ArticlePDF Available

Less Education, More Divorce: Explaining the Inverse Relationship Between Women's Education and Divorce


Abstract and Figures

Highly educated women currently have more stable marriages than less educated women in several societies, yet we know little about the reasons for this difference. In this paper, we draw on social exchange theory to hypothesize how educational differences in marital satisfaction and barriers to divorce can explain the inverse educational gradient of divorce. Discrete-time event history analyses of 1,887 first marriages from the British Household Panel Survey show that marital satisfaction does not explain the negative association between women’s education and divorce. Instead, we find that higher barriers to divorce help keep the marriages of educated women intact. We use this finding to propose a novel interpretation for the reversed educational gradient of divorce in many countries.
Content may be subject to copyright.
Dept of Sociology, Demography Unit /
Less Education, More Divorce:
Explaining the Inverse Relationship
Between Women’s Education and Divorce
Diederik Boertien and Juho Härkönen
Research Reports
in Demography
2014: 11
© Copyright is held by the author(s). SRRDs receive only limited review. Views and opinions expressed
in SRRDs are attributable to the authors and do not necessarily reflect those held at the Demography
Less Education, More Divorce:
Explaining the Inverse Relationship
Between Women’s Education and Divorce
Diederik Boertien
Department of Political and Social Sciences
European University Institute
Juho Härkönen
Department of Sociology
Stockholm University
Abstract: Highly educated women currently have more stable marriages than less
educated women in several societies, yet we know little about the reasons for this
difference. In this paper, we draw on social exchange theory to hypothesize how
educational differences in marital satisfaction and barriers to divorce can explain the
inverse educational gradient of divorce. Discrete-time event history analyses of 1,887
first marriages from the British Household Panel Survey show that marital satisfaction
does not explain the negative association between women’s education and divorce.
Instead, we find that higher barriers to divorce help keep the marriages of educated
women intact. We use this finding to propose a novel interpretation for the reversed
educational gradient of divorce in many countries.
Less Education, More Divorce: Explaining the Inverse Relationship Between
Women’s Education and Divorce
In the early sixties, William J. Goode predicted that as divorcing becomes easier, the
initially positive relationship between class and divorce wanes and eventually reverses
(Goode 1962; 1963). Half a century later, a growing body of research has documented
such a shift in the association between women’s education and divorce in several
European (Hoem 1997; Chan and Halpin 2005; De Graaf and Kalmijn 2006a; Härkönen
and Dronkers 2006; Matysiak, Styrc, and Vignoli 2013) and non-Western societies
(Park, Raymo and Creighton 2009; Raymo, Fukuda, and Iwasawa 2013). In the United
States, the inverse relationship between female education and divorce has widened over
the past decades (Martin 2006). Because divorce is associated with lower well-being
among divorcees and their children, strong educational differences in its incidence can
strengthen existing socioeconomic inequalities (McLanahan and Percheski 2008).
Yet why less educated women have elevated divorce rates is poorly understood
(Amato 2010, p. 661). The stabilizing effect of men’s education on marriages is well-
established, but common theoretical accounts lead to ambiguous predictions of the
effects of women’s education on divorce (Lyngstad and Jalovaara 2010). Many theories
predict that highly educated women are more likely to divorce, and the existing
explanations for educated women’s higher marital stability are weakly grounded in
The objective of this study is to explain why less educated women have higher
divorce rates than better educated women. After reviewing the literature, we propose an
explanatory approach based on social exchange theory and its distinction between
marital attractions and barriers to divorce (Levinger 1976). This heuristic provides a
framework for discussing the role of more specific factors. We analyze event-history
data for 1,887 first marriages from the 1996-2009 waves of the British Household Panel
Survey (BHPS). Core advantages of these data are their representativeness of the British
population and annual measurements of a wide range of questions, from socioeconomic
factors to marital satisfaction and indicators of personal and social stressors. The United
Kingdom is one of the countries where educated women currently have more stable
marriages than those with less education (Chan and Halpin 2005; Cooke and Gash
To preview our findings, they point to economic and demographic factors that
can be interpreted as barriers to divorce as an important explanation to the higher
marital stability among educated women.
Wife’s Education and Divorce: Theory and Evidence
How does the wife’s education affect divorce? Theories of divorce generally rely on a
cost-benefit model, in which marriages are maintained as long as their benefits exceed
the costs of divorce (e.g., Brines and Joyner 1999). In this framework, education affects
divorce by altering these costs and benefits. In practice, schooling is regarded as an
economic and a non-economic resource with ambiguous effects on divorce (Becker,
Landes, and Michael 1977).
Education as human capital raises the economic benefits one can reap from the
labor market. This allows for a higher level of consumption, but increases the
opportunity costs of housework, childcare, and other, traditionally female, non-labor
Other relevant features of British family demography are high divorce rates, high rates
of births to teen-aged and single women, and high rates of poverty among single
mothers (Chan and Halpin, 2005; Esping-Andersen, 2007).
market activities. According to Becker’s economic model of the family, this weakens
the returns to a household division of tasks into market and non-market work and the
interdependency between the spouses, and increases the utility of options outside
marriage (Becker et al. 1977). Women’s human capital thus decreases their dependence
on marriages and increases their possibilities of exiting them.
This “specialization and trading model” (Oppenheimer 1997) is a standard
approach to theorizing the effects of wife’s human capital on divorce. One of its
criticisms is that it pays insufficient attention to the economic utility of her earnings.
These can counteract any benefits from specialization, and increase spouses’ mutual
dependency as a guarantor of a level of living they might otherwise not attain. The
wife’s human capital additionally provides a buffer against economic risks, such as the
husband’s unemployment or illness, which can increase marital stress and lead to a re-
evaluation of the marital bargain (White and Rodgers 2000). Empirical results of the net
effects of the wife’s (un)employment and incomes are considerably conflicting (White
and Rodgers 2000; Lyngstad and Jalovaara 2010; Özcan and Breen 2012). Some studies
have found, however, that variables such as her incomes, unemployment, and working
schedules partly mediate the negative female educational gradient of divorce (Jalovaara
2001; Raymo et al. 2013).
Another critique of the specialization and trading model has been that it
implicitly treats all marriages alike. It has been refined to consider heterogeneity in
marital quality. According to this approach, education and other economic resources
provide the means to exit low-quality marriages, but may not have any influence on
high-quality ones (Sayer and Bianchi 2000; Sayer et al. 2011; Kreager et al. 2013).
Much of the evidence supports this view (ibid.).
Education has also been seen to affect divorce through non-economic
pathways. Yet it is unclear what the relevant ones are. The literature includes references
to such factors as general “non-market productivity” (Becker 1974), relationship skills
(Blossfeld et al. 1995; Amato 1996; Härkönen and Dronkers 2006), attitudes (Levinger
1976), and knowledge about the legal system and the divorce process (Blossfeld et al.
1995; Hoem 1997). Education, as well as other economic resources, also holds symbolic
value as a marker of social prestige which may influence marital behavior (Edin and
Kefalas 2005). Furthermore, traits, such as intelligence (Dronkers 2002) and health
(Kreager et al. 2013) correlate with education. Lastly, her high education, particularly if
it is higher than his, can go against gendered expectations of economic provision and
status relationships within marriage (Fenstermaker 2002) and provoke behaviors
conducive to marital instability. Some of these non-economic factors promote marital
stability among the highly educated, whereas others undermine it. The few empirical
studies that have directly assessed non-economic factors lead to a similar conclusion.
Raymo and colleagues (2013) found that measures intended to capture concerns with
“losing face” explained a part of the negative educational gradient in Japan, whereas
Boertien, von Scheve and Park (2012) found that highly educated German women more
often held personality traits which de-stabilize marriages.
Finally, education can shape divorce risks by structuring life course
trajectories. Higher educationand in particular, longer time in educationpostpones
marriages (for Britain, Berrington, and Diamond 2000). Later age at predicts marital
stability (Lyngstad and Jalovaara 2010) and age at marriage can mediate a part of the
educational gradient of divorce (e.g., Härkönen and Dronkers 2006; Martin 2006). In
some countries, highly educated women marry less, which may mean that those who do
are more committed to their marriages. Bernardi and Martínez-Pastor (2011) did not
find that such selectivity was responsible for the negative educational gradient in Spain.
The educational gradient of divorce can additionally vary by marital duration.
Newlywed couples face considerable uncertainty of themselves, their spouses, and their
common life, and new information and unexpected events can alter the utility gained
from the marriage (Becker et al. 1977). At the same time, shared investments made
during the course of the marriage increase couples’ mutual dependency (Brines and
Joyner 1999). Findings assert that negative educational gradients of divorce are the
strongest at early stages of the marriage (South and Spitze 1986; Jalovaara 2002). None
of these studies, however, provided direct measures to explain this finding.
Summing up, the effects of female education on divorce are theoretically
ambiguous and many theories predict higher divorce rates for educated women, rather
than the reverse. Additionally, many explanations of why less educated women are
currently more likely to divorce than better educated ones are weakly grounded in
Wife’s Education, Marital Attractions, and Barriers to Divorce: Theoretical
Framework and Hypotheses
In the absence of strong guidance from theory and previous research for explaining the
inverse educational gradient of divorce for women, we construct a middle range
framework to orient the formulation of hypotheses and the choice of variables.
Specifically, we build on the distinction between marital attractions and barriers as
made by social exchange theorists (e.g., Levinger 1965; 1976). Attractions are the
relative balance of the rewards and costs of a specific marriage and include emotional
returns, social approval, and economic benefits and losses. Barriers, on the other hand,
have been defined as constraints to dissolution emanating from other sources than the
attractions of the marriage (Levinger 1965; 1976). In our framework, education affects
marital stability either by affecting attractions of the marriage or the barriers to divorce.
