Access to this full-text is provided by IUCr.
Content available from Acta Crystallographica Section E: Crystallographic Communications
This content is subject to copyright.
(E)-3-Methyl-2,6-diphenylpiperidin-4-one
O-(3-methylbenzoyl)oxime
V. Kathiravan,
a
K. Gokula Krishnan,
b
T. Mohandas,
c
V. Thanikachalam
b
and P. Sakthivel
d
*
a
Department of Physics, Goverment Arts College, Karur 639 005, India,
b
Department
of Chemistry, Annamalai University, Annamalainagar, Chidambaram, India,
c
Department of Physics, Shri Angalamman College of Engineering and Technology,
Siruganoor, Tiruchirappalli, India, and
d
Department of Physics, Urumu
Dhanalakshmi College, Tiruchirappalli 620 019, India. Correspondence e-mail:
sakthi2udc@gmail.com
Received 5 June 2014; accepted 17 July 2014
Edited by M. Bolte, Goethe-Universita
¨t Frankfurt, Germany
Key indicators: single-crystal X-ray study; T= 293 K; mean (C–C) = 0.003 A
˚;
Rfactor = 0.053; wR factor = 0.175; data-to-parameter ratio = 19.5.
In the title compound, C
26
H
26
N
2
O
2
, the piperidine ring
exhibits a chair conformation. The phenyl rings are attached
to the central heterocycle in an equatorial position. The
dihedral angle between the planes of the phenyl rings is
57.58 (8). In the crystal, C—HO interactions connect the
molecules into zigzag chains along [001].
Related literature
For the biological activity of oxime esters, see: Crichlow et al.
(2007); Hwu et al. (2008); Neely et al. (2013); Liu et al. (2011).
For ring conformations, see: Cremer & Pople (1975). For
comparable structures, see: Park et al. (2012a,b).
Experimental
Crystal data
C
26
H
26
N
2
O
2
M
r
= 398.49
Monoclinic, P21=n
a= 10.6265 (6) A
˚
b= 12.7146 (7) A
˚
c= 16.4031 (8) A
˚
= 99.524 (2)
V= 2185.7 (2) A
˚
3
Z=4
Mo Kradiation
= 0.08 mm
1
T= 293 K
0.30 0.25 0.20 mm
Data collection
Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008) T
min
=
0.977, T
max
= 0.985
37978 measured reflections
5367 independent reflections
3097 reflections with I>2(I)
R
int
= 0.034
Refinement
R[F
2
>2(F
2
)] = 0.053
wR(F
2
) = 0.175
S= 1.04
5367 reflections
275 parameters
H atoms treated by a mixture of
independent and constrained
refinement
max
= 0.25 e A
˚
3
min
=0.23 e A
˚
3
Table 1
Hydrogen-bond geometry (A
˚,).
D—HAD—H HADAD—HA
C3—H3O2
i
0.93 2.59 3.485 (3) 160
Symmetry code: (i) xþ1
2;yþ3
2;z1
2.
Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT
(Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s)
used to solve structure: SHELXS97 (Sheldrick, 2008); program(s)
used to refine structure: SHELXL97 (Sheldrick, 2008); molecular
graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury
(Macrae et al., 2008); software used to prepare material for publica-
tion: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
The authors thank Dr Babu Varghese, Senior Scientific
Officer SAIF, IIT Madras, India, for carrying out the data
collection.
Supporting information for this paper is available from the IUCr
electronic archives (Reference: BT6984).
References
Bruker (2008). APEX2,SAINT and SADABS. Bruker AXS Inc., Madison,
Wisconsin, USA.
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
Crichlow, G. V., Cheng, K. F., Dabideen, D., Ochani, M., Aljabari, B., Pavlov,
V. A., Miller, E. J., Lolis, E. & Al-Abed, Y. (2007). J. Biol. Chem.,282,
23089–23095.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Hwu, J. R., Yang, J. R., Tsay, S. C., Hsu, M. H., Chen, Y. C. & Chou, S. S. P.
(2008). Tetrahedron Lett.,49, 3312–3315.
Liu, X. H., Pan, L., Tan, C. X., Weng, J. Q., Wang, B. L. & Li, Z. M. (2011).
Pestic. Biochem. Physiol., pp. 101–143.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P.,
Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood,
P. A. (2008). J. Appl. Cryst. 41, 466–470.
Neely, J. M. & Rovis, T. (2013). J. Am. Chem. Soc.,135, 66–69.
Park, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524.
