Conference PaperPDF Available

Target Windows modelling for ATM system

Authors:
CATS Final Workshop – Le Bourget – October 20th, 2010 Page: 1
CONTRACT-BASED
AIR TRANSPORTATION SYSTEM
(CATS)
Target Windows modelling
Presented by Ion Berechet
Air France Consulting
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 2
Version: 1.0
Goal of WP2.2.4
To develop mathematical models of TW generation
by integration actors and system constraints and
capable to give margins of manoeuvre to limit the
uncertainties of system.
The deliverables of WP2.2.4 are:
D2.2.4.1 Initial evaluation of the Target Windows for
experimentations
D2.2.4.2 Developed tools
D2.2.4.3 Report on Target Windows modelling.
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 3
Version: 1.0
Global approach for TW modelling
Target Windows model gives margins of manoeuvre to limit the uncertainties
CONSTRAINTS UNCERTAINTIES
TW
MODEL
Status of constraints
Signed TW
CONSTRAINTS UNCERTAINTIES
TW
MODEL
New TW set
Signed TW
Actors negotiation & agreement
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 4
Version: 1.0
Global constraints and TW modelling
MI1
FL275 – FL345
GLOBAL CONSTRAINTS
TW MODEL
Airline constraints
Signed TWs
values
Airport constraints
Sectors constraints
System constraints
Aircraft constraints
Internal model
constraints
Data modifiable by
actors
GLOBAL CONSTRAINTS
TW MODEL
Airline constraints
Signed TWs
values
Airport constraints
Sectors constraints
System constraints
Aircraft constraints
Internal model
constraints
Data modifiable by
actors
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 5
Version: 1.0
Airline and Airport constraints
Airline constraints
Departure and Arrival times
List of waypoints from Aircraft route
Speed and Flight level values at some waypoints
Destination airport
TTA (for SESAR, out of AMAN horizon) according to Airport
Airport constraints
Departure and arrival capacity
4reduced capacity imposed by meteorological constraints
4reduced capacity imposed by infrastructure constraints
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 6
Version: 1.0
Aircraft constraints
Aircraft envelop data in normal conditions
MinOperational speeds /FL
MaxOperational speeds /FL
Aircraft Performance data in normal conditions
maximum altitude
rate of climb (ROC)
rate of descent (ROD)
Aircraft failure
max speed of the aircraft
max FL of the aircraft
MI1
FL275 – FL345
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 7
Version: 1.0
ANSP constraints (1)
Sector constraints
Capacity
Environmental constraints
4
meteorological constraints interval time restriction / area
4
military area constraints interval time restriction / area
Sector boundary constraints / TW
4
No SUP TW near X nm from boundary sector (proposed X = 10 nm)
4
No SUP TW near X nm of crossing points
Paired level constraint
4
Odd FL constraint
4
Even FL constraint
Altitude limits
4
lower altitude of sector in feet
4
upper altitude of sector in feet
Boundary points geo position (lat/long)
MI1
FL275 – FL345
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 8
Version: 1.0
ANSP constraints (2)
Network constraints
Route network constraints
Military area
Environnement constraints
Meteo
MI1
FL275 – FL345
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 9
Version: 1.0
System constraints
The safety issues (D2.2.1 Risk and Safety
Assessment), regarding the number of TW’s
overlapping at the same time, same area, same FL…
Minimum Separation TW’s constraints
Signed TW’s values for other flights
MI1
FL275 – FL345
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 10
Version: 1.0
Uncertainties
Target Windows model gives margins of manoeuvre to
limit the uncertainties
Ad hoc events occurrences
4Logistical delays at airport
4Reduced runway capacities
4Meteorological phenomena
4Occurrences on board aircraft
Permanent uncertainty
4Current aircraft position
4Aircraft performance
4Air mass properties
4Measurement noise, noise model accuracy
ATC-flight crew communications
Separation function (conflict resolution,….)
MI1
FL275 – FL345
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 11
Version: 1.0
Illustration of TW calculation
MI1
FL275 – FL345
Uncertainty
Aircraft constraints
Tolerances TW
values
Callsign
windowtimeyuncertaint
min
i
time max
i
time
windowtimetolerance
envelopetimeaircraft
time
timeWindowTarget
{
}
{ }
velope)ft_time_enmax(aircra,cceptance)max(time_aminWindowTargetmax_time
velope)ft_time_enmin(aircra),cceptancemin(time_amaxWindowTargetmin_time =
=
,
Example
System constraints
Uncertainty
Aircraft constraints
Tolerances TW
values