Likewise, the variables used in the empirical analysis are expected to operate through
these two. The third component of social exchange theory, alternatives to the marriage,
can often be interpreted as barriers to divorce: a lack of alternatives can be a barrier to
divorce. These alternativessuch as alternative spousescan be hard to measure (but,
see South and Lloyd 1995; Lyngstad 2011). For the most part, this also holds for this
study. Findings that re-marriage rates do not differ by socio-economic variables (Shafer
and James 2013) suggest, however, that educational differences in access to alternative
spouses are an unlikely explanation to the educational gradient of divorce. Like in most
previous studies, we focus on individual and couple level factors which can affect
attractions and barriers (cf. Brines and Joyner 1999).
This general framework can also be used to interpret the mechanisms
highlighted in different theories. For instance, Becker’s thesis about marriage-specific
capital, as well as Oppenheimer’s argument about the husbands’ economic losses from
divorcing an educated wife can be seen as emphasizing the barriers to divorce. On the
other hand, findings of the destabilizing effect of economic stress should be seen as
mediated through attractions. Goode (1962; 1963) himself based his prediction of the
changing class gradients of divorce on the weakening (societal) barriers to divorce,
which permits the higher stress (lower attractions) among lower class families to find an
expression in marital dissolution (cf., Härkönen and Dronkers 2006; Matysiak et al.
2013; Park and Raymo 2013). The interplay between attractions and barriers has been
used to address various questions in the divorce literature (e.g., Heaton and Albrecht
1991; White and Booth 1991; Previti and Amato 2003; Amato and Hohmann-Marriot
2007), but to our knowledge, not in recent research on the educational gradient of
Marital satisfaction and quality are commonly-used measures of marital
attractions (White and Booth 1991) and strong predictors of divorce (Karney and
Bradbury 1995). Were these attractions responsible for the negative educational
gradient of divorce for women, we would expect marital satisfaction to explain the
HYPOTHESIS 1:Educational differences in marital satisfaction explain why
less educated women have higher divorce rates.
An obvious candidate for why education affects marital satisfaction is economic
circumstance. According to the family stress model, economic stressors affect spouses’
emotional distress and their interactions (Conger et al. 1990), which in turn affect
marital satisfaction (Karney and Bradbury 1995; White and Rodgers 2000). Likewise,
unemployment (especially of the husband) and other forms of economic hardship have
repeatedly been shown to affect marital quality and satisfaction (Conger, Conger, and
Martin 2010; Halliday Hardie and Lucas 2010). This leads to a more specific
hypothesis, which is in line with Goode’s (1962; 1963) argument:
HYPOTHESIS 1a:Economic stressorssuch as unemployment and material
hardshipaffect marital satisfaction and explain why less educated women have
higher divorce rates.
The household division of labor can affect marital satisfaction. Responsibility
for housework and childcare can lower marital satisfaction, in particular if this is
perceived as unfair (e.g., Wilkie, Ferree, and Ratcliff 1998; Twenge, Campbell, and
Foster 2003). Likewise, the division of housework predicts divorce (Oláh and Gähler
2014), but contingent on the division of housework prevalent in each society (Cooke
2006). Gender norms and attitudes can in themselves affect marital satisfaction (Lye
and Biblarz 1993), although the effects of these, too, can vary by social context. To the
extent that educated wives are better able to negotiate a balanced division of housework
and childcare (Bonke and Esping-Andersen 2011) and hold gender norms conducive to
higher marital satisfaction, we can formulate the following hypothesis:
HYPOTHESIS 1b:The division of housework and gender norms affect marital
satisfaction and explain why less educated women have higher divorce rates.
Educational differences in marital satisfaction have not been extensively studied.
Previous findings suggest that the highly educated are more satisfied with their
marriages, although the differences are not large (Karney and Bradbury 1995; Conger et
al. 2010; Isen and Stevenson 2010; Halliday Hardie and Lucas 2010). This suggests that
barriers to divorce may be more important.
Barriers to divorce can hold a marriage intact despite low attractions. Barriers
can be economic or non-economic (Becker et al. 1977; White and Booth 1991) and
include “commitment” (Johnson, Caughlin and Huston 1999), moral or reputational
barriers (Raymo et al. 2013), and investments to assets and marriage-specific goods
(Briner and Joynes 1999). For our purposes, these barriers should correlate with
education to explain the observed negative gradients.
HYPOTHESIS 2:Educational differences in barriers to divorce explain why
less educated women have higher divorce rates.
Barriers are generally measured using objective indicators such as home
ownership and common children. Both reflect joint investments. Home ownership raises
the economic (and emotional) costs of leaving the partnership (South and Spitze 1985;
White and Booth 1991; Jalovaara 2001). Loss of the economic resources of the partner
and financial dependence provide other examples of financial barriers to divorcing.
Regarding the former, they may deter the husband of an educated wife from divorcing,
but also affect the decisions of educated wives who tend to have educated husbands.
Common children are often mentioned in subjective accounts as barriers to divorce
(Knoester and Booth 2000), yet the evidence for such an effect of children beyond their
early years is not strong (Lyngstad and Jalovaara 2010). Step-children may have
different effects, as marriages with step-children can still be “incomplete institutions”
(Cherlin 1978) to which commitment is less. Parental divorce and separation is another
potential factor. Children of divorce tend to have lower levels of education than those
from intact families. They are also more likely to perceive dissolution as a viable
solution to unsatisfactory marriages and thus hold lower barriers to divorce (Wolfinger
2005). If parental divorce lowers access to educated partners (Erola, Härkönen, and
Dronkers 2012), those with higher education will be less likely to marry someone with a
divorced background. Last, scholars have complemented indicators of barriers to
divorce with measures such as attitudes and religiosity (Amato and Hohmann-Marriott
What are considered to be the relevant barriers to divorce varies from one study
to the next, and some variables can both act as barriers and influence marital
satisfaction. What is important is that they exert an influence on marital dissolution net
of the attractions. We formulate the following hypotheses of different barriers to explain
why less educated women divorce more.
HYPOTHESIS 2a:Economic barriers to divorcesuch as homeownership,
other wealth, financial dependency on the spouse, and husband’s education
affect divorce independently of marital satisfaction and explain why less
educated women have higher divorce rates.
HYPOTHESIS 2b:Family demographic factorssuch as parental divorce,
the number and age of children, step-children, and pre-marital cohabitation
affect divorce independently of marital satisfaction and explain why less
educated women have higher divorce rates.
HYPOTHESIS 2c:Religiosity and gender norms affect divorce independently
of marital satisfaction and explain why less educated women have higher
divorce rates.
An alternative approach to barriers considers the heterogeneity in the effects of
marital satisfaction on divorce (cf. Schumm and Bughaighis 1985; White and Booth
1991; Amato and Hohmann-Marriott 2007). According to Levinger (1965), barriers
should be trivial for those in happy marriages but hold unhappy marriages intact.
However, a growing number of studies have found that a large number of divorces
involve seemingly unproblematic marriages with at least moderate levels of marital
happiness (Amato and Hohmann-Marriott 2007). When divorce became more
accessible, this share may have increased (De Graaf and Kalmijn 2006b). The reason
some such marriages dissolve may have to do with low barriers and commitment
(Amato and Hohmann-Marriott 2007). Barriers may thus have most importance at
(relatively) high levels of satisfaction, whereas those in poor quality marriages would
divorce in any case. Schumm and Bugaighis (1985) argued that such a scenario could be
expected in cultures, which value personal happiness over marital stability, whereas
Levinger’s (1965) scenario would be more likely in contexts with the opposite
A further complication for our purposes is that education can, as discussed,
provide resources to overcome barriers and at the same time itself be associated with
barriers to divorce. For example, Kreager and colleagues (2013) found that educated
women had more stable marriages when they were not characterized by marital
violence, but were also more likely to leave violent ones. Due to the complex and
contingent interrelations between women’s education, barriers to divorce, and resources
to overcome these barriers, formulating hypotheses about interaction effects of
education and satisfaction on divorce proves difficult. We refrained from formulating
such hypotheses. Nevertheless, we tested for these interactions, as we believe that they
can offer additional insights into interpreting the findings.
We used data from the British Household Panel Survey (BHPS), a representative
longitudinal household survey of the British population, which annually interviewed all
adult members of a sample of households. The sample was selected using a stratified
clustered design based on postal codes. All members of the selected households became
panel members and were followed over time, also if they left the household. After
thirteen waves of the survey, 66 % of those selected for the sample in the first wave
were still part of the study (see the quality profile of the BHPS for more information
(Lynn, 2006)).
We began our observation window from 1996, which was the first year when
respondents were asked about marital satisfaction, and it extended until 2009. We
selected all heterosexual couples who were married for the first time during the
observation period, and who provided information on divorce and education (excluding
9.1% of couples and 10.9% of person-years due to missing information). Only the first
fifteen years of the marriage were taken into account in order to avoid the educational
groups studied from becoming too selective due to divorce. Some marriages had already
begun before our observation window and excluding them from the analysis would have
restricted the number of marriages further. Therefore, we included these (left-truncated)
marriages and set the duration of their marriage accordingly for the event-history
analysis (Guo 1993). In total, we observed 1,887 couples for 9,130 person-years.
We decided against including cohabiting couples in order to connect to the
general literature on female education and divorce, which has mostly focused on
married couples. Socioeconomic resources may influence the dissolution of married and
cohabiting couples differently, and whether and in which contexts this is the case
remains unresolved (e.g., Brines and Joyner 1999; Jalovaara 2013). Furthermore, the
heterogeneity of cohabitating living arrangements poses challenges to their
measurement in common surveys (for Britain, see Murphy (2000)). Previous studies
from Spain do not suggest that selection into marriage biases the results (Bernardi and
Martinez-Pastor, 2011). We believe the same to be the case for Britain. Berrington and
Diamond (2000), for example, showed for the 1958 British cohort that educated people
are more likely to marry than the less educated.
