1986,thesestudiesaimedat estimating
homerangespanand populationsize.Inthis way, the
useofcameratrapstoestimatepopulationsizegreatly
helpedtowardstheconservationstrategyforthespecies,
andmoregenerally, themonitoringofotherthreatened
populationsandcommunities.Thisuseofcameratraps
was highlighted in a study on the activity patterns
of mammal communities in Indonesian rain forests
(van Schaik et al., 1996). The aforementioned early
studies oftheuseofcameratrapsclearly illustrate the
major advantages of using the technique, including
beingableto observecrypticorelusiveanimalsliving
in difcult to access habitats such as dense tropical
forests.Theuseofcameratrapshasbeenrevolutionary
for studying the behavior of carnivores, as they are
difcult toobserveintheirnaturalhabitat duetotheir
solitarynature.Thetechniquehasalsobeenthesubject
ofmanyother scientic paperssincethe beginningof
the 21st century, revealing more about the ecology of
rare,nocturnalanimals,aswellasthosehighlysensitive
tothepresenceofhumansorthoselivinginlargehome
ranges.A goodexample isthestudyofMoruzziet al.
(2002), whichpromotestheuseof thistechnology for
estimating carnivore distribution over large area and
documentingspecies-specichabitatpreferences.
A large proportion of conservation projects aim at
managingthreatenedspecies,whichimpliestomonitor
populationsovertimeandspace.Thus,themajorityof
studiesusingcameratrapsnowadaysappeartodealwith
theestimationofpopulationdensity (e.g.,Kalleet al.,
2011;Garroteetal.,2012;Oliveira-Santosetal.,2012)
or simply with the presence of species in given areas
(e.g., Gil-Sanchez et al., 2011; Gray et al., 2011; Liu
etal.,2012).Populationcharacteristicsare,toagreater
or lesser extent, related to habitat use behaviors and
habitatselection.Cameratrapsareusefulformonitoring
theseaspectsastheyallowtheestimationofhomerange
size(e.g.,Gil-Sanchezetal.,2011).
Some studies also deal with activity budget (e.g.,
vanSchaiketal.,1996;Azlanetal.,2006;Grayetal.,
2011;Oliveira-Santosetal.,2012)andasmallernumber
withmorespecicbehaviors.Forinstance,Soleyetal.
(2011) reportedthe storingbehavior of non-ripefruits
byamustelideae,allowingthefruitstomatureandtobe
consumedonfutureoccasions;thisisaspecicbehavior
thatisveryhardtoreportwithoutcameratraps.Blake
etal.(2010)studiedtheimportanceofsaltlicksforan
animalcommunityinaneotropicalforest.Otherstudies
havedealtwithanimalinfantcare(e.g.,Charruauetal.,
2012) or social interaction (Lopucki, 2007; Srbek-
Araujoetal.,2012).
Camera traps are also increasingly being used to
study plant-animal interactions such as seed dispersal
andpredation(e.g.,Babweteeraetal.,2010;Nyiramana
et al., 2011; Campos et al., 2012; Koike et al., 2012;
Pender et al., 2013). Moreover, focal observations
needtobeconductedinthestudyoftheseeddispersal
capacity of a given plant species, to listthe frugivore
species interacting with the plants and to dene the
quantitativecontributionofeachspeciesintheprocess
of seed dispersal. Camera traps are revolutionary in
thisregard,astheyallowthe identication of diurnal,
nocturnal, and shy species that would not be seen
using other methods such as direct observation. This
isexempliedbythestudyofNyiramanaetal.(2011),
whodiscoveredthataspeciesofrodent,theforestgiant
pouchedratCricetomys emini(Wroughton,1910),was
responsibleforthesecondarydispersaloflargeseedsin
anAfro-tropicalforest.
448 Biotechnol. Agron. Soc. Environ. 201418(3),446-454
3.2. Various technical aspects
Morethanadecadeago,Cutleretal.(1999)reviewed
the advantages and disadvantages of using different
lm camera trapping equipment depending on the
researchobjectives. Giventherapidadvancesinsuch
technology,andthegreatvarietyofcameratrapbrands
anddigital models existing on the market nowadays,
lmcameras arecompeted.Wepresentherethemost
important characteristics to take into account when
choosing digital equipment. Characteristics such as
trigger speed, detection zone, recovery time, night
detection and battery consumption can vary greatly
andhaveasignicantimpactonthetypesofdatatobe
collected,such asthenumberof speciesdetectedand
photographicrates(Hughsonetal.,2010).Therefore,
the choice of the most appropriate equipment is an
importantconsideration.