Park, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
organic compounds
Acta Cryst. (2014). E70, o883 doi:10.1107/S1600536814016638 Kathiravan et al. o883
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
supporting information
sup-1
Acta Cryst. (2014). E70, o883
supporting information
Acta Cryst. (2014). E70, o883 [doi:10.1107/S1600536814016638]
(E)-3-Methyl-2,6-diphenylpiperidin-4-one O-(3-methylbenzoyl)oxime
V. Kathiravan, K. Gokula Krishnan, T. Mohandas, V. Thanikachalam and P. Sakthivel
S1. Comment
The chemistry of oxime esters are serving as important synthetic intermediate, and have been employed as starting
materials for both synthetic and medicinal chemistry (Crichlow et al. 2007; Hwu et al.2008; Neely et al.2013). Oxime
esters have received great potential in biologically active molecules such as agrochemical industries (Liu et al., 2011).
The central ring (N1/C7/C8/C9/C10/C11) adopts a chair conformation with the puckering parameters Q=0.5398 Å,
θ=8.88° and φ=30.1509° (Cremer & Pople, 1975).
The bond distances and bond angles in the title compound agree very well with the corresponding values reported in
closely related compounds (Park et al., 2012a,b).
This stucture was stabilized by C—H···O intramolecular interactions linking the molecules to zigzag chains running
parallel to [001] axis.
S2. Experimental
A mixture of 3-methyl-2,6-diphenylpiperidin-4-one oxime (0.73 g, 2.5 mmol) and m-methylbenzoic acid (0.37 g, 2.75
mmol) in dry pyridine (7 ml) was stirred at ambient temperature. POCl3 (0.25 ml, 2.75 mmol) was added drop wise to the
reaction mixture and stirring is continued for 20 to 30 min. The progress of the reaction was monitored by TLC. After
completion of the reaction, a saturated solution of NaHCO3 was added portion wise to the reaction mixture and the crude
product was thrown out as a precipitate. The crude product was then recrystallized from absolute ethanol to get the pure
3-methyl-2,6-diphenylpiperidin-4-one-O-(3-methylbenzoyl) oxime. Yield 0.76 g (78%).
S3. Refinement
The positions of the hydrogen atoms were identified from difference electron density maps. The hydrogen atoms bound
to the C atoms are treated as riding atoms, with d(C—H)=0.93 and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H)=0.97 and
Uiso(H)=1.2Ueq(C) for methylene and d(C—H)=0.96 and Uiso(H) =1.5Ueq(C) for methyl groups. The H atom bonded
to N was freely refined.
supporting information
sup-2
Acta Cryst. (2014). E70, o883
Figure 1
The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at
30% probability level. H atoms are present as small spheres of arbitary radius.
Figure 2
Part of crystal structure of the title compound, showing the formation one dimensional C(12) chains running parallel to [0
0 1] axis.