Measures of Divorce, Education, and Marital Satisfaction
Our dependent variable was divorce. Couples were coded as experiencing a divorce
when they reported either a separation or a divorce, conditional on being married the
previous year. 9.9% (180 couples) of the sample experienced a divorce during the
observation period. Divorce, which refers to the wave where one of the partners moved
out, is measured at t whereas all independent variables are measured at t - 1. The
survival curves predicted that 24% of first marriages ended after 15 years. This is
similar to the estimate of a 29 % divorce probability after 15 years (of all marriages),
reported by the most recent official statistics.
Our main independent variable was a time-varying measure of the years of
education completed by the wife by the interview date. The continuous specification of
educational attainment fit the data better (assessed using the Akaike and Bayesian
Information Criteria) than a categorical one, which we nevertheless used in the
descriptive analyses due to its informative value. The categorical measure of
educational attainment differentiated between low (GCSE grade A-C or less; ISCED 0-
2), middle (A-levels; ISCED 3-4), and high education (tertiary degrees; NVQ-level 3;
ISCED 5-6). Our regression results were robust to the specifications.
Our first hypothesis stated that marital satisfaction explains the negative
educational gradient of divorce. We measured marital satisfaction using the question
“How satisfied are you with your spouse/partner?” with responses ranging from 1 =
Office for National Statistics UK, website consulted 03/12/2013,
not satisfied at all” to 7 = “completely satisfied”. The question was asked individually
from both partners (using a self-completion questionnaire filled out after the face-to-
face part of the interview). The weakness of this measure is that it only consists of one
question, and one could argue that marital satisfaction is not just based on satisfaction
with the partner. At the same time, it is one of the most informative measures (Funk and
Rogge 2007) and the closest single one of the concept of marital satisfaction as the
overall evaluation of the relationship (Fincham and Rogge 2010). We treated the
variable as continuous, in line with most other studies (Amato and Hohmann-Marriot
2007; Schoen et al. 2006). Robustness checks were done using alternative specifications
(i.e. a logged version and a dummy of values 6 and 7 versus the rest), but they did not
change the results. The same was the case for the inclusion of lagged measures of
marital satisfaction.
Other variables
The lack of strong guidance from theory and previous research and our own hypotheses
suggest several potential variables, which can explain the inverse educational gradient
of divorce. Our demographic variables mainly reflect barriers to divorce. Ethnicity was
a dummy variable indicating whether the respondent was white or not. We acknowledge
that “non-whites” are a heterogeneous group with different divorce rates, but small cell
sizes prevented more detailed classifications. Parental divorce measured whether either
partner came from a divorced (or separated) family. Her age at marriage was measured
continuously in years and can act as a barrier to divorce (by affecting alternatives to the
current marriage) but can also affect marital satisfaction (if it correlates with maturity
and stability). Pre-marital cohabitation was a dummy variable often regarded as
reflecting attitudes toward the marital institution, whereas step-childrenindicating
whether one of the partners entered the marriage with a previous childcan affect both
marital satisfaction and commitment to the marriage. The number of children was a
continuous variable and the age of the youngest child was a dummy variable, indicating
whether the youngest child was less than four years old. Finally, we included the share
of opposite-sex singles in a person’s region (based on a classification of 19 regions,
such as East Midlands, Inner London, or Merseyside) and age group (everyone up to 7
years older and up to 3 years younger for women, and the opposite for men) as a crude
measure of marriage market conditions.
We included a group of variables measuring labor market and economic
conditions. Her and his unemployment (dummies) and material deprivationmeasured
as an index of six questions, and rescaled to vary between 0 and 1, on whether or not the
household could afford “eating meat on alternate days”, “replacing furniture”, and the
likeand her unusual working hours (other schedules than “just mornings” or
“mornings and afternoons”) can be marital stressors (Conger et al. 1990), whereas
annual household income can also be a barrier to divorce. Other economic barriers to
divorce included were his education (measured continuously in years), her percentage
contribution to the total household labor income (included as a measure of her
economic dependency), home ownership (dummy),
and her and his interests on savings
and investments, which proxy wealth (in 2005 prices).
We included a group of variables tapping into attitudes and behaviors. Her
church attendance indicates religiosity, a barrier to divorce. Her gender norms were
measured by a standardized scale based on eight seven-point scale questions on the
respondents’ views on gender roles and other issues related to family life (such as
We also looked at whether the ownership was shared or not but this did not prove to be
relevant for divorce risk.
agreement on “a woman and her family would all be happier if she goes out to work”,
Cronbach’s α = 0.68), with higher scores reflecting more egalitarianism. These can
shape both marital satisfaction and barriers to divorce. Her share of the total time
dedicated to housework by the couple indicates gender egalitarian practices in the
marriage, and can shape marital satisfaction.
Each model also included marital duration (continuous) and calendar year
(continuous). We experimented with several specifications of marital duration, but more
complicated measures of marital duration as well as interactions with education did not
improve model fit (5-year splines for duration did not improve model fit and a quadratic
term for duration was not significant; results are available upon request). We used
calendar year instead of marriage cohort because period effects on divorce dominate
over cohort effects (Härkönen 2014).
Missing values on all variables but education and divorce were multiply
imputed using 20 datasets (see Rubin 1987). Table 1 displays the characteristics of the
original sample used in this study before imputation. 42.2% of cases and 34.4% of
person-years have one or more values imputed on the independent variables used in the
final models of the paper. The dependent variable and all independent variables were
included in the equation used for imputation to make sure the imputations are ‘proper’
(Rubin 1987). The multiple imputations were done using the ‘mi’ commands in Stata
12. Because model fit statistics do not have a clear interpretation in multiple imputation
settings, we do not report them (StataCorp 2013).
Our analytical strategy had three main steps. First, we described divorce risks (using
survival and hazard function estimates) and marital satisfaction trajectories by
educational attainment.
The second part of the analysis used discrete-time event history analysis
(Yamaguchi 1991), suitable given the annual measurements in our data, to assess how
much of the female educational gradient of divorce is mediated by our independent
variables. We estimated the models using logit regression.
We estimated a series of discrete-time event history models where each model
includes marital duration and calendar year (centered to year 2000). In the first step, we
tested whether the educational gradient of divorce could be explained by marital
In the second step of the regression analyses, we assessed whether the
educational gradient is mediated by each of the other independent variables. Due to their
large number, we first assessed each independent variable separately. We excluded from
further consideration all variables which were not significant mediators of education on
divorce at the 5 percent significance level. We used a test based on standardizing the
logit coefficients of education on the mediating variable (taken from a model with the
mediating variable as the dependent variable) and of the mediating variable on divorce,
controlling for education (Iacobucci 2012).
In the third step of the regression analysis, we entered the remaining variables in
four blocks, depending on when in the life course and where in the expected causal
chain from education to divorce they appear. Although not clear-cut, such a
The main analyses were also run using Linear Probability Models (LPM) and the
results were robust (cf. Mood 2010).
categorization helped in deciding the order in which the variables are introduced. Some
of the variables precede education, whereas others are affected by it. They also affect
one another, and therefore entering them in the correct order is necessary in order to
draw correct conclusions.
In the third and final part of the analysis, we explored the interdependencies of
the variables more closely. Particularly, we were interested in which variables of the
final model affected divorce independently of marital satisfaction and could be
considered as barriers to divorce. To this end we estimated a path model for discrete
outcomes within a Structural Equation Model setting (e.g., Winship and Mare 1983) on
the discrete-time event history data. All variables that were relevant for both divorce
and the educational gradient at the previous stage of the analysis were included in the
model as endogenous variables (except parental divorce, which precedes education).
Exogenous variables in these models were parental divorce, duration, and calendar year.
Female Education, Divorce, and Marital Satisfaction Trajectories
We began our analysis with descriptive analyses of the educational gradients in divorce
and of marital satisfaction trajectories in Britain. Figures 1 and 2 show survival curves
of marriages and hazards of divorce by educational attainment. These show what
previous British studies have already found: educated women have more stable
marriages. The curves predict that after 15 years of marriage 32% of the low educated
women had divorced, compared to 13% of those with high education. The educational
gradient of divorce appears the clearest during the early years of marriage. The
differences in the survival curves were statistically significant at the 0.1 % level (both
using the Wilcoxon and log-rank tests).
Our first hypothesis stated that marital satisfaction differences explain why low
educated women divorce more. For this to hold, there should of course be educational
differences in marital satisfaction. Figures 3 and 4 show the wives’ and husbands’
average (lowess-smoothed) marital satisfaction trajectories, respectively, by her
education. Unlike expected, neither marital satisfaction levels nor its trajectories differ
much by educational attainment. His marital satisfaction appears to be more strongly
differentiated by her education. However, the differences are small at all marital
durations and never exceed 0.2 units on the scale from 1 to 7 (or one fifth of a standard
In results not presented here (but available upon request), we ran additional
growth curve regressions of marital satisfaction trajectories to assess the robustness of
this finding. These regressions accounted for period change and attrition due to divorce
(see Lynch (2003) for a similar model for analyzing educational differences in health
across the life course). The conclusion of small educational differences in marital
satisfaction remained, and we found significant differences by education only at few
durations. Given that educational differences in divorce risk exist at all durations (see
Figure 2), this suggests that marital satisfaction plays at best only a limited role in
explaining educational differences in divorce.
Discrete-time Event History Analysis
We continued our analysis by estimating a series of discrete-time event history models.
The purpose was to assess how much of the association between female education and
divorce is mediated by our variables. Table 2 shows results from five models. The first
model included duration and calendar year as the only controls, and showed that an
additional year of education predicts an 11 % lower annual divorce risk.