Trigger speed. Trigger speed is the time delay
necessary for the camera to shoot a picture once an
animal has interrupted the infrared beam within the
camera’s detection zone. This delay can vary from
between 0.197seconds for the Reconyx HC500
model to 4.206seconds for the Stealth Cam Rogue
IR model. Given the relatively narrow eld of view
of most camera trap lenses (42mm), a slow trigger
speeddoesnotallowthephotographingoffastmoving
animals(Scheibeetal.,2008).Thus,dependingonthe
study goals and the target animal species, this time
delaycouldbeacrucialcharacteristictoconsider.For
example,ifacameraissetupatarandomlocationfor
a wildlife survey (Pereira et al., 2012), fast moving
animalsarelikely to pass in frontof the camera trap
withoutstopping. In thiscase,avery reactivecamera
(with a fast trigger speed) would be necessary so it
couldshootpicturesofthedetectedanimalbeforeitleft
thecamera’seldof view.Intheircomparativestudy
ofmotion-activatedcamerasforwidlifeinvestigation,
Hughson et al. (2010) showed that some camera
models (such as the fast Reconyx) can detect up to
86% more animal species. If the trigger speed is too
slow,thecameramayframeonlyapartoftheanimal
ormayeventakeemptypictures(picturesnotshowing
what the beam has detected). Hughson et al. (2010)
observedthat, incomparisonwithother models,Leaf
River cameras took the highest percentage of empty
pictures.In the case of acamera installed in front of
abirdnest,abait,oralure,visitinganimalsaremore
likely to stay longer (to either depredate the nest or
interactwiththebait)andtotriggermorephotographs
(Garrote et al., 2012; Trolle et al., 2003) even if the
camerahasarelativelylongtimedelay(lowreactivity).
Usinglurestoattractlargecarnivorescanalsoallowa
betteridenticationofindividuals(Gil-Sanchezetal.,
2011).Thisriskoftakingemptypicturesdoesnotonly
dependonthespeedofthecameraintakingapicture;
thedetectionzoneaswellastheeldofviewarealso
primarycriteriatoconsider.
The detection zone. The detection zone is the zone
covered by the camera’s infrared beam in which
movementcan be detected. The zone variesin width
and depth, depending on the model (Table 1). This
criterionisprobablythemostimportantindetermining
detectionrate(Rowcliffeetal.,2011)andthereforethe
numberofpicturesthatwillbetakeninagivenevent.
The eld of view.Theeldofviewisthezonecovered
bythecameralens,andwhichappearsonthepictures.
The eld of view is generally 42° but there are rare
exceptionssuchaswiththeLeupoldbrand,whichgoes
upto54°(Table 1)andtheMoultriepanoramicmodel,
whichcoversanangleof150°.Thedetectionzonecan
varygreatlyaccordingtothebrandandthemodel.We
thusndmodelswith adetectionzonewiderthanthe
eldofview(e.g.DLCCovertExtreme)andmodels
withthedetectionzonenarrowerthantheeldofview
(e.g.CuddebackAmbush).Wherethedetectionzoneis
widerthantheeldofview(Figure 1a),theadvantage
liesinbeingbetterabletocapturefastmovinganimals.
The limitation in this case is that the camera is also
likely to take empty pictures when animals enter the
detectionzone(thuspassingthroughtheinfraredbeam
andtriggering the camera)butwithoutmaking itinto
theeldofview.Wherethedetectionzoneisnarrower
thantheeldofview(Figure 1b),thedetectionzoneis
centeredrelativetotheeldofviewofthecamera,and
sotheadvantagecanbeseeningainingwellcentered
pictures.Thiscanbeveryusefulfortheidentication
oflargemammals.However,thelimitationinthiscase
isthatrelativelyfewerpicturespervisitcanbeshot,as
animalsarelikelyto occupytheeldofviewwithout
crossing the detection zone. As presented in table 1,
the detection zone can be described with a given
width(angle)andagivendistancefromthecameraat
whichit willdetectan animal.Thedetectiondistance
of a camera is an important aspect to consider when
focusingonanimalspeciesofeitherlargeorsmallbody
mass.Largeranimals will bemore easily detected at
furtherdistancesthansmalleranimals.However,speed
ofmovementseemstobelesscorrelatedwithdetection
distance(Rowcliffeetal.,2011).
Recovery time.Recovery timeistheamountof time
necessaryforthecamerato prepare to shoot the next
pictureafterthepreviousonehasbeenrecorded.Given
the wide differences in recovery time for different
models,thischaracteristicmustbetakenintoaccount,
as it can be a very important aspect for some study
goals. The fastest camera can take a picture every
0.5second(ReconyxHC500model)whiletheslowest
Useofcameratrapsforwildlifestudies.Areview 449
needsupto60secondsbeforetakinganewpictureof
ananimalstilloccupyingthedetectionzone(Moultrie
I-35smodel).Acameraabletotakenumerouspictures
withina few seconds is very usefulwhen needing to
recordacompletesequenceofafeedingbehaviorand
tonotethenumberoffruitsmanipulated(Seufertetal.,
2010). Also, having different views of a species of
carnivorecangreatlyhelpintheprocessofidentifying
individuals(Trolleetal.,2003).Bycontrast,whenthe
aimisonlytocarryoutadiversitycensus,andonlyone
pictureperspeciesisneeded,aslowrecoverytimewill
belessproblematic(Lantschneretal.,2012).