(E)-3-Methyl-2,6-diphenylpiperidin-4-one O-(3-methylbenzoyl)oxime
Crystal data
C26H26N2O2
Mr = 398.49
Monoclinic, P21/n
Hall symbol: -P 2yn
a = 10.6265 (6) Å
b = 12.7146 (7) Å
c = 16.4031 (8) Å
β = 99.524 (2)°
supporting information
sup-3
Acta Cryst. (2014). E70, o883
V = 2185.7 (2) Å3
Z = 4
F(000) = 848
Dx = 1.211 Mg m−3
Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 3910 reflections
θ = 2.0–28.3°
µ = 0.08 mm−1
T = 293 K
Block, colourless
0.30 × 0.25 × 0.20 mm
Data collection
Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω & φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
Tmin = 0.977, Tmax = 0.985
37978 measured reflections
5367 independent reflections
3097 reflections with I > 2σ(I)
Rint = 0.034
θmax = 28.3°, θmin = 2.0°
h = −14→14
k = −16→16
l = −21→19
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.053
wR(F2) = 0.175
S = 1.04
5367 reflections
275 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
w = 1/[σ2(Fo2) + (0.070P)2 + 0.8065P]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max < 0.001
Δρmax = 0.25 e Å−3
Δρmin = −0.23 e Å−3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full
covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and
torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used
only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzU
iso*/Ueq
H1A 0.018 (2) 1.0450 (18) 0.1578 (13) 0.061 (7)*
O1 0.02902 (16) 0.61978 (10) 0.21324 (9) 0.0619 (4)
O2 −0.06469 (18) 0.49464 (12) 0.27901 (11) 0.0731 (5)
N1 0.04764 (16) 0.99163 (12) 0.18907 (10) 0.0436 (4)
C11 −0.04007 (18) 0.97408 (14) 0.24813 (11) 0.0440 (4)
H11 −0.1257 0.9608 0.2172 0.053*
N2 −0.01386 (18) 0.69687 (13) 0.26740 (11) 0.0564 (5)
C20 0.05405 (18) 0.44768 (15) 0.17305 (12) 0.0456 (4)
C10 0.0019 (2) 0.87831 (15) 0.30293 (12) 0.0515 (5)
H10 0.0828 0.8974 0.3378 0.062*
supporting information
sup-4
Acta Cryst. (2014). E70, o883
C7 0.05728 (18) 0.90311 (15) 0.13409 (11) 0.0446 (4)
H7 −0.0282 0.8857 0.1047 0.054*
C6 0.14265 (18) 0.92717 (15) 0.07160 (11) 0.0459 (5)
C9 0.0297 (2) 0.78632 (15) 0.25099 (12) 0.0480 (5)
C12 −0.04334 (19) 1.07383 (15) 0.29832 (11) 0.0445 (4)
C19 −0.00232 (19) 0.51999 (15) 0.22822 (12) 0.0478 (5)
C25 0.10773 (19) 0.48317 (16) 0.10675 (12) 0.0500 (5)
H25 0.1056 0.5547 0.0946 0.060*
C24 0.1646 (2) 0.41475 (18) 0.05806 (13) 0.0563 (5)
C13 −0.1543 (2) 1.13041 (16) 0.29641 (12) 0.0511 (5)
H13 −0.2295 1.1070 0.2643 0.061*
C8 0.1099 (2) 0.80955 (16) 0.18605 (14) 0.0562 (5)
H8A 0.1115 0.7485 0.1508 0.067*
H8B 0.1968 0.8243 0.2123 0.067*
C14 −0.1543 (3) 1.22239 (18) 0.34226 (15) 0.0652 (6)
H14 −0.2294 1.2607 0.3400 0.078*
C15 −0.0451 (3) 1.25700 (18) 0.39050 (15) 0.0694 (7)
H15 −0.0463 1.3177 0.4219 0.083*
C17 0.0669 (2) 1.11168 (17) 0.34612 (14) 0.0606 (6)
H17 0.1433 1.0756 0.3471 0.073*