We added her marital satisfaction in the second model. Its mediating effect was
modest in size: the odds ratio of an additional year of education changed from 0.89 to
The educational gradient was further reduced, but only slightly, when controlling
for his marital satisfaction (Model 3). At same levels of her and his marital satisfaction,
wives with an additional year of education have a 9 % lower annual divorce risk. This
analysis confirmed our suspicion that educational differences in marital satisfaction do
not explain lower educated women’s higher divorce rates.
Models 4 and 5 included interactions between education and her and his
marital satisfaction, respectively. As discussed in the theory section, we did not
formulate explicit hypotheses of these interactions given their theoretical ambivalence
and contingency, but believe the results can offer valuable insights. The interaction term
between education and her marital satisfaction was not significant. However, there was
a significant interaction effect between her education and his satisfaction. The inverse
The change in the educational gradient was similar when comparing the coefficients
using LPM (change from -0.0025 to -0.0022), which are better suited for comparing
coefficient sizes between models (Mood 2010).
association between her education and divorce is stronger when he is more satisfied
with the marriage. With average levels of his satisfaction, when he would give the score
6, an additional year of her education would reduce the risk of divorce by 11 %; if he
reported a satisfaction score of 4, an additional year of education would reduce the risk
of divorce only by 3 %.
A possible interpretation is that the husbands of low educated
women have fewer barriers to leave at least relatively satisfying marriages. This
interpretation contrasts the proposition that when relationships are of a high quality,
barriers are irrelevant because the benefits of the relationship prevent divorce (Levinger
1965). But it is in line with recent American findings stressing the importance of
barriers for holding relatively satisfied couples together. Overall, our findings so far
suggest that barriers to divorce are a likely explanation for low educated British
women’s higher divorce rates.
We continued our analysis by testing which other variables are significant
mediators of the inverse relationship between education and divorce. First, we tested
their importance one by one, and selected for further consideration those which were
significant mediators at the 5 % level of statistical significance (see above; Iacobucci
Table 3 presents the results from this mediation analysis. The first column
shows the standardized effect of education on each mediating variable, the second
column the standardized effect of each mediating variable on divorce, conditional on
education, the third column shows the Z-scores of the mediating effect of the respective
(100 % * (1.14 * 0.96
1) = 11 %), and (100 % * (1.14 * 0.96
1) = 4 %)
variable, and the fourth column shows the odds ratio of female education on divorce
when controlling for each variable. The larger the Z-score, the more significant is the
mediating effect of the variable. However, for the substantive size of the mediating
effect one should look at the odds ratios that are shown in the fourth column.
Several variables did not pass the test. Importantly, age at marriage and
egalitarian gender norms actually strengthened the negative gradient in our sample.
Several other findings are also of interest. Her and his marital satisfactions are the two
single most important predictors of divorce. But because they correlate less with
education than almost all other variables, their mediating effects remain limited. Others,
such as his education, the share of singles in the age group and region (reflecting
concentration of educated women to areas such as London), household income, home
ownership, material deprivation, his savings, his unemployment and parental divorce
correlate strongly with education. Of these, the variables which are strong predictors of
divorce also have strong mediating effects. Home ownership in particular, but also
material deprivation and household incomes are important mediators, judging both by
the Z-score (above 3) of the mediation effect and the change in the odds ratio of
education when controlling for these variables.
Ten variables mediated the educational gradient of divorce at the 5 %
significance level. We continued the event history analysis by entering these significant
mediators block by block (Table 4). We included Model 1 (from Table 2) in the table to
enable easier comparisons to the baseline gradient.
In Model 6, we controlled for parental divorce and ethnicity as the two
variables that precede both educational attainment and divorce. Parental divorce
increases the divorce risk, as expected, but ethnicity no longer had a significant effect.
The odds ratio of an additional year of education changed slightly, from 0.89 to 0.90.
This indicates that the fact that less educated women are more often in marriages in
which at least the other spouse comes from a divorced home explains a small part of the
inverse educational gradient of divorce. Model 7 added his education and step-child as
variables, which are generally determined at entry into marriage, but after the
completion of her education. Having step-children de-stabilizes marriages, but highly
educated husbands stabilize them. The size of the coefficient of the latter is similar in
size to that of her education, but significant only at the 10 % level. Its significance level
is smaller than when only conditioning on her education (Table 3), indicating that the
other variables in Model 7 explain part of its effect. The coefficient of her education is
0.93 in Model 7; part of the explanation of the negative educational gradient of divorce
is thus that educated women marry educated men, and particularly, that they (or their
husbands) do not have children from previous partnerships.
In Model 8, we added homeownership and (logged) household incomes as
independent variables. These are determined by education, and home ownership often
follows after marriage. Both reduce the risk of divorce, although the coefficient for
household incomes is significant only at the 10 % level. Incomes were strongly
significant in Table 3, and it is probable that the effect of incomes operates through
home ownership, which is the more proximate predictor of divorce. The same is likely
to hold for husband’s education, which is non-significant in this model. But most
importantly, the estimate for her education was also reduced to 0.96 and became not
significant for the first time.
In Model 9, we also included his unemployment and material deprivation as
additional independent variables, which can be less predictable events across the marital
life course. We excluded his education, which was not significant in the previous
model. The remaining significant effect of household incomes is mediated by material
deprivation and his unemployment. His unemployment doubles the divorce risk. Not
being able to afford all six items on the index likewise doubles the divorce risk, but the
coefficient for material deprivation was significant only at the 10 % level. The estimate
of her education remained not-significant and stable.
This final model suggests that parental divorce, step-children, home ownership,
material deprivation, and his unemployment are important mediators of the educational
gradient of divorce. Ethnicity, his education and household incomes were no longer
significant predictors of divorce. Their effects on divorce were rather mediated by other
variables, which had more independent predictive power. Having a highly educated
husband, for example, can help her purchase a home, which acts as the more proximate
stabilizer of marriages. Part of the effect of his education seems also to be mediated by
parental divorce and step-children; highly educated men are less likely to come from
divorced homes, have previous children, or marry women who do. Likewise, household
incomes are likely to be lower when he is unemployedwhich predicts divorce
irrespective of economic consequencesand household incomes of course promote
home ownership and lower the risk of material hardship.
Female Education and Divorce: A Path Analysis
As the final stage of the analysis, we analyzed whether the mediating variables in our
final event history model affect divorce through marital satisfaction or independently of
it. As shown above, marital satisfaction itself has a strong effect on divorce, but it has a
limited mediating effect on the relationship between the wife’s education and divorce.
Nevertheless, some of the important mediating variables may still affect divorce via
marital satisfaction. Variables should only be considered as indicating barriers to
divorce when they predict divorce independently of marital satisfaction. To assess the
interdependency of these variables, and to draw appropriate conclusions of the
importance of marital attractions vis á vis barriers to divorce, we estimated a path model
on our discrete-time event history data in a Structural Equations Model setting.
Figure 5 displays the results from this model. The estimates shown are y-
standardized coefficients taken from a path model that explicitly modeled the dependent
variable as dichotomous. The results confirm the observations from Table 4 that the
effects of his unemployment and deprivation operate through his and her marital
satisfaction. This is in line with the family stress model (e.g., Conger et al. 1990), which
emphasizes economic stressors and their influence on marital satisfaction through the
partners’ interactions. Other variables, and most notably home ownership, had a direct
suppressing effect on divorce, independently of marital satisfaction. Home ownership is
therefore best seen as a barrier to divorce, as it has been interpreted in earlier studies
(South and Spitze 1985; White and Booth 1991; Jalovaara 2001). Our demographic
variables, namely parental divorce and step-children, operate both through satisfaction
and independently. Their direct effects are stronger, however, than the effects on
partners’ satisfaction, suggesting that they too primarily operate as (lowering the)
barriers to divorce. Finally, the analysis shows a weak positive direct effect of education
on his marital satisfaction.
More and more studies have paid attention to the increasingly negative female
educational gradient of divorce in a variety of countries (Hoem 1997; Chan and Halpin
2005; De Graaf and Kalmijn 2006a; Härkönen and Dronkers 2006; Park et al. 2009;
Matysiak et al. 2013). These findings are in line with William J. Goode’s (1962; 1963)
thesis of a reversal in the class gradient of divorce as the decreasing external barriers of
divorce allow the supposedly higher marital stress among the lower classes to find an
expression in divorce. Although the macro-level trends fit Goode’s argument (Härkönen
and Dronkers 2006; Matysiak et al. 2013), the micro-level foundations of this
explanation have been weak and we have known little about why less educated women
are currently more likely to divorce (Amato 2010, p. 661). This gap in our knowledge
limits the understanding of this rare example of a reversal in associations between
sociological variables (Chan and Halpin 2005) and also of a demographic development
that can strengthen existing inequalities (McLanahan and Percheski 2008).
The objective of this study was to explain why low educated women currently
divorce more. We used a middle-ground theoretical framework based on social
exchange theory to guide our analyses of discrete-time event history data on first
marriages in Britain. Our findings show that marital satisfaction plays only a limited
role in explaining the current educational gradient. Despite being a strong predictor of
divorce, educational differences in marital satisfaction are minor. This questions the
micro-foundations of Goode’s explanation as well as other theoretical arguments and ad
hoc explanations that rest on educational differences in marital quality. Economic
stressors (his unemployment and material deprivation) did contribute to explaining the
gradient by operating through marital satisfaction, but their contribution was altogether
Barriers to divorce, or the lack of them, were more important explanations.
Particularly, not owning a home, parental divorce, and step-children increased divorce
risk and contributed to explaining why wives with less education have higher divorce
rates. Both parental divorce and step-children can shape commitment to the marriage.
Parental divorce may lower the threshold at which a marriage is dissolved by providing
an example of feasible behaviors in the face of marital challenges (Wolfinger 2005),
whereas marriages involving step-children can be “incomplete institutions” (cf. Cherlin
1978) to which one is less committed. Both are more common among less educated
women and help explain why they divorce more.