Nighttime pictures. Nighttime pictures are very
useful, as a wide range of taxa exhibit exclusive
nocturnalactivity.Twomethods existforcameratrap
night photography: incandescent ash and infrared
light. Incandescent ash allows color pictures to be
taken, which are generally of better resolution and
quality.Inthismethod,theamountoflightcapturedis
greaterthanwithinfraredlight,andthiscanbecritical
for individual animal identication with the use of
tagsornaturalmarks.Thelimitationofthismethodis
that the ash has a strong risk of scaring the animal
(Sequinetal.,2003;Weggeetal.,2004).Theinfrared
method is much more discrete, and is consequently
veryuseful.Indeed,infraredcamerasaremorewidely
used by wildlife researchers than incandescent ash
(Meek et al., 2012). The infrared light emitted by a
seriesofLightEmittingDiodes(LEDs),whichallows
thecameratotakeblack-and-whitepictures,is hardly
visible,althoughtheredlightoftheLEDsisslightly
visible. The most discrete and best solution to avoid
scaringwildlife is to use a camera with a “no-glow”
infraredash(e.g.,BushnelTrophyCamBlack,Covert
Black 60, Reconyx Hyperre SM750, etc.). These
camerasbasicallyfunctioninthesamewayasnormal
infrared cameras, shooting black and white pictures,
butusingLEDsthatemitnovisiblelightatall.
Battery consumption. Battery life can also be a
crucial point to consider when preparing eld work
withcameratraps,especiallyinremoteareas.Several
= Detection zone = Field of view
ab
Figure 1. Diagramoftheeldofviewandofthedetection
zone for two types of camera trap — Schéma des zones
de vue et de détection d’après deux types de pièges
photographiques.
a.detectionzonewiderthantheeldofview—zone de détection
plus large que la zone de vue;b.detectionzonenarrowerthanthe
eldofview—zone de détection plus étroite que la zone de vue.
Table 1.Maintechnicalcharacteristicsofsomecameratrapmodelsfoundonthemarketatthetimeofstudy—Principales
caractéristiques techniques de modèles de pièges photographiques disponibles sur le marché au moment de l’étude.
Brand Model Detection zone
Angle Distance Total
(°)(m)area
(m²)
Field of
view (°)
Trigger
speed (s)
Recovery
time (s)
Resolution
(Mpx)
Price
range
(USD)
Cuddeback AmbushIR,V 7.6 11 8 42 5 0.25 NA 100-200
Scoutguard SG565F,V 64.7 14 116 42 8 1.31 5.1 100-200
Moultrie Panoramic150IR,V 150 NA NA 150 8 0.95 6.2 200-300
Moultrie I-35sIR 40 9 31 40 4 2.5 60 100-200
Wildgame
Innovation
micro6IR,V 15.1 24 76 42 6 1.08 NA 100-200
Uway UM562IR,V,C 60.5 16 133 42 5 1.2 NA 300-400
Leupold RCX-1IR,V 48.2 10 42.5 54 8 0.93 2.8 100-200
Reconyx HC500IR,V 33.4 18.6 100 42 3.1 0.2 1 400-500
Spypoint Live3GIR,V,I 41.9 17 110 42 8 2.7 10 400-500
Primos TruthCamX 45.2 13.7 456 42 1.3 1.2 5 200-300
Spypoint ProX 50 21 82.5 39 12 1.76 10 400-50
Boldcharactersindicateminimaandmaximavaluesfoundforeachrespectivefeature—Les caractères en gras indiquent les valeurs
minimales et maximales trouvées pour chaque caractéristique.
450 Biotechnol. Agron. Soc. Environ. 201418(3),446-454
characteristicsneed tobetakenintoaccount, suchas
thelevelofenergy consumption inmonitoringmode
(when the camera is on and ready to take pictures
if it detects movement) and the level of energy
consumptionfordayandnighttimepictureprocessing.
These variables can vary greatly depending on the
available models and will then vary in suitability
depending on the habitat, the faunal composition
presentinthehabitatandaccessibilityof the camera
for the changing of batteries. For example, in the
caseofanaridhabitatwithfewnocturnalspecies,no
diurnalanimalsspecies,anddifcultaccess,itwould
be better to use a camera that requires little energy
inmonitoringmode (asbatteryreplacementisnot as
frequent) and for nighttime picture taking (as only
nocturnalpicturesaretaken).Thus,batterylifewillbe
maximized.Bycontrast,inthecaseofastudytaking
placeinahabitatwithahighlevelofdiurnalactivity,
amodel that uses as little energy as possible for the
processing of daytime pictures would be preferred.
To extend battery life, some brands (e.g., Reconyx,
Scoutguard,Spypoint)alsoprovidesolarpanels.