C16 0.0654 (3) 1.20238 (19) 0.39244 (15) 0.0703 (7)
H16 0.1400 1.2261 0.4250 0.084*
C1 0.2413 (2) 0.99896 (18) 0.08749 (15) 0.0611 (6)
H1 0.2542 1.0365 0.1368 0.073*
C18 −0.0920 (3) 0.85368 (19) 0.36119 (16) 0.0790 (8)
H18A −0.1044 0.9153 0.3928 0.119*
H18B −0.0587 0.7979 0.3979 0.119*
H18C −0.1721 0.8324 0.3295 0.119*
C22 0.1156 (3) 0.27329 (18) 0.14423 (17) 0.0735 (7)
H22 0.1193 0.2019 0.1569 0.088*
C21 0.0567 (2) 0.34152 (16) 0.19135 (15) 0.0590 (6)
H21 0.0192 0.3164 0.2349 0.071*
C23 0.1689 (2) 0.30943 (19) 0.07893 (16) 0.0698 (7)
H23 0.2086 0.2622 0.0481 0.084*
C5 0.1289 (2) 0.87079 (19) −0.00125 (13) 0.0608 (6)
H5 0.0640 0.8213 −0.0126 0.073*
C4 0.2102 (3) 0.8869 (2) −0.05753 (14) 0.0768 (8)
H4 0.1998 0.8479 −0.1062 0.092*
C2 0.3212 (3) 1.0150 (2) 0.0298 (2) 0.0838 (8)
H2 0.3864 1.0644 0.0405 0.101*
C3 0.3058 (3) 0.9595 (3) −0.04244 (18) 0.0880 (9)
H3 0.3597 0.9711 −0.0808 0.106*
C26 0.2245 (3) 0.4555 (3) −0.01269 (15) 0.0841 (8)
H26A 0.2596 0.3978 −0.0393 0.126*
H26B 0.2912 0.5043 0.0079 0.126*
H26C 0.1609 0.4904 −0.0518 0.126*
supporting information
sup-5
Acta Cryst. (2014). E70, o883
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
O1 0.0913 (11) 0.0369 (7) 0.0691 (9) −0.0054 (7) 0.0472 (8) −0.0056 (7)
O2 0.0998 (13) 0.0492 (9) 0.0847 (11) 0.0049 (8) 0.0569 (10) 0.0115 (8)
N1 0.0528 (10) 0.0380 (8) 0.0433 (9) 0.0039 (7) 0.0178 (7) 0.0007 (7)
C11 0.0469 (11) 0.0431 (10) 0.0446 (10) −0.0001 (8) 0.0154 (8) −0.0039 (8)
N2 0.0797 (12) 0.0400 (9) 0.0575 (10) 0.0013 (8) 0.0349 (9) −0.0037 (8)
C20 0.0474 (11) 0.0413 (10) 0.0487 (11) −0.0028 (8) 0.0102 (9) −0.0016 (8)
C10 0.0714 (14) 0.0422 (10) 0.0452 (11) 0.0007 (9) 0.0221 (10) 0.0006 (8)
C7 0.0484 (11) 0.0440 (10) 0.0445 (10) −0.0022 (8) 0.0166 (8) −0.0035 (8)
C6 0.0493 (11) 0.0487 (11) 0.0420 (10) 0.0070 (9) 0.0145 (8) 0.0073 (8)
C9 0.0611 (12) 0.0387 (10) 0.0486 (11) 0.0028 (9) 0.0217 (9) 0.0021 (8)
C12 0.0528 (11) 0.0408 (10) 0.0429 (10) 0.0008 (8) 0.0169 (9) −0.0015 (8)
C19 0.0561 (12) 0.0395 (10) 0.0508 (11) 0.0021 (9) 0.0177 (9) 0.0052 (8)
C25 0.0560 (12) 0.0471 (11) 0.0486 (11) −0.0020 (9) 0.0136 (9) −0.0011 (9)
C24 0.0520 (12) 0.0665 (14) 0.0519 (12) −0.0056 (10) 0.0131 (9) −0.0136 (10)
C13 0.0547 (12) 0.0510 (12) 0.0519 (11) 0.0030 (9) 0.0214 (9) 0.0016 (9)
C8 0.0706 (14) 0.0422 (11) 0.0638 (13) 0.0050 (10) 0.0350 (11) 0.0044 (9)
C14 0.0804 (17) 0.0522 (13) 0.0720 (15) 0.0162 (12) 0.0390 (13) 0.0023 (11)
C15 0.106 (2) 0.0467 (12) 0.0627 (14) −0.0041 (13) 0.0359 (14) −0.0135 (11)
C17 0.0611 (14) 0.0520 (12) 0.0677 (14) 0.0033 (10) 0.0084 (11) −0.0089 (10)
C16 0.0871 (18) 0.0604 (14) 0.0627 (14) −0.0126 (13) 0.0103 (13) −0.0135 (11)
C1 0.0604 (14) 0.0604 (13) 0.0679 (14) −0.0016 (11) 0.0267 (11) 0.0030 (11)
C18 0.127 (2) 0.0534 (14) 0.0716 (16) 0.0007 (14) 0.0616 (16) 0.0000 (11)