Housing is households’ most important financial asset. Recent American
research has paid increasing attention to the importance of wealth for entry into
marriage and findings suggest that wealth is important both due to its symbolic and its
use value (Edin and Kefalas 2005; Schneider 2013). Home ownership has been found to
deter divorce already in earlier research (South and Spitze 1985; White and Booth 1991;
Jalovaara 2001), and our findings highlighted its importance for understanding divorce
risk differences by education. Home ownership has in previous research been regarded
as a barrier to divorce, and was identified as such by our analyses.
This study did not attempt to explain why the educational gradients of divorce
have changed, but our findings lay the grounds for new theorizing of this shift. They
highlighted the importance of some barriers to divorce, but we do not claim that the
barriers we identified are the only important ones. Instead, we maintain that barriers to
divorce may more broadly offer insights into this change. Two general types of
hypotheses can be put forward. One possibility is that barriers to divorce have become
more strongly associated with higher education. For example, education is today
associated with less approval of divorce (Rijken and Liefbroer 2012), but this was the
opposite in the past, at least in the United States (Martin and Parashar 2006). However,
it is unlikely that there has been an across-the-board educational shift in the barriers to
divorce. Of the barriers highlighted in this study, home ownership in Britain has for
long been divided along class lines (Ermisch and Halpin 2004) and the association
between parental divorce and educational attainment has remained stable (Sigle-
Rushton, Hobcraft, and Kiernan 2005).
Another possibility is that the effects of barriers to divorce have changed.
Accounts of family change commonly point out how the foundations of marriage have
changed toward higher expectations for marital happiness and personal gratification
(Cherlin 1992; Coontz 2005). This can mean that barriers become less important for
holding together marriages with low satisfaction (as most of them dissolve in any case),
but more important for marriages characterized by at least moderate levels of
satisfaction (Schumm and Bughaighis 1985; Amato and Hohmann-Marriott 2007). We
interpreted our finding of the interaction effect between her education and his marital
satisfaction in this light. This argument of the changing importance barriers to divorce is
similar to the one on the increasing economic requirements for marriage (Edin and
Kefalas 2005). Both reflect change into a society in which marriage no longer has its
former normative and institutionalized status.
The educational gradient of divorce may thus have changed as a result of
changes in the effects of the barriers to divorce which are associated with educational
attainment. If the threshold to divorce at least at moderate levels of marital satisfaction
decreases, education-related barriers to divorce result in keeping educated women
increasingly together relative to their less-educated peers. Some indications for the
importance of the shift in the cultural foundations of marriage for educational
differences in divorce can be found from previous studies. These found that the
educational gradient tends to be more negative when divorce and other family practices
associated with the “Second Demographic Transition” are more common (but not, for
example, when divorce laws are more liberal) (Härkönen and Dronkers 2006; see also
Matysiak at el. 2013).
Here, a distinction between societal barriers to divorce (such as divorce
legislation and social sanctions) and “personal” ones (such as commitment and
investments to the marriage) can be useful. Goode’s (1962; 1963) theory focused
primarily on societal barriers, such as the relaxation of divorce laws and the stigma
associated with divorce, whereas barriers discussed in this study have been more of the
latter kind. Education can help to overcome societal barriers, as well as provide the
means to break away from disruptive marriages (Kreager et al. 2013), but at the same
time be associated with factors which make the dissolution of at least moderately
functioning marriages costlier. This dual role of education means that the interaction
effects between education and marital satisfaction can be contingent on the social
context and the importance given to marital happiness and stability.
Our analysis is of course not without its limitations, which future research
would do well to address. First, the results only speak directly to marriages in the UK,
although we expect the main conclusions to hold in other similar countries. Second, our
interpretation of barriers is admittedly a “residual” one, relying on effects independent
of marital satisfaction instead of being direct measures of what is perceived as barriers.
Third, future research could look into how female education affects who files for
divorce as an additional test of the proposed explanations. Our data allowed measuring
her and his satisfaction separately, but her education may differently shape the barriers
to her and his divorce decisions. Furthermore, questions of causality remain open.
Within the frame of this study, we cannot make definitive claims of causal effects of
education, nor of the other variables. For example, home ownership is endogenous, as
dysfunctional couples are less likely to purchase homes. Regarding education, our
objective was not to estimate causal effects of educational attainment on divorce, but
rather, to understand why social groups characterized by different levels of education
differ in marital stability. It can also be that changing selectivity to educational
attainment levels provides cues to the changing educational gradients of divorce.
Finally, with our data we were not able to directly test what could explain the
changes in the female educational gradients of divorce. We proposed a framework
which emphasizes the changing importance of barriers as a potential explanation.
Whether it proves useful or not is left for future research to assess. In any case, our
analysis has provided evidence which redirect the theoretical foundations for
understanding these socioeconomic differences in divorce from differences in
attractions and returns from marriage toward barriers to divorce.
Previous versions of this paper have been presented at the European University
Institute, the European Divorce Research Network Conference in Helsinki, the BSPS
conference in Manchester, the ECSR/EQUALSOC conference in Stockholm,
Stockholm University, Universitat Pompeu Fabra, and Yale University. We would like
to thank the participants at these events as well as Pau Baizán, Fabrizio Bernardi, Teresa
Castro, Lynn Cooke, Jaap Dronkers, Gøsta Esping-Andersen, Michael Gähler, Michael
Grätz, Marika Jalovaara, Aat Liefbroer, Torkild Lyngstad and Elizabeth Thomson for
their valuable comments on earlier drafts of this paper. Härkönen gratefully
acknowledges financial support from the Swedish Council for Working Life and Social
Research (no. 2010-0831).
Amato, Paul R. 1996. “Explaining the Intergenerational Transmission of Divorce.”
Journal of Marriage and Family 58 (3): 628-640.
Amato, Paul R. 2010. “Research on Divorce: Continuing Developments and New
Trends.” Journal of Marriage and Family 72 (3): 650-666.
Amato, Paul R., and Bryndl Hohmann-Marriott. 2007. “A Comparison of High- and
Low-distress Marriages that End in Divorce.” Journal of Marriage and Family
69 (4): 621-638.
Becker, Gary S. 1974. “A Theory of Marriage.” In Economics of the Family: Marriage,
Children, and Human Capital, Edited by Theodore W. Schultz. Cambridge
(MA): National Bureau of Economic Research, pp. 299-351.
Becker, Gary S., Elisabeth M. Landes, and Robert T. Michael. 1977. “An Economic
Analysis of Marital Instability.” Journal of Political Economy 85 (6): 1141-
Bernardi, Fabrizio, and Juan-Ignacio Martínez-Pastor. 2011. “Female Education and
Marital Dissolution: Is It a Selection Effect?” European Sociological Review 27
(6): 693-707.
Berrington, Ann, and Ian Diamond. 2000. “Marriage or Cohabitation: A Competing
Risks Analysis of First-partnership Formation among the 1958 British Birth
Cohort.” Journal of the Royal Statistical Association: Series A (Statistics in
Society) 163 (2): 127-151.
Blossfeld, Hans-Peter, Alessandra de Rose, Jan M. Hoem, and Götz Rohwer. 1995.
“Education, Modernization and the Risk of Marriage Disruption in Sweden,
West Germany, and Italy.” In Oppenheim Mason, Karen and An-Magritt Jensen
(eds.) Gender and Family Change in Industrialized Countries. Pp. 200-222.
Oxford: Clarendon Press.
Boertien, Diederik, Christian von Scheve, and Mona Park. 2012. “Education,
Personality and Separation: The Distribution of Relationship Skills across
Society.” SOEP Working Paper No. 487. Berlin: DIW.
Bonke, Jens, and Gøsta Esping-Andersen. 2011. “Family Investments in Children –
Productivies, Preferences, and Parental Childcare.” European Sociological
Review 27 (1): 43-55.
Brines, Julie, and Kara Joyner. 1999. “The Ties that Bind: Principles of Cohesion in
Cohabitation and Marriage.” American Sociological Review 64 (3): 333-355.
Chan, Tak Wing, and Brendan Halpin. 2005. “The Instability of Divorce Risk Factors in
the UK.” Working Paper. Oxford: University of Oxford.
Cherlin, Andrew. 1978. “Remarriage As an Incomplete Institution.” American Journal
of Sociology 84 (3): 634-650.
Cherlin, Andrew. 1992. Marriage, Divorce, Remarriage. 2
Edition. Cambridge (MA):
Harvard University Press.
Conger, Rand D., Glen H. Elder, Jr., Frederick O. Lorenz, Katherine J. Conger, Ronald
L. Simons, Les B. Whitbeck, Shirley Huck, and Janet N. Melby. 1990. “Linking
Economic Hardship to Marital Quality and Instability.” Journal of Marriage and
the Family 52 (3): 643-656.
Conger, Rand D., Katherine J. Conger, and Monica J. Martin. 2010. “Socioeconomic
Status, Family Processes, and Individual Development.” Journal of Marriage
and Family 72 (3): 685-704.
Cooke, Lynn Prince. 2006. ““Doing” Gender in Context: Household Bargaining and
Risk of Divorce in Germany and the United States.” American Journal of
Sociology 112 (2): 442-472.
Cooke, Lynn Prince, and Vanessa Gash. 2010. “Wives’ Part-time Employment and
Marital Stability in Great Britain, West Germany, and the United States.”
Sociology 44 (6): 1091-1108.
Coontz, Stephanie. 2005. A History of Marriage: From Obedience to Intimacy, or How
Love Conquered Marriage. New York: Viking.
De Graaf, Paul M., and Matthijs Kalmijn. 2006a. “Change and Stability in the Social
Determinants of Divorce: A Comparison of Marriage Cohorts in the
Netherlands.” European Sociological Review 22 (5): 561-572.