Picture resolution. Picture resolution, expressed
in megapixels (Mpx), can vary more than 10fold
between models. Some Primos models take pictures
of relatively low resolution (1.3Mpx), whereas the
Spypoint Pro-X takes pictures up to 12Mpx. The
advantageof lowerresolutionimagesis thattheyare
lessheavytostore so more pictures canbesavedon
agivenmemorycard but, as having lesspixels,they
tendtohavelessdetailsandbelessprecise.Giventhe
largestoragecapacityofmemorycardsnowadays,we
would recommend to select for models with higher
resolution pictures and especially when individual
identicationis needed.Amore detailed and precise
picture can surely help being more accurate when
looking at differences in fur patterns and marks to
differentiate between individuals. However, the
number of pixels advertised by manufacturers must
be considered cautiously because it is not the only
factor affecting picture’s quality. Image sensor, the
componenthousing thepixels,isalso veryimportant
indeterminingpicturequality.Foragivensensorsize,
an increase in the number of pixels is automatically
associated with a decrease in pixel size. Yet smaller
pixelsarelesssensitiveto light, produce more noise
(unwantedsignal)andhaveanarrowerdynamicrange
(i.e. the range of light intensities being captured)
(Nakamura,2005).Itisthereforepossiblethatacamera
with fewer pixels but a larger sensor can produce
pictures of higher quality than a camera with more
pixels packed into a smaller sensor. Unfortunately,
informationonsensorsizeissofarpoorlydocumented
bymanufacturersandwouldneedfurtherinvestigation
andcomparison.
Camera cost. At the time of writting, cameras traps
cost from about USD40 to 1,200, though more than
half(54%)of themodelscomparedinthis studycost
betweenUSD100 to 200.Whilethe cheapestmodels
can have an infrared ash (Hunter GSC35-20IR;
Wildgame Innovations Red4), the most expensive
onescanprovideinstantrecoverytime(Reconyx)and
are able to transmit pictures to cell phones or email
(Reconyx,Spypoint,Covert).
In addition to these main characteristics, various
additional options serving specic research needs
deserveconsideration,suchastheprogrammableburst
modeallowingaseriesofuptovepicturestobetaken
ofthe same trigger event. Some cameras also record
video,withorwithoutsound,whichcanbeusefulfor
reportingonbehaviorrepertoires(Scheibeetal.,2008).
3.3. Sampling methods
Individual behavior. Studies aiming to report on
specicbehaviors(feeding,reproduction,territoriality,
socialinteraction,etc.)mustdirectsamplingeffortsto
placesofinterests(e.g.,saltlicksuses:Blakeetal.,2010;
carcassscavenging:Baueretal.,2005;specichabitat
use:Sequinetal.,2003).Todate,onlyfewstudiesuse
cameratrapsdatatostudyindividualrangingbehavior
andestimatehomerangesize(e.g.,GilSanchezetal.,
2011). Those often have to be completed with data
collected using other protocols such as telemetry or
indirectanimalclues(feedingresiduals,latrines,nests,
etc.),whichcouldexplaintherelativelysmallnumber
ofstudiesestimatinghomerangesize.
Population level studies. Studies dealing with
populationmonitoringusuallyneedstrongersampling
effort and more complex sampling design. To do so,
cameratrapsareincreasinglyusedasanalternativeto
other more traditional methods. However, Gompper
et al. (2006) proved camera traps to be inefcient at
detectingsmallcanids,whichwereotherwisedetected
by scat surveys, DNA analysis and/or snowtracking.
When comparing different methodologies for the
censusofpopulationdiversityandabundance,camera
trappingappearto be themostappropriatemethodin
difcult to access areas compared to line transect or
animaltracksurvey(Silveiraetal.,2003).Usingcamera
traps to estimating population density can involve
complexsampling designandbesubjecttonumerous
biases. Firstly,it is important to consider the bias of
disproportionally samples more easily accessible or
more attractive places for wildlife where detection
probabilityisincreased(Fosteretal.,2011).Thetypical
procedure to characterize an animal population in a
givenhabitatconsistsofsettingupthesamplingeffort
(cameratraps) inarandomorsystematicway(Foster
etal., 2011).Asexplained byRowcliffeetal.(2013),
Useofcameratrapsforwildlifestudies.Areview 451
cameras can be positioned in less or more attractive
places to animals as long as those are proportionally
sampledinregards to their relative occurrence in the
studied ecosystem. Thus, using a grid and a random
number generator, or following a stratied design
allow ones to select positions where to install the
camerasatrandominregardstotheanimals(Rowcliffe
etal., 2013). However,some researchers have set up
their cameras in specic places where the targeted
elusivespeciesarelikelytopass,hopingtomaximize
encounter rate (e.g., Sanderson, 2004; Weckel et al.,
2006); some have even tried to lure animals with
attractive smells or baits (e.g., Trolle et al., 2003;
Garroteetal.,2012).Indeed,placingcameratrapsina
non-randomwayisnotnecessarilyanissueas“itisthe
animalpopulationwithinanareathatisthesubjectof
samplingbyobservationstations,nottheareaitself”as
observedbyBengsenetal.(2011).Secondly,oneneeds
to consider variations in detection probability due to
the material used. The use of incandescent ash at
nightcaneasilyspookthetargetanimalsandnegatively
inuence future visitation rates in the vicinity of the
camera(Sequinetal.,2003;Weggeetal.,2004).Thus,
in the case of capture-recapture sampling or studies
on habitat use of nocturnal species, it is preferable
to avoid using camera models with an incandescent
ash.Inaddition, it is important tomakesure all set
up cameras have sufcient battery life for a given
sampling period. Due to spatial variations in animal
communityortodifferentcameramodels,thenumber
of pictures taken can greatly vary between cameras
andsome can see their batteries getting empty much
morerapidlythan others do. Cameras runningout of
batteriespossiblymissinformation(animalspassingin
theeldofdetectionwithoutbeingphotographed)and
leadtounderestimatedwildlifeestimation.Apartfrom
samplingbias,populationestimateswithlowprecision
is a common issue when using camera traps data.