Callsign
windowtimeyuncertaint
min
i
time max
i
time
windowtimetolerance
envelopetimeaircraft
time
timeWindowTarget
{
}
{ }
velope)ft_time_enmax(aircra,cceptance)max(time_aminWindowTargetmax_time
velope)ft_time_enmin(aircra),cceptancemin(time_amaxWindowTargetmin_time =
=
,
Example
System constraints
Interior Point Algorithm
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 12
Version: 1.0
Example of SUP TW overlapping
MI1
FL275 – FL345
N
S
W
E
SE
SW
NW
NE
N
S
W
E
SE
SW
NW
NE
i
P1
i
P2
i
P3
i
P4
i
CP
jP3
J
CP
jP2
jP1
jP4
i
Callsign
j
Callsign
i
TWSUP
j
TWSUP
planfer lity transresponsibi
[
]
max
i
min
i
,timetime
[
]
max
j
min
j
,timetime
ij
S
N
S
W
E
SE
SW
NW
NE
N
S
W
E
SE
SW
NW
NE
i
P1
i
P
2
i
P
3
i
P4
i
CP
jP3
J
CP
jP
2
jP
1
jP
4
i
Callsign
j
Callsign
i
TWSUP
j
TWSUP
planfer lity transresponsibi
[
]
max
i
min
i
,timetime
[
]
max
j
min
j
,timetime
ij
S
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 13
Version: 1.0
Example of ADJ TW’s overlapping
MI1
FL275 – FL345
i
P1
i
P2
j
P1
j
P2
i
Callsign
j
Callsign
max
i
level
min
j
level
max
j
level
min
i
level
j
FL
i
FL
i
segmP1P2
j
segmP1P2
i
TWADJ
j
TWADJ
level ""or "" evenodd
areafer lity transresponsibi
ij
S
[
]
max
i
min
i
,timetime
[
]
max
j
min
j
,timetime
frontiersector
i
intCrossingPo
j
intCrossingPo
i
P1
i
P
2
j
P1
j
P
2
i
Callsign
j
Callsign
max
i
level
min
j
level
max
j
level
min
i
level
j
FL
i
FL
i
segmP1P2
j
segmP1P2
i
TWADJ
j
TWADJ
level ""or ""
evenodd
areafer lity transresponsibi
ij
S
[
]
max
i
min
i
,timetime
[
]
max
j
min
j
,timetime
frontiersector
i
intCrossingPo
j
intCrossingPo
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 14
Version: 1.0
Illustration of TWs de-confliction by time
separation
MI1
FL275 – FL345
min
i
time
max
i
time
min
j
time
max
j
time
min
i
newtime
max
i
newtime
min
j
newtime
max
j
newtime
conflict
potential
onacceleratilimit
i
time
_iondecceleratlimit
i
time
_
onacceleratilimit
j
time
_iondecceleratlimit
j
time
_
i
Callsign
i
Callsign
j
Callsign
j
Callsign
time
min
i
time
max
i
time
min
j
time max
j
time
min
i
newtime
max
i
newtime
min
j
newtime
max
j
newtime
conflict
potential
onacceleratilimit
i
time
_
iondecceleratlimit
i
time
_
onacceleratilimit
j
time
_
iondecceleratlimit
j
time
_
i
Callsign
i
Callsign
j
Callsign
j
Callsign
time
Just for overlapping
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 15
Version: 1.0
Summary
Two kinds of TWGenerators were developed:
For planning phase
4TWG use an external Trajectory Predictor
For execution phase
4TWG use an internal Trajectory Predictor
The TWGs were converted in executable using
Converter MATLAB tools (TheMathWorks)
These tools have been used during the execution of the
HIL experiments to calculate initial values of the Target
Windows (HIL1 and HIL2) and also to renegotiate them
during HIL3
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 16
Version: 1.0
Thank you for your attention!
www.cats-fp6.aero/
© CATS CONSORTIUM 2010 Author: I. Berechet Page: 17
Version: 1.0
Example of generated TW file for HIL
experiments
MI1
FL275 – FL345
[AFR1504]
1=ADJ;17:53:53;18:01:13;290;330;;FD;KL1;MOKIP+;46.4371/5.1557;46.5935/5.2155;46.2808/5.0958
2=ADJ;18:11:08;18:17:50;290;330;;KL1;MI1;LAPRI+;44.9796/7.1720;45.1235/7.1922;44.8358/7.1518
3=ADJ;18:33:31;18:38:07;280;340;D;MI1;FD;SIPLO-;43.9294/10.3703;43.9345/10.4900;43.9244/10.2507
4=APT;18:58:09;19:01:09;;;;;LIRF;;;;;
[SWR342Z]
1=SUP;17:39:06;17:46:28;275;275;C;FD;MI1;LUKIM-44.0641/9.3694;43.7616/9.2996;44.3666/9.4393;44.1339/9.0669
2=ADJ;17:54:21;18:01:11;280;340;C;MI1;KL1;PIMOT+;45.5048/7.7189;45.4233/7.5926;45.5864/7.8451
3=SUP;17:56:53;18:03:39;345;345;C;KL1;FD;AOSTA;45.7378/7.4207;45.4673/7.4113;46.0083/7.4302;45.7472/7.1502
4=APT;18:47:00;18:50:00;;;;;EBBR;;;;;
[VEX55N]
1=ADJ;17:59:08;18:06:02;280;340;;FD;MI1;BELEL+;43.5645/9.7607;43.5063/9.6205;43.6227/9.9009
2=ADJ;18:19:24;18:25:48;300;340;;MI1;KL1;PIMOT+;45.5048/7.7189;45.4320/7.6060;45.5777/7.8317
3=ADJ;18:34:56;18:40:56;320;340;;KL1;FD;GILIR-;47.0542/6.2447;47.0156/6.1301;47.0929/6.3594
4=APT;19:12:33;19:15:33;;;;;EBBR;;;;;
[TSO9121]
1=ADJ;17:06:33;17:12:29;290;330;;FD;MI1;LUSIL-;46.0494/10.1308;45.9538/10.2010;46.1450/10.0606
2=ADJ;17:26:52;17:32:34;290;330;;MI1;FD;VAMTU-;44.1532/7.6319;44.1057/7.7305;44.2007/7.5332
3=APT;18:10:02;18:13:02;;;;;LEBL;;;;;
[EZS1118]
1=ADJ;17:55:50;18:03:06;280;340;;FD;MI1;BELEL+;43.5645/9.7607;43.5012/9.6081;43.6278/9.9133
2=ADJ;18:18:00;18:24:04;320;340;;MI1;FD;ABESI+;46.1670/9.0410;46.1591/8.9183;46.1748/9.1637
3=APT;18:40:20;18:43:20;;;;;LFSB;;;;;
ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.