De Graaf, Paul M. and Matthijs Kalmijn. 2006b. “Divorce Motives in a Period of Rising
Divorce: Evidence from a Dutch Life-history Survey.” Journal of Family Issues
27 (4): 483-505.
Dronkers, Jaap. 2002. ”Bestaat Er een Samenhang tussen Echtscheiding en
Intelligentie? [Is There a Relation between Divorce and Intelligence?].” Mens en
Maatschappij 77 (1): 25-42.
Edin, Kathryn, and Maria Kefalas. 2005. Promises I Can Keep: Why Poor Women Put
Motherhood Before Marriage. Berkeley (CA): University of California Press.
Ermisch, John, and Brendan Halpin. 2004. “Home Ownership and Social Inequality in
Britain.” In Kurz, Karin and Blossfeld, Hans-Peter (eds.) Home Ownership and
Social Inequality in a Comparative Perspective. Pp. 255-280. Palo Alto (CA):
Stanford University Press.
Erola, Jani, Juho Härkönen, and Jaap Dronkers. 2012. “More Careful or Less
Marriageable? Parental Divorce, Spouse Selection, and Entry into Marriage.”
Social Forces 90 (4): 1323-1345.
Esping-Andersen, Gøsta., 2007. “Sociological Explanations of Changing Income
Distributions.” American Behavioral Scientist 50 (5): 639-658.
Fenstermaker, Sarah 2002. “Work and Gender.” In Fenstermaker, Sarah, and
Cancade West (eds.). Doing Gender, Doing Difference. New York:
Routledge, pp. 105-118.
Fincham, Frank D., and Ronald D. Rogge. 2010. “Understanding Relationship
Quality: Theoretical Challenges and New Tools for Assessment.” Journal of
Family Theory & Review 2 (4): 227-242.
Funk, Janette L., and Ronald D. Rogge. 2007. Testing the Ruler with Item
Response Theory: Increasing Precision of Measurement for Relationship
Satisfaction with the Couples Satisfaction Index.” Journal of Family
Psychology 21 (4): 527-583.
Goode, William J. 1962. “Marital Satisfaction and Instability. A Cross-cultural Class
Analysis of Divorce Rates.” In Bendix, Reinhard and Lipset, Seymor Martin
(Eds), Class, Status, and Power. Social Stratification in Comparative
Perspective. New York: The Free Press, pp. 377387.
Goode, William J. 1963. World Revolution and Family Patterns. New York: The Free
Guo, Guang. 1993. “Left-truncated Data for Event History Analyses.” Sociological
Methodology 23 (1): 217-243.
Halliday Hardie, Jessica, and Amy Lucas 2010. “Economic Factors and Relationship
Quality among Young Couples: Comparing Cohabitation and Marriage.”
Journal of Marriage and Family 72 (5): 1141-1154.
Heaton, Tim B., and Stan L. Albrecht. 1991. “Stable Unhappy Marriages.” Journal of
Marriage and the Family 53 (3): 747-758.
Hoem, Jan M. 1997. “Educational Gradients in Divorce Risks in Sweden in Recent
Decades.” Population Studies 51 (1): 19-27.
Härkönen, Juho. 2014. “Divorce: Trends, Patterns, Causes, Consequences.” In Treas,
Judith K., Scott, Jacqueline, and Richards, Martin (eds.) The Wiley-Blackwell
Companion to the Sociology of Families. Chichester: John Wiley and Sons, pp.
Härkönen, Juho, and Jaap Dronkers. 2006. “Stability and Change in the Educational
Gradients of Divorce: A Comparison of 17 Countries.” European Sociological
Review 22 (5): 501-17.
Iacobucci, Dawn 2012. “Mediation Analysis and Categorical Variables: The Final
Frontier.” Journal of Consumer Psychology 22 (4): 582-594.
Isen, Adam, and Betsey Stevenson. 2010. “Women’s Education and Family Behavior:
Trends in Marriage, Divorce and Fertility.” NBER Working Paper No. 15725.
Cambridge (MA): National Bureau of Economic Research.
Jalovaara, Marika. 2001. “Socio-economic Status and Divorce in First Marriages in
Finland, 1991-93.” Population Studies 55 (2): 119-133.
Jalovaara, Marika. 2002. “Socioeconomic Differentials in Divorce Risk by Duration of
Marriage.” Demographic Research 7: 537-564.
Jalovaara, Marika. 2013. “Socioeconomic Resources and the Dissolution of
Cohabitations and Marriages.” European Journal of Population 29 (2): 167-193.
Johnson, Michael P., John P. Caughlin, and Ted L. Huston. 1999. “The Tripartite
Nature of Marital Commitment: Personal, Moral, Structural Reasons to Stay
Married.” Journal of Marriage and the Family 61 (1): 160-177.
Karney, Benjamin R., and Thomas N. Bradbury. 1995. “The Longitudinal Course of
Marital Quality and Stability: A Review of Theory, Method, and Research.”
Psychological Bulletin 118 (1): 3-34.
Kreager, Derek A., Richard B. Felson, Cody Warner, and Marin R. Wenger. 2013.
“Women’s Education, Marital Violence, and Divorce: A Social Exchange
Perspective.” Journal of Marriage and Family 75 (3): 565-581.
Knoester, Chris, and Alan Booth, 2000. “Barriers to Divorce: When Are They
Effective? When Are They Not.” Journal of Family Issues 21 (1): 78-99.
Levinger, George. 1965. “Marital Cohesiveness and Dissolution: An Integrative View.”
Journal of Marriage and the Family 27 (1): 19-28.
Levinger, George. 1976. “A Social Psychological Perspective on Marital Dissolution.”
Journal of Social Issues 32 (1): 21-47.
Lyngstad, Torkild Hovde, and Marika Jalovaara. 2010. “A Review of the Antecedents
of Union Dissolution.” Demographic Research 23 (10): 257-292.
Lyngstad, Torkild Hovde. 2011. “Does Community Context Have an Important Impact
on Divorce Risk? A Fixed-Effects Study of Twenty Norwegian First-Marriage
Cohorts.” European Journal of Population 27 (1): 57-77.
Lye, Diane N., and Timothy J. Biblarz. 1993. “The Effects of Attitudes Towards Family
Life and Gender Roles on Marital Satisfaction.” Journal of Family Issues 14 (2):
Lynch, Scott M. 2003. “Cohort and Life-Course Patterns in the Relationship between
Education and Health: A Hierarchical Approach.” Demography 40 (2): 309-331.
Lynn, Peter. 2006. Quality Profile British Household Panel Survey. Version 2.0: Waves
1-13: 1991-2003. Colchester: Institute for Social and Economic Research.
Martin, Steven P. 2006. “Trends in Marital Dissolution by Women’s Education in the
United States.” Demographic Research 15 (20): 537-560.
Martin, Steven P., and Sangeeta Parashar. 2006 “Women's Changing Attitudes toward
Divorce, 1974–2002: Evidence for an Educational Crossover.” Journal of
Marriage and Family 68 (1): 29-40.
Matysiak, Anna, Marta Styrc, and Daniele Vignoli. 2013. “The Changing Educational
Gradient in Marital Disruption: A Meta-analysis of European Research
Findings.” Population Studies 68 (2): 197-215.
McLanahan, Sara S., and Christine Percheski. 2008. “Family Structure and the
Reproduction of Inequalities.” Annual Review of Sociology 34: 257-276.
Mood, Carina. 2010. “Logistic Regression: Why We Cannot Do What We Think We
Can Do and What Can We Do about It.” European Sociological Review 26 (1):
Murphy, Michael. 2000. “The Evolution of Cohabitation in Britain, 1960-95.”
Population Studies 54 (1): 43-56.
Oláh, Livia Sz., and Michael Gähler. 2014. “Gender Equality Perceptions, Division of
Paid and Unpaid work, and Partnership Dissolution in Sweden.” Social Forces,
Oppenheimer, Valerie Kincade. 1997. “Women’s Employment and the Gain to
Marriage: The Specialization and Trading Model.” Annual Review of Sociology
23: 431-453.
Özcan, Berkay, and Richard Breen. 2012. “Marital Instability and Female Labor
Supply.” Annual Review of Sociology 38: 463-481.
Park, Hyunjoon, and James Raymo. 2013. “Divorce in Korea: Trends and Educational
Differentials.” Journal of Marriage and Family 75 (1): 110-126.
Park, Hyunjoon, James Raymo, and Mathew Creighton. 2009. “Educational Differences
in the Risk of Divorce and their Trends across Marriage Cohorts of Korean
Women.” Gender Studies and Policy Review 2 (1): 6-17.
Previti, Denise, and Paul R. Amato. 2003. “Why Stay married? Rewards, Barriers, and
Marital Stability.” Journal of Marriage and Family 65 (4): 561-573.
Raymo, James M., Setsuya Fukuda, and Miho Iwasawa. 2013. “Educational Differences
in Divorce in Japan.” Demographic Research 28 (6): 177-206.
Rijken, Arieke J., and Aart C. Liefbroer. 2012. “European Views of Divorce among
Parents of Young Children: Understanding Cross-national Variation.”
Demographic Research 27 (2): 25-52.
Rubin, Donald R. 1987. Multiple Imputation for Nonresponse in Surveys. New York:
Sayer, Linda C., and Suzanne M. Bianchi. 2000. “Women’s Economic Independence
and the Probability of Divorce: A Review and Reexamination.” Journal of
Family Issues 21 (7): 906-943.
Sayer, Linda C., Paula England, Paul Allison, and Nicole Kangas. 2011. “She Left, He
Left: How Employment and Satisfaction Affect Men’s and Women’s Decisions
to Leave Marriages.” American Journal of Sociology 116 (6): 1982-2018.