Sampling design with low detection probability, due
toalownumberofcameratraps,ashortdurationofa
studyorinadequatematerialcanonlypermittoobtain
lowsamplesize,whichitselflimitsourabilitytoobtain
preciseparametersandstronglyaffectsthestrengthof
populationestimates (Foster et al., 2011).As a mean
to increase sample size, setting up two cameras at a
samestation allows obtaining pictures of both anks
formarkedanimalsandcanfacilitatetheidentication
ofindividuals(Kalleetal.,2011;Negrõesetal.,2012).
Intra-community interactions. In the case of seed
dispersalstudies,thecameraisoftensetupsothatthe
visual eld includes the fruits or seeds of interest to
maximize the chances of photographing frugivores
(Seufertetal.,2010;Nyiramanaetal.,2011).Variables
ofinterestherearefrequencyofvisitsandtherelative
contributionofdifferentanimalspeciestoseedremoval.
From personal experience, two remaining limitations
can,however,beidentied.Therstlimitationoccurs
when the camera is positioned close to a fruit/seed
sample so observers can easily quantify the number
of items manipulated by animals. Here, the focal
distancemightbetooclosetobeingabletophotograph
all the animals visiting the area. The camera would
then record a limited number of visiting species and
individualanimals.By contrast,thesecondlimitation
occurs when the camera is positioned to sample the
widest area possible below a fruiting tree canopy,in
orderto systematically record all visitinganimals. In
thisscenario, the focal distance might be too high to
allowobserverstoseeaccuratelythenumberoffruits/
seeds manipulated. An alternative couldbe to set up
two or more cameras at a same location to sample
boththe tree canopy’sshadow and a fruit sample on
theoor.In thelatter case, an alternative toevaluate
species-specic contribution to seed removal could
be to consider visit frequencies per species in the
area.Additionally,seedremovalratecanbeindirectly
assessed with an exclusion experiment (Culot et al.,
2009).
Data analysis.Theidenticationofindividualanimals
is generally made by natural fur marks, injuries, and
coloration patterns (dots, bands). This identication
is, however, always subjective and likely to vary
accordingto theobserverand thuslikelyto affectthe
precisionofestimates.Todiminishtheriskofmistaken
identication, different computer models are able to
help matching pictures of marked individuals (Kelly,
2001;Mendozaetal.,2011).Suchtoolsallowobservers
toimprovetheirabilitytorecognizeindividualanimals
andto be more precise inmaking population density
estimates.
Individualidenticationisacrucialstepinmaking
population estimate. The spatially explicit capture-
recapture technique is increasingly used for this
purpose(e.g.,Efford,2011;Kalleetal.,2011;O’Brien
etal., 2011).This techniqueassumesthatanimalsare
independently distributed in space and that they use
denedhomeranges.Thus,amodelmustberun,which
considers, on the one hand, a population parameter
(populationdensity)and,ontheotherhand,aprocess
of individual recognition. The detection process is
itselfdrivenbyamathematicalfunctiondescribingthe
probability of detecting an animal, which decreases
asthecenterofagivenhomerangegetsfurtheraway
fromacameratrap(Kalleetal.,2011).
Camera trap data are also used to generate
abundanceindicesandgetquickinsightintopopulation
size. However, the power of such indices is limited
compared to true estimates of population density
for different reasons. Firstly, variations in indices
cannotnecessarilybe attributed to true variationsin
452 Biotechnol. Agron. Soc. Environ. 201418(3),446-454
populationsize.Indeed,touseandbeabletocompare
suchindices one needs to makethe assumption that
wildlifedetectabilityisconstantovertime,spaceand
betweenspecies,however,thisiseithernottested,nor
true (Sollman et al., 2012). Secondly, those indices
are rarely calibrated with the actual population and
thusonly givelittleinformationonthetruedynamic
ofpopulationsize(Sollmanetal.,2012).Moreover,a
toolownumberoftrapssetup(replicas)doesnotallow
the calculation of a condence interval (variance)
necessarytoestimatetheexactitudeofindices(Azlan
et al., 2006), though Bengsen et al. (2011) adapted
aGeneral Index Model able to account for variance
whencalculatingpopulationabundanceindices.