C22 0.0898 (18) 0.0391 (12) 0.0947 (19) −0.0051 (12) 0.0247 (15) −0.0114 (12)
C21 0.0699 (14) 0.0406 (11) 0.0693 (14) −0.0073 (10) 0.0192 (11) −0.0018 (10)
C23 0.0723 (15) 0.0579 (14) 0.0811 (17) −0.0024 (12) 0.0180 (13) −0.0283 (12)
C5 0.0667 (14) 0.0741 (15) 0.0440 (11) 0.0095 (11) 0.0158 (10) −0.0007 (10)
C4 0.0833 (18) 0.108 (2) 0.0433 (12) 0.0332 (17) 0.0227 (12) 0.0103 (13)
C2 0.0679 (16) 0.0896 (19) 0.103 (2) −0.0024 (14) 0.0420 (15) 0.0255 (17)
C3 0.085 (2) 0.117 (2) 0.0742 (18) 0.0317 (18) 0.0482 (15) 0.0371 (17)
C26 0.0888 (19) 0.110 (2) 0.0610 (15) 0.0015 (16) 0.0345 (14) −0.0119 (14)
Geometric parameters (Å, º)
O1—C19 1.345 (2) C8—H8A 0.9700
O1—N2 1.446 (2) C8—H8B 0.9700
O2—C19 1.192 (2) C14—C15 1.364 (4)
N1—C7 1.456 (2) C14—H14 0.9300
N1—C11 1.468 (2) C15—C16 1.360 (4)
N1—H1A 0.88 (2) C15—H15 0.9300
C11—C12 1.516 (2) C17—C16 1.383 (3)
C11—C10 1.535 (3) C17—H17 0.9300
C11—H11 0.9800 C16—H16 0.9300
N2—C9 1.273 (2) C1—C2 1.387 (3)
C20—C21 1.382 (3) C1—H1 0.9300
C20—C25 1.384 (3) C18—H18A 0.9600
supporting information
sup-6
Acta Cryst. (2014). E70, o883
C20—C19 1.484 (3) C18—H18B 0.9600
C10—C9 1.505 (3) C18—H18C 0.9600
C10—C18 1.524 (3) C22—C23 1.371 (3)
C10—H10 0.9800 C22—C21 1.379 (3)
C7—C6 1.508 (2) C22—H22 0.9300
C7—C8 1.516 (3) C21—H21 0.9300
C7—H7 0.9800 C23—H23 0.9300
C6—C5 1.380 (3) C5—C4 1.380 (3)
C6—C1 1.382 (3) C5—H5 0.9300
C9—C8 1.500 (3) C4—C3 1.365 (4)
C12—C13 1.377 (3) C4—H4 0.9300
C12—C17 1.384 (3) C2—C3 1.366 (4)
C25—C24 1.386 (3) C2—H2 0.9300
C25—H25 0.9300 C3—H3 0.9300
C24—C23 1.381 (3) C26—H26A 0.9600
C24—C26 1.505 (3) C26—H26B 0.9600
C13—C14 1.390 (3) C26—H26C 0.9600
C13—H13 0.9300
C19—O1—N2 114.49 (14) C7—C8—H8B 109.5
C7—N1—C11 114.11 (15) H8A—C8—H8B 108.1
C7—N1—H1A 106.9 (14) C15—C14—C13 120.6 (2)
C11—N1—H1A 107.4 (14) C15—C14—H14 119.7
N1—C11—C12 107.78 (15) C13—C14—H14 119.7
N1—C11—C10 110.62 (15) C16—C15—C14 119.8 (2)
C12—C11—C10 112.10 (15) C16—C15—H15 120.1
N1—C11—H11 108.8 C14—C15—H15 120.1
C12—C11—H11 108.8 C16—C17—C12 121.0 (2)
C10—C11—H11 108.8 C16—C17—H17 119.5
C9—N2—O1 108.23 (15) C12—C17—H17 119.5
C21—C20—C25 119.53 (19) C15—C16—C17 120.1 (2)
C21—C20—C19 117.92 (18) C15—C16—H16 119.9
C25—C20—C19 122.50 (17) C17—C16—H16 119.9
C9—C10—C18 113.92 (17) C6—C1—C2 120.0 (2)
C9—C10—C11 110.50 (15) C6—C1—H1 120.0
C18—C10—C11 111.89 (18) C2—C1—H1 120.0
C9—C10—H10 106.7 C10—C18—H18A 109.5
C18—C10—H10 106.7 C10—C18—H18B 109.5
C11—C10—H10 106.7 H18A—C18—H18B 109.5
N1—C7—C6 112.08 (16) C10—C18—H18C 109.5
N1—C7—C8 108.40 (16) H18A—C18—H18C 109.5
C6—C7—C8 109.50 (15) H18B—C18—H18C 109.5
N1—C7—H7 108.9 C23—C22—C21 120.8 (2)
C6—C7—H7 108.9 C23—C22—H22 119.6
C8—C7—H7 108.9 C21—C22—H22 119.6
C5—C6—C1 118.31 (19) C22—C21—C20 119.2 (2)
C5—C6—C7 119.59 (19) C22—C21—H21 120.4
C1—C6—C7 121.92 (18) C20—C21—H21 120.4