Schneider, Daniel. 2011. “Wealth and the Marital Divide”. American Journal of
Sociology 117 (2): 627-667.
Schoen, Robert, Stacy J. Rogers, and Paul R. Amato. 2006. “Wives’ Employment
and Spouses’ Marital Happiness: Assessing the Direction of Influence Using
Longitudinal Couple Data.” Journal of Family Issues 25 (4): 506-528.
Schumm, Walter R., and Margaret A. Bugaighis. 1985. “Marital Quality and
Marital Stability: Resolving a Controversy.” Journal of Divorce 9 (1): 73-
Shafer, Kevin, and Spencer L. James, 2013. “Gender and Socioeconomic Status
Differences in First and Second Marriage Formation.” Journal of Marriage
and Family 75 (3): 544-564.
Sigle-Rushton, Wendy, John Hobcraft, and Kathleen Kiernan. 2005. “Parental
Divorce and Subsequent Disadvantage: A Cross-cohort Comparison.”
Demography 42 (3): 427-446.
South, J. Scott, and M. Kim Lloyd. 1995. “Spousal Alternatives and Marital
Dissolution.” American Sociological Review 60 (1): 21-35.
South, J. Scott, and Glenna Spitze. 1986. “Determinants of Divorce over the Marital
Life Course.” American Sociological Review 51 (4): 583-590.
StataCorp. 2013. Stata 13 Base Reference Manual. College Station, TX: Stata Press.
Twenge, Jean M., W. Keith Campbell, and Craig A. Foster. 2003. “Parenthood and
Marital Satisfaction: A Meta-analytic Review.” Journal of Marriage and Family
65 (3): 574-583.
White, Lynn K., and Alan Booth. 1991. “Divorce over the Life Course: The Role of
Marital Happiness.” Journal of Family Issues 12 (1): 5-12.
White, Lynn K., and Stacy Rodgers. 2000. “Economic Circumstances and Family
Outcomes: Review of the 1990s.” Journal of Marriage and the Family 62 (5):
Wilkie, Jane Riblett, Myra Marx Ferree, and Kathryn Strother Ratcliff. 1998. “Gender
and Fairness: Marital Satisfaction in Two-earner Couples.” Journal of Marriage
and the Family 60 (3): 577-594.
Winship, Christopher, and Robert D. Mare. 1983. “Structural Equations and Path
Analysis for Discrete Data.” American Journal of Sociology 89 (1): 54-110.
Wolfinger, Nicholas. 2005. Understanding the Divorce Cycle. Cambridge (MA):
Harvard University Press.
Yamaguchi, Kazuo. 1991. Event History Analysis. Newbury Park: Sage.
FIGURE 1. Wife’s Education and Divorce: Survival Curves.
SOURCE: Authors’ calculations using the British Household Panel Survey (BHPS), 1996-2009.
NOTE: 1,887 marriages, and 9,130 person-years.
0.50 0.60 0.70 0.80 0.90 1.00
Survival Into Marriage
0 3 6 9 12 15
Duration (Years)
Lowest Education Middle Education
Highest Education
FIGURE 2. Wife’s Education and Divorce: Smoothed Hazard Curves.
SOURCE: Authors’ calculations using the British Household Panel Survey (BHPS), 1996-2009.
NOTE: 1,887 marriages, and 9,130 person-years.
.01 .02 .03
0 3 6 9 12 15
Duration (Years)
Lowest Education Middle Education
Highest Education
FIGURE 3. Wife’s Education and Her Marital Satisfaction: Lowess Smoothed
SOURCE: Authors’ calculations using the British Household Panel Survey (BHPS), 1996-2009.
NOTE: 1,887 marriages, and 9,130 person-years.
6.2 6.4 6.6 6.8
Marital Satisfaction
0 5 10 15
Duration (Years)
Lowest Education
Middle Education
Highest Education
FIGURE 4. Wife’s Education and the Husband’s Marital Satisfaction: Lowess
Smoothed Trajectories.
SOURCE: Authors’ calculations using the British Household Panel Survey (BHPS), 1996-2009.
NOTE: 1,887 marriages, and 9,130 person-years.
6.2 6.4 6.6 6.8
Marital Satisfaction
0 5 10 15
Duration (Years)
Lowest Education
Middle Education
Highest Education
TABLE 1. Descriptive Statistics for the Sample (Person-Years)
St. Dev.
Duration of marriage (years)
Wife’s education in years
Her satisfaction with spouse
His satisfaction with spouse
Her or his parents divorced
Wife’s age at marriage
Cohabited before marriage
Number of children in household
Child under 4 years of age in household
Share of single persons in age group/region
Wife unemployed
Husband unemployed
Material deprivation (index)
Her unusual working hours
Annual household income (logged)
Her share of labor income
Husband’s education in years
House owned by one of the spouses
Her interest on savings
His interest on savings
Her church attendance
Gender norm scale
Her share of housework
9,130 person-years (1,887 couples)
SOURCE: Authors’ calculations using the British Household Panel Survey (BHPS), 1996-2009.
NOTE: St. Dev. = Standard Deviation; Min. = Minimum Value Observed; Max. = Maximum
Value Observed.
... Similarly, we did not have data to control for further differences between divorced and nondivorced families, which may induce selection effects [1]. For example, historical information that could both increase parents' inclination to divorce, and possibly affect the adolescents' GPA differently according to parental educational levels (e.g., mental health problems or levels of parental conflict) could be of importance and might explain the larger educational penalty observed in families with highly educated parents [22,65]. Of note, studies that have statistically adjusted their analysis by pre-divorce characteristics often find that it weakens the associations between divorce and educational outcomes [43]. ...
Full-text available
Background The link between parental divorce and adolescents’ academic achievement may depend on parental educational levels. However, findings have been inconsistent regarding whether the negative associations between parental divorce and adolescents’ academic outcomes are greater or smaller in highly educated families. The present study aimed to investigate the possible heterogeneity in the associations between divorce and adolescents’ academic achievement by parental educational levels, within the context of the elaborate Norwegian welfare state. Methods The population-based cross-sectional youth@hordaland study of adolescents aged 16–19 years conducted in Norway in 2012, provided information about parental divorce and was linked to national administrative registries (N = 9,166) to obtain high-quality, objective data on the adolescents’ grade point average (GPA), and their parents’ educational qualifications and income. Results The negative association between parental divorce and GPA was stronger among adoles- cents with educated or highly educated parents compared to adolescents with less edu- cated parents. This heterogeneity was driven by maternal educational qualifications, whereby divorce was more strongly and negatively associated with GPA among adolescents with educated mothers compared to those with less educated mothers, independent of paternal educational levels and income measures. Conclusions Among adolescents whose parents have low educational qualifications, parental divorce is not associated with their academic achievement. Educated divorced mothers appear less likely to transfer their educational advantages onto their children than nondivorced equally educated mothers, perhaps due to a “double-burden” regarding work pressure and child- rearing responsibilities. There is a need for future studies to detail the mechanisms underlying this finding.
... Levinger points out that theoretically, someone would leave her/his current relationship if and when the benefits from the alternative situation exceed the benefits of the current relationship, if there were a complete absence of barriers. 1 However, following Boertien and Härkönen (2014), I state that these alternative attractions can be considered 'barriers' to break up since a lack of alternatives creates such barriers. For instance, women's own occupational status and employment (both conceptualized here as barriers to breakup) can be seen as alternative attractions to live alone rather than together in a nonsatisfactory relationship. ...
Full-text available
How can we explain that, nowadays, lower educated women are more likely to separate than higher educated women are? I formulate hypotheses to explain this based on Levinger’s (J Marriage Family 27(1):19–28, 1965; J Soc Issues 32(1):21–47, 1976; Handbook of interpersonal commitment and relationship stability. Kluwer Academic/Plenum Publishers, New York, 1999) social exchange theory on ‘attractions’ and ‘barriers’ and assess whether there are mediating effects of affectional rewards, economic rewards, symbolic rewards, affectional barriers, material barriers, and symbolic costs. I analyse the Generations and Gender Survey (GGS) [2004–2013] for two waves for Bulgaria, Russia, Georgia, France, Austria, and Czech Republic. With this selection of countries, I have a good context variation according to social and economic costs of union dissolution. Using the khb-approach – which is a mediation analysis for binary dependent variables – I examine the probability that women broke up between two consecutive waves and explain the influence of education on union dissolution. Instead of being mainly explained by ‘attractions’, ‘barriers’ were more important explanatory variables of the negative educational gradient of union dissolution in the six countries I studied (lower educated women had less to lose symbolically and economically). Next to relationship satisfaction as the only explanatory ‘attraction’, I found suppressor effects of ‘attractions’.
Full-text available
In this dissertation, I examine the educational assortative mating patterns in Hungary and its effect on the quality and stability of relationships. This topic is especially relevant as women’s educational advantage and the proportion of hypogamous (female advantage) unions are growing in Europe and in Hungary as well. My work provides novel data on how relationships are established, maintained and ended, and has implications for processes related to social stratification, demography and societal norms. Theories and previous results focusing on individual preferences highlight the negative effect of hypogamy for the relationship, while there is divide whether hypergamy (a male advantage) or homogamy (similarity) is more beneficial. Complementing the preference-based approaches, the theory of relationship markets posit that the size of societal groups affects interactions and therefore the composition of partnerships. Additionally, following or violating societal norms also plays an important role in the formation and working of a union as well. The Hungarian context of relationships, which forms the background for the studied phenomena, shows a complex picture. While the number of marriages declined and divorces increased, the last decade saw a reversal in these trends. Regarding norms and values, in Hungary and especially in the case of women’s employment, traditional, family-oriented and progressive attitudes are present simultaneously. In the empirical part of the dissertation, I explored four research questions regarding partner selection and two hypotheses for relationship quality and stability using data from the 2011 Hungarian census and two representative surveys (Hungarian Turning Points of the Life Course Panel Survey and the European Social Survey). The results show that (1) in Hungary, educational homogamy was continually dominant while hypergamy declined in favour hypogamy; (2) the emergence of hypogamy was related to women’s growing educational advantage; (3) the association between the partners’ education is strengthening; (4) and that the trends seen for Hungary are part of a change visible in many other European nations as well. The presented cross-sectional, longitudinal trajectory and survival models showed that homogamy and hypergamy are related to higher levels of relationship quality and stability for women only, partially confirming the hypotheses of the dissertation. Detailed models also hinted at hypergamy’s added positive effect compared to homogamy.