Camera traps data such as species detection/
non-detection can also be used in occupancy model
(e.g., MacKenzie et al., 2003; Long et al., 2011) to
predictspeciesoccurrenceand determine population
dynamicparameters.Suchmodelsgeneratedetection
probability data and thus prevent the recording of
falseabsence.This has veryhelpfulimplicationsfor
monitoringelusivespeciesforwhichobservationsare
scarce.
4. CONCLUSION
Dependingonthedatatobecollected,thetargetanimal
species and the type of ecosystem, it is essential to
rstchoosetheappropriate equipment to collect the
dataneeded,asnotallcameramodelswillbesuitable
foraspecicresearchobjective.Giventheincreasing
useof camera trappingbyscientists,we believethat
the available technologies should and will know
improvementsinthefuture.Higherimageresolution
resulting from larger sensor and more efcient
infraredbeam would allow a better identication of
individuals,especiallyfor marked nocturnalspecies.
Evenmorediscreteandfastercameraswouldprevent
spooking animals and get more unblurred pictures.
Next, the implementation of appropriate sampling
protocolsmustbeseriouslyconsidered.In a general
way, we believe that homogenization of detection
probability could improve the use of camera traps
data by diminishing biases and allowing stronger
inter-site and inter-species data comparison. This
couldbedone:
– atthecamerascale,byusingcameramodelshaving
similarfeatures(detectionzone,eldofview,trigger
speed,etc.),
– attheecosystemscalebyimplementingstandardized
samplingscheme(numberofcameras,spacing,and
placement).
Having a standard sampling protocol would
also permit more solid use of statistical models and
interpretationof results.Theuseof computertoolsto
improvethescienticvalueofpicturesisincreasingly
commonbutalldoesstill not agree basic assumption
requirements. Future development of computer tools
forpopulationdensity,abundance andsiteoccupancy
estimates would need to rely on empirical validated
results on individual habitat use behavior and
populationdynamics.
Acknowledgements
ThisstudytookplaceinthecontextoftheBIOSERFproject
funded by the “Politique Scientique Fédérale Belge”
(BELSPO).
Bibliography
AzlanJ.M. & SharmaD.S.K., 2006. The diversity and
activitypatternsof wild felids in a secondary forest in
PeninsularMalaysia.Oryx,40,36-41.
BabweteeraF. & BrownN., 2010. Spatial patterns of tree
recruitmentinEastAfricantropicalforeststhathavelost
their vertebrate seed dispersers. J. Trop. Ecol., 26(2),
193-203.
BarrowsC.W. et al., 2005. A framework for monitoring
multiple-speciesconservationplans. J. Wildl.Manage.,
69(4),1333-1345.
BauerJ.W., LoganK.A., SweanorL.L. & BoyceW.M.,
2005. Scavenging behaviour in puma. Southwestern
Nat.,50(4),466-471.
BengsenA.J., LeungL.K.-P., LapidgeS.J. & GordonI.J.,
2011. Using a general index approach to camera-trap
abundanceindices.J. Wildl. Manage.,75(5),1222-1227.
BlakeJ.G.etal.,2010.Useofminerallicksbywhite-bellied
spider monkeys (Ateles belzebuth) and red howler
monkeys(Alouatta seniculus)inEasternEcuador.Int. J.
Primatol.,31(3),471-483.
BouchéP.,LejeuneP.&VermeulenC.,2012.Howtocount
elephants in West African savannahs? Synthesis and
comparison of main gamecount methods. Biotechnol.
Agron. Soc. Environ.,16(1),77-91.
Camera Traps cc, 2013. http://www.cameratrap.co.za,
(20/09/2013).
CamposR.C., SteinerJ. & ZillikensA., 2012. Bird and
mammalfrugivores ofEuterpe edulisatSanta Catarina
island monitored by camera traps. Stud. Neotropical
Fauna Environ.,47(2),105-110.
CarthewS.M.&SlaterE.,1991.Monitoringanimalactivity
with automated photography. J. Wildl.Manage., 55,
689-692.
CharruauP. & HénautY., 2012. Nest attendance and
hatchlingcareinwildAmericancrocodiles(Crocodylus
acutus) in Quintana Roo, Mexico. Anim. Biol., 62(1),
29-51.
Useofcameratrapsforwildlifestudies.Areview 453
ChundawatR.S.et al., 2011.Panthera tigris. IUCN 2012,
IUCN Red List of Threatened Species. Version 2012.2,
http://www.iucnredlist.org,(15/11/2012).
CulotL.,HuynenM.-C.,GérardP.&HeymannE.W.,2009.