supporting information
sup-7
Acta Cryst. (2014). E70, o883
N2—C9—C8 126.54 (17) C22—C23—C24 121.2 (2)
N2—C9—C10 117.54 (17) C22—C23—H23 119.4
C8—C9—C10 115.90 (16) C24—C23—H23 119.4
C13—C12—C17 118.20 (19) C4—C5—C6 120.9 (2)
C13—C12—C11 121.42 (18) C4—C5—H5 119.5
C17—C12—C11 120.36 (18) C6—C5—H5 119.5
O2—C19—O1 124.49 (18) C3—C4—C5 120.6 (3)
O2—C19—C20 125.87 (18) C3—C4—H4 119.7
O1—C19—C20 109.63 (15) C5—C4—H4 119.7
C20—C25—C24 121.6 (2) C3—C2—C1 121.1 (3)
C20—C25—H25 119.2 C3—C2—H2 119.4
C24—C25—H25 119.2 C1—C2—H2 119.4
C23—C24—C25 117.7 (2) C4—C3—C2 119.0 (2)
C23—C24—C26 121.6 (2) C4—C3—H3 120.5
C25—C24—C26 120.6 (2) C2—C3—H3 120.5
C12—C13—C14 120.3 (2) C24—C26—H26A 109.5
C12—C13—H13 119.9 C24—C26—H26B 109.5
C14—C13—H13 119.9 H26A—C26—H26B 109.5
C9—C8—C7 110.72 (16) C24—C26—H26C 109.5
C9—C8—H8A 109.5 H26A—C26—H26C 109.5
C7—C8—H8A 109.5 H26B—C26—H26C 109.5
C9—C8—H8B 109.5
C7—N1—C11—C12 −177.94 (16) C19—C20—C25—C24 177.28 (19)
C7—N1—C11—C10 59.2 (2) C20—C25—C24—C23 −1.5 (3)
C19—O1—N2—C9 175.23 (19) C20—C25—C24—C26 −178.8 (2)
N1—C11—C10—C9 −48.2 (2) C17—C12—C13—C14 −0.6 (3)
C12—C11—C10—C9 −168.54 (16) C11—C12—C13—C14 −179.19 (17)
N1—C11—C10—C18 −176.30 (18) N2—C9—C8—C7 131.3 (2)
C12—C11—C10—C18 63.4 (2) C10—C9—C8—C7 −50.5 (3)
C11—N1—C7—C6 176.81 (16) N1—C7—C8—C9 55.3 (2)
C11—N1—C7—C8 −62.2 (2) C6—C7—C8—C9 177.81 (17)
N1—C7—C6—C5 −157.34 (18) C12—C13—C14—C15 −0.9 (3)
C8—C7—C6—C5 82.3 (2) C13—C14—C15—C16 1.4 (3)
N1—C7—C6—C1 27.6 (3) C13—C12—C17—C16 1.6 (3)
C8—C7—C6—C1 −92.7 (2) C11—C12—C17—C16 −179.80 (19)
O1—N2—C9—C8 0.9 (3) C14—C15—C16—C17 −0.4 (4)
O1—N2—C9—C10 −177.23 (17) C12—C17—C16—C15 −1.1 (4)
C18—C10—C9—N2 −8.3 (3) C5—C6—C1—C2 1.9 (3)
C11—C10—C9—N2 −135.2 (2) C7—C6—C1—C2 177.0 (2)
C18—C10—C9—C8 173.4 (2) C23—C22—C21—C20 −1.3 (4)
C11—C10—C9—C8 46.4 (3) C25—C20—C21—C22 1.6 (3)
N1—C11—C12—C13 117.95 (19) C19—C20—C21—C22 −176.0 (2)
C10—C11—C12—C13 −120.1 (2) C21—C22—C23—C24 −0.4 (4)
N1—C11—C12—C17 −60.6 (2) C25—C24—C23—C22 1.7 (4)
C10—C11—C12—C17 61.4 (2) C26—C24—C23—C22 179.1 (2)
N2—O1—C19—O2 3.1 (3) C1—C6—C5—C4 −1.1 (3)
N2—O1—C19—C20 −176.11 (16) C7—C6—C5—C4 −176.3 (2)
supporting information
sup-8
Acta Cryst. (2014). E70, o883
C21—C20—C19—O2 −13.2 (3) C6—C5—C4—C3 −0.3 (4)
C25—C20—C19—O2 169.3 (2) C6—C1—C2—C3 −1.2 (4)
C21—C20—C19—O1 165.91 (19) C5—C4—C3—C2 1.0 (4)
C25—C20—C19—O1 −11.5 (3) C1—C2—C3—C4 −0.3 (4)
C21—C20—C25—C24 −0.1 (3)
Hydrogen-bond geometry (Å, º)
D—H···AD—H H···AD···AD—H···A
C3—H3···O2i0.93 2.59 3.485 (3) 160
Symmetry code: (i) x+1/2, −y+3/2, z−1/2.
Available via license: CC BY 2.0
Content may be subject to copyright.
Content uploaded by Venugopal Thanikachalam
Author content
All content in this area was uploaded by Venugopal Thanikachalam on Mar 17, 2015
Content may be subject to copyright.