This study is an assessment of the impact of the nuptiality component on the change in the fertility process, which is part of the demographic transition in Rwanda. It focusses on indicators such as age of first marriage, rates of divorce, separation, marriage dissolution, wid-owhood, polygamy, and number of unmarried people, for their impact on the change in total fertility rate (TFR) in Rwanda. Further, the study examines nuptiality level and behaviour in Rwanda. It is based on the investigation and interpretation of data from various reports of the National Institute Statistics of Rwanda (NISR) and the World Bank (WB), as well as data from experiments conducted by the researcher. The study concluded that, according to most of the reports, these indicators of nuptiality did contribute to the change of TFR during the demographic transition in Rwanda. Further, it recommended that the public statistical institution (NISR) should conduct a study on homosexuality and its impact on TFR in Rwanda. This study consists of four sections: section 1-introduction; section 2-literature review; section 3-data and methods; section 4-analytical methods, results and conclusion
Full-text available
Divorcees have different psychological impacts because of their different caste/ethnicity, gender, and socio-cultural backgrounds. This study is about cultural psychological factors of divorce and its different psychological impacts on different cultural groups. This research is designed in the mixed method to understand the "Mental Health Status of Divorcees from Different Cultural Backgrounds in Kathmandu". The total numbers of participants are 48 and selected by the purposive sampling led by snowball methods. The qualitative data is analyzed through narrative techniques. Among the total population, it is found that the psychological issues are significantly higher among females than males. The prevalence of stress, anxiety, and depression are higher in less educated females in comparison to highly educated females. Similarly, it has been found that differences in cultural practices including language, food, festivals, and family role lead to divorce. Data show that one-third of the informants have a severe level of anxiety and depression respectively after they had divorced but nearly fifty percent are in mild to moderate level of psychological issues including anxiety, stress, and depression. Regarding their cultural issues, even normal behaviors act like cumulative frequency also gradually hampers their relationship. The research also shows that the higher the education of females, the higher the rate of divorce cases and lower psychosocial impact.
Full-text available
In this paper, the effect of income distribution on divorce in Iran has been investigated using micro data of Household Expenditure and Income Survey of urban households in 2014 and applying the Quasi-panel data method. Primary data included 18885 urban households. At first, subsection of the data were selected including divorced and married male and female (16503 Households) and clustered in provinces. e data was then analyzed based on the initial and categorized data. In the next step, using the Deaton (1985) Quasi-panel data, Logit model is estimated with the Maximum likelihood method. The results of first estimation indicate that household per capita income reduces the probability of divorce, and the result of the secondary model (the initial model with including the square of per capita income) indicates a U shape effect of per capita income on the probability of divorce. That is, the probability of divorce in the two groups of income (low and high) is higher than the middle income holders. Threshold per capita income is estimated equivalent to 1275 thousand Toman on average and monthly for urban households or 5100000T in a month for a family of four in 2014. Also, having job reduces the probability of divorce. erefore, unemployment reduction policies and supportive policies to reduce income inequality in society will be a way to reduce the probability of divorce.
Full-text available
In this paper, the effect of income distribution on divorce in Iran has been investigated using micro data of Household Expenditure and Income Survey of urban households in 2014 and applying the Quasi-panel data method. Primary data included 18885 urban households. At first, subsection of the data were selected including divorced and married male and female (16503 Households) and clustered in provinces. e data was then analyzed based on the initial and categorized data. In the next step, using the Deaton (1985) Quasi-panel data, Logit model is estimated with the Maximum likelihood method. The results of first estimation indicate that household per capita income reduces the probability of divorce, and the result of the secondary model (the initial model with including the square of per capita income) indicates a U shape effect of per capita income on the probability of divorce. That is, the probability of divorce in the two groups of income (low and high) is higher than the middle income holders. Threshold per capita income is estimated equivalent to 1275 thousand Toman on average and monthly for urban households or 5100000T in a month for a family of four in 2014. Also, having job reduces the probability of divorce. erefore, unemployment reduction policies and supportive policies to reduce income inequality in society will be a way to reduce the probability of divorce.
A tanulmány a hazai családszociológiai kutatások egyik „fehér foltjával”, a mozaikcsaládokkal foglalkozik. A mozaikcsaládok demográfiai és szociológiai jellemzőinek bemutatását az intakt és egyszülős családokkal ös - szevetve teszi, ezáltal számos ismérv mentén elhelyezi őket a gyermekes családok körében. Mindezek mellett megvizsgálja, hogy mindazon társadalmi hátrányok, amelyek a mozaikcsaládokban élőket jellemzik vajon magával a családszerkezettel vagy a szülők kedvezőtlen társadalmi státuszával függnek össze. Más szavakkal: a mozaikcsaládok társadalmi hátrányait mennyire határozza meg az a tény, hogy az alacsonyabb társadalmi státuszúak nagyobb valószínűséggel kerülnek be a köreikbe. Mindezeket alapvetően két dimenzióban vizsgáljuk: az egyik az anyagi jólét területe, ahol a jövedelmi szegénységet és a megélhetési nehézséget vizsgáltuk. A másik pedig a társas kapcsolatok, ahol a rokoni és a baráti kapcsolatokba való beágyazottság került a kérdéseink fókuszába. Mindkét területen azt állapítottuk meg, hogy a szülők társadalmi struktúrában elfoglalt pozíciójának, nevezetesen ennek egyik fő elemének az iskolai végzettségnek rendkívül erős a hatása, amely számos más ismérv kontrollálásával is megmarad. A mozaikcsaládok kedvezőtlenebb életkörülményeit tehát alapvetően azzal a szelekciós mechanizmussal magyarázhatjuk, hogy az alacsonyabb végzettségűek nagyobb eséllyel élnek ebben a családformában.
The recent rise in cohabitation in Britain is analysed using data from large-scale surveys. There are major inconsistencies between different sources, and retrospective estimates are higher than values reported at the time. Retrospective data show markedly smaller numbers of cohabitation events just before survey date. I discuss reasons for discrepancies and conclude that no 'objective' measure of cohabitation exists and that comparison of different types of data requires care. I combine the data to produce a much larger data set than hitherto available. Although cohabitation prevalence increased substantially during the 1970s and 1980s, there was little change in such characteristics as duration of cohabitation, ages of those cohabiting, and whether it occurred before first marriage or ended in marriage or breakdown. However, since the late 1980s, the average length of cohabitation has increased markedly, which may indicate a qualitative change in the nature of cohabitation in Britain.
Growing up in a divorced family can cause the children to have difficulties in maintaining relationships. Nicholas Wolfinger demonstrates the significant impact of parental divorce upon people's lives and society. The divorce cycle phenomena ensures the transmission of divorce from one generation to the next. This book examines how it has transformed family life in contemporary America by drawing on two national data sets. Compared to people from intact families, the children of divorced parents are more likely to marry as teenagers, but less likely to wed overall. They are more likely to marry other people from divorced families, but more likely to dissolve second and third marriages, and less likely to marry their live-in partners.
The abstract for this document is available on CSA Illumina.To view the Abstract, click the Abstract button above the document title.
The higher divorce rate for remarriages after divorce than for first marriages, it is argued, is due to the incomplete institutionalization of remarriage after divorce in the United States. Persons who are remarried after a divorce and have children from previous marriages face problems unlike those encountered in first marriages. The institution of the family provides no standard solutions to many of these problems, with the result that the unity of families of remarriages after divorce often becomes precarious. The incomplete institutionalization of ramarriage shows us, by way of contrast, that family unity in first marriages is still supported by effective institutional controls, despite claims that the institutional nature of family life has eroded in the 20th century. Some suggestions for future research on remarriage and on the institutionalization of married life are presented.
We investigate the relationship between marital satisfaction and the family division of both paid and domestic work, and we assess whether value preferences for the gender division, the balance of power, and perceptions of equity and empathy mediate this relationship in a random sample of 382 two-earner married couples. Using a path analysis, we find that the division of labor and role preferences affect marital satisfaction mainly through perceptions of fairness, but what is "fair" is different for husbands and wives. The gendered meanings attached to domestic and paid work are important in understanding these differences and lend support to a gendered model of marital satisfaction.
Marriage is considered as a special instance of social groups in general. Marital cohesiveness and divorce are viewed in terms of the properties of group cohesiveness. It is suggested, therefore, that the strength of the marital relationship is a direct function of social and psychological attraction and barrier forces inside the marriage, and an inverse function of such influences from alternate relationships. Findings from major investigations of marriage and divorce are cited to illustrate the applicability of the conceptual framework.
Using data from the young and mature women samples of the National Longitudinal Survey, this paper examines how the determinants of divorce (and separation) vary by the duration of marriage. In general, we find little evidence that the strength of previously identified predictors of divorce varies by marital duration. Variables such as race, wife's labor force participation, husband's employment, and urban residence seem to influence the probability of divorce, irrespective of the stage in the marital life course. The principal exception to this finding is the effect of wife's education, which appears to decrease the probability of divorce at early marital durations but to increase it at later durations. There is also suggestive evidence that the effects of home ownership and age at marriage may vary by marital duration.