Short-termpost-dispersalfateofseedsdefecatedbytwo
small primate species (Saguinus mystax and Saguinus
fuscicollis) in the Amazonian forest of Peru. J. Trop.
Ecol.,25(3),229-238.
CutlerT.L.&SwannD.E.,1999.Usingremotephotography
in wildlife ecology: a review. Wildl. Soc. Bull., 27(3),
571-581.
EffordM.G., 2011. Estimation of population density by
spatiallyexplicitcapture-recaptureanalysisofdatafrom
areasearches.Ecology,92(12),2202-2207.
FosterR.J. & HarmsenB.J., 2011. A critique of density
estimation from camera-trap data. J. Wildl. Manage.,
76(2),224-236.
GarroteG. et al., 2012. The effect of attractant lures in
camera trapping: a case study of population estimates
fortheIberianlynx(Lynx pardinus).Eur. J. Wildl. Res.,
58(5),881-884.
Gil-SánchezJ.M.et al., 2011.Theuse of camera trapping
forestimatingIberianlynx(Lynx pardinus)homeranges.
Eur. J. Wildl. Res.,57(6),1203-1211.
GompperM.E.,KaysR.W.&RayJ.C.,2006.Acomparison
of noninvasive techniques to survey carnivore
communitiesinnortheasternNorthAmerica.Wildl. Soc.
Bull.,34,1142-1151.
GrayT.N.E. & PhanC., 2011. Habitat preferences and
activity patterns of the larger mammal community in
Phnom Prich Wildlife Sanctuary, Cambodia. Rafes
Bull. Zool.,59(2),311-318.
GrifthsM., 1993. Population density of Sumatran tigers
inGunungLeuserNationalPark.TigerBeat.Newsletter
Tiger Species Survival Plan,6(2),17-18.
HughsonD.L., DarbyN.W. & DunganJ.D., 2010.
Comparison of motion-activated cameras for wildlife
investigations. California Fish Game, 96(2), 101-
109.
KalleR.,RameshT.,QureshiQ.&SankarK.,2011.Density
of tiger and leopard in a tropical deciduous forest of
MudumalaiTigerReserve,southernIndia,asestimated
using photographic capture-recapture sampling. Acta
Theriologica,56(4),335-342.
KaranthK.U., 1995. Estimating tiger Panthera tigris
populations from camera-trap data using capture–
recapturemodels.Biol. Conserv.,71,333-338.
KellyM.J.,2001.Computer-aidedphotographmatchingin
studiesusingindividualidentication:anexamplefrom
Serengeticheetahs.J. Mammalogy,82(2),440-449.
KoikeS.et al.,2012.Seedremovaland survivalinAsiatic
blackbearUrsus thibetanusfaeces:effectofrodentsas
secondaryseeddispersers.Wildl. Biol.,18(1),24-34.
KuceraT.E. & BarrettR.H., 1993. In my experience: the
Trailmaster® camera system for detecting wildlife.
Wildl. Soc. Bull.,21(4),505-508.
LantschnerM.V.,RuschV.&HayesJ.P.,2012.Habitatuse
by carnivores at different spatial scales in a plantation
forest landscape in Patagonia, Argentina. For. Ecol.
Manage.,269,271-278.
LiuX. et al., 2012. Monitoring wildlife abundance and
diversity with infra-red camera traps in Guanyinshan
NatureReserveofShaanxiProvince,China.Ecol. Indic.,
33,121-128.
LongR.A., MacKayP., RayJ. & ZielinskiW., eds, 2008.
Noninvasive survey methods for carnivores.Washington:
IslandPress.
LongR.A. et al., 2011. Predicting carnivore occurrence
with noninvasive surveys and occupancy modeling.
Landscape Ecol.,26,327-340.
ŁopuckiR., 2007. Social relationships in a bank vole
Clethrionomys glareolus (Schreber, 1780) population:
videomonitoringundereldconditions.Polish J. Ecol.,
55(3),543-558.
MacKenzieD.I. et al., 2003. Estimating site occupancy,
colonization, and local extinction when a species is
detectedimperfectly.Ecology,84(8),2200-2207.
MeekP.D. & PittetA., 2012. User-based design
specications for the ultimate camera trap for wildlife
research.Wildl. Res.,39(8),649-660.
MendozaE., MartineauP.R., BrennerE. & DirzoR.,
2011. A novel method to improve individual animal
identication based on camera-trapping data. J. Wildl.
Manage.,75(4),973-979.
MoruzziT.L.etal.,2002.Assessingremotelytriggered
camerasforsurveyingcarnivoredistribution.Wildl. Soc.
Bull.,30(2),380-386.
NakamuraJ.,ed.,2005.Image sensors and signal processing
for digital still cameras. Boca Raton, FL, USA: CRC
Press.
NegrõesN. et al., 2012. One or two cameras per station?
MonitoringjaguarsandothermammalsintheAmazon.
Ecol. Res.,27,638-648.
NyiramanaA., MendozaI., KaplinB.A. & ForgetP.-M.,
2011.Evidenceforseeddispersalbyrodentsintropical
montaneforestinAfrica.Biotropica,43(6),654-657.
O’BrienT.G. & KinnairdM.F., 2011. Density estimation
ofsympatriccarnivoresusingspatiallyexplicitcapture-
recapture methods and standard trapping grid. Ecol.
Appl.,21(8),2908-2916.
O’ConnellA.F., NicholsJ.D. & KaranthK.U., 2011.
Camera traps in animal ecology: methods and analyses.
Tokyo:Springer.
Oliveira-SantosL.G.R. et al., 2012. Abundance changes
andactivityexibilityoftheoncilla,Leopardus tigrinus
(Carnivora: Felidae), appear to reect avoidance of
conict.Zoologia,29(2),115-120.
PenderR.J.,ShielsA.B.,Bialic-MurphyL.&MosherS.M.,
2013. Large-scale rodent control reduces pre- and
post-dispersal seed predation of the endangered
Hawaiian lobeliad, Cyanea superba subsp. superba
(Campanulaceae).Biol. Invasion,15(1),213-223.
454 Biotechnol. Agron. Soc. Environ. 201418(3),446-454
PereiraP. et al., 2012. Coexistence of carnivores in
a heterogeneous landscape: habitat selection and
ecologicalniches.Ecol. Res.,27(4),745-753.
RoveroF., ZimmermannF., BerziD. & MeekP., 2013.
“Which camera trap type and how many do I need?”
A review of camera features and study designs for a
range of wildlife research applications. HystrixItal. J.
Mammalogy,24(2),148-156.
RowcliffeJ.M. et al., 2011. Quantifying the sensitivity of
camera traps: an adapted distance sampling approach.
Methods Ecol. Evol.,2,464-476.
RowcliffeJ.M.,KaysR.,CarboneC.&JansenP.A., 2013.
Clarifyingassumptionsbehindtheestimationofanimal
density from camera trap rates. J. Wildl. Manage., 77,
876.
SandersonJ.G., 2004. Camera phototraping monitoring
protocol. The tropical ecology, assessment and
monitoring (team) initiative, http://www.teamnetwork.
org/files/protocols/terrestrial-vertebrate/archive/
TEAMCameraTraps-PT-EN-2.0.pdf.,(20/09/2013).
SavidgeJ.A.& SeibertT.F., 1988. An infrared trigger and
cameratoidentify predators atarticialnests.J. Wildl.
Manage.,52,291-294.
ScheibeK.M. et al., 2008. Long-term automatic video
recording as a tool for analysing the time patterns of
utilisationofpredenedlocationsbywildanimals.Eur.
J. Wildl. Res.,54(1),53-59.
SequinE.S., JaegerM.M., BrussardP.F. & BarrettR.H.,
2003. Wariness of coyotes to camera traps relative to
social status and territory boundaries. Lincoln, NE,
USA:UniversityofNebraska–Lincoln.
SeufertV., LindenB. & FischerF., 2010. Revealing
secondaryseedremovers:resultsfromcameratrapping.
Afr. J. Ecol.,48(4),914-922.
SilveiraL., JácomoA.T.A. & Diniz-FilhoJ.A.F., 2003.
Camera trap, line transect census and track surveys: a
comparativeevaluation.Biol. Conserv.,114(3),351-355.
SoleyF.G.&Alvarado-DíazI.,2011.Prospectivethinkingin
amustelid?Eira barbara(Carnivora)cacheunripefruits
to consume them once ripened. Naturwissenschaften,
98(8),693-698.
SollmannR., MohamedA., SamejimaH. & WilltingA.,
2012. Risky business or simple solution – Relative
abundanceindicesfromcamera-trapping.Biol. Conserv.,
159,405-412.
Srbek-AraujoA.C., SilveiraL.F. & ChiarelloA.G., 2012.
The red-billed curassow (Craxblumenbachii): social
organization, and daily activity patterns. Wilson J.
Ornithol.,124(2),321-327.
TrailCamPro.com, 2013. http://www.trailcampro.com,
(20/09/2013).
TrolleM.&KéryM.,2003.Estimationofocelotdensityin
thepantanalusingcapture-recaptureanalysisofcamera-
trappingdata.J. Mammalogy,84(2),607-614.
van SchaikC.P. & GrifthsM., 1996. Activity periods of
Indonesianrainforestmammals.Biotropica,28(1),105-
112.
WeckelM.,GiulianoW.&SilverS.,2006.Jaguar(Panthera
onca)feedingecology:distributionofpredatorandprey
throughtimeandspace.J. Zool.,270,25-30.
WeggeP.,PokheralC.Pd.&JnawaliS.R., 2004. Effectsof
trapping effort and trap shyness on estimates of tiger
abundance from camera trap studies. Anim. Conserv.,
7(3),251-256.
(61ref.)