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ABSTRACT. Nultldienslonal Laplace transformations are used to obtain the surface

teaperature and the surface heat flux of a plate with a fluid flowing across it

without solving the complete boundary value problem. It is also shown that the

constant initial and boundary values can be relaxed and the aethod still applies.

The solutlon to the boundary value proble at points away froa the surface can be

treated similarly.

AUS SUBJECT CLASSIFICATIOt 1979 }. Pcn 44A0, Seco 55KfO, 80AO, 44AI0,

SAfO 44A0.

1. INTRODUCTION.

Recently James Sucec [1,2] considered a problem which involves heat transfer

between a plate and a fluiduhich is flowing across the place. Thisvork was

extended by P. Singh, V. P. Sharaa, and U. . isra [3] to the case of a porous

plate with suction. In both cases it is assumed that constant property, lamJJmr,

slug flow occurs across the plate and that the plate is convectlvely cooled froa

below. The Laplace transformation techniques are used in order to obtain the

temperature function at points vlthin the fluid and, from this, the surface heat

flux and temperature of the plate is obtained. The ork is in the spirit of
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Carslaw and Jaeger [4] in finding "exact" or "analytic" solutions. Several related

problems and the details of the mathematical model are discussed with care in [1,2].

In this paper we sho that the direct application of the multidimensional

Laplace transformation to the boundary value problem, with the assumption of the

existence of the transform of the solution as a replacement for the bounded

solution condition, leads dlrectly to a ’Wcompatabillty" condition. The transforms

of the surface heat flux and temperature can then be computed directly by use of

this compatability condition along with the transform of the boundary condition,

without first obtaining the temperature function at points within the fluid. These

transforms are then inverted. Some simpler applications of a comparability

condition were presented by D. Voelker and G. Doetsch [5] a number of years ago. In

Sections 2 and 3 we utilize this method to obtain the results of Sucec [1,2] and of

Singh, Sharma, and Hisra [3], respectively. In the last section we sho ho the

method can be applied as well to silar problems in which arbitrary functions are

introduced into the initial conditions and the boundary conditions.

We use reference notations to tabulated pairs of functions which are related

-1
by the Laplace transformation such as [2 2.1(22)] to denote Formula 22,

Section 2.1 of the inversion part of [2], or [6 A4(5)] to denote Formula 5 of

Section A4 of [6]. A few useful combinations from tables are recorded in our

Appendlx.

2. THE PROBLEH OF SUCEC.

In order to simplify the boundary value problem of Sucec [1,2], we rescale the

variables and introduce some n constants:

O afr01 Oc’ t fr2tl x afr2u=xI,
Y fryl’ B afrhc/kf, Y -0c/(Cfr).

(2.1)

If we subsequently drop the subscripts, the boundary value problem can be rewritten

in the form

0t(t,x,y) + 0x(t,x,y) 0yy(t,x,y), (2.2)

O(O+,x,y) =’0, (2.3)

O(t,O+,y) y, (2.4)
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e (t,x,o+) 8e(t,x,o+) + et(t,x,o+). (2.5)
Y

We also replace the condition that e(t,x,y) be bounded, by the assumption that the

solution possesses a 3-dLaenslonal Laplace transform, that is

3(e(t,x,y)) f(s,u,v). (2.6)

Properties of the 2-dlmenslonal Laplace transformation are developed in [5],

which further includes an extensive inversion table. Initially ve transform vlth

respect to the first eo variables and let

2(e(t,x,y)) S(s,u,y). (2.7)

If we next transform with respect to the third variable, then, after some simplifica-

tions, the problem becomes

f(s,u,v)- (v+s’) II,x:u,O+) -3’(sV)-1
2 (2.8)

v

(s,,,O+) (,4) S(s,u,0+). (2.9)

In (2.8) we observe that the denominator is zero arbitrarily far out in right

half planes; thus, f is not analytlc in right hal planes, unless the numerator

is also zero for v (u+s)1/2. Hence, f cannot be a Laplace transform in general.

The applicatlon of the condition for existence (2.6) leads us to the "compatabillty

condition"

((,+,)12 + + ) S(,,-,0+) ,-(,+)-12 0. (2.0)

This condition (2.10) can be used In order to eIJJLtnate the, as yet undetermined,

function 8(s,u,O+) from (2.8). Thus f can be expressed as a Laplace transform

which can then be inverted by the use of tables. We further note that [he inversion

of (2.10) itself leads to the temperature at the boundary. Further, the elLmlnatLon

of 8(s,u,O+) between (2.9) and (2.10) and the inversion of the result leads to the

heat flux at the boundary. Bence both e(t,x,0+) and 8 (t,x,O+) can be obtained
Y

without, and in an easier manner than, going through the inversion of f(s,u,v) in

order to first obtain

For the Inversions of (2.9) and (2.10), we need the 2-dlmenslonal inversions of
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sy(x,u,O+) (+6).-v-/(./+s+6)-, (.)

g(s,u,o+) s--/(/+s+6)=, (.)

in which w s + u. The linear substitution formula [6 A4(5)] is designed to

help vlth such situations. If we apply It to (A.1) from our Appendix, we have

0(t,x,O+) yeB Erfc Erfc BxI/2 +
2x

1/2 U (t-x)

if further we use [6 B2(13)], we have

(2.13)

e (t,x,O+) Be(t,x,O+) + ye-(t-X)x(t-x,x)U(t-x).
Y

In these last two formulas, the unit step function is denoted by U and a heat

kernel by

(a,b) (b)-l/2e-a2/(4b). (2.15)

The ellmlnatlon of g(s,u,O+) from (2.8) and (2.10), folloed by inversion,

in which we use the same type of results as for (2.13), alon8 with (A.2), leads to

2xl/2 +

(2.16)

The results (2.13), (2.14), and (2.16) correspond to those of Sucec [1,2].

3. IE PROBLEH OF SINGH, SHARMA, AND MISBA.

If we use the same rescaling and further let 2. v r, the problem can be
o

rttten in the form

Ot(t,x,y) / Ox(t,x,y) + 2pOy(t,x,y) Oyy(t,x,y),
O(O+,x,y) 0,

e(t,O+,y) x

e .(t,x,O+) 6e(t,x,O+) + ec(t,x,O+),

(3.1)

(3.2)

(3.3)

3(8(C,x,y)] f(s,u,v) exists.

A completely analogous development leads to the comparability condition
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+ s + 13 1J g(s,u,O+) ys + J O, (3.6)

2
in which w u + s + Because of the similarity to the forms of Section 2, we

can make use of analogous computations to obtain O(t,x,O+)

without obtaining 0(t,x,y). Hence,

O+O(t,x, [-2

t-x
jpx

1/2’+ pe-(3-21J) (t-X)ErfC[2xl/2T

and 0 (t,x,0+), again

(3.7)

and similarly

0 (t,x,0+) 30(t,x,0+) + (lye-(13-p) (t-x)-12_)((t_x,x)V
Y

(8-2) (t-X)Erfc t-x + xl/2

which agree with the results in [3]. The formula for e(t,x,y)

(3.8)

analogous to (2.16),

can be obtained:

If we alloy for other than a constant initial temperature distribution through

A(x,y), for changes in inlet temperature by B(t,y), and for changes in temperature

due to the coolant by C(t,x), the rescaled problem can be written in the general

Ot(t,x,y)__ + 0 (t,x,y) + 21JOy(t,x,y) 0
x yy

(t,x,y), (4.1)

O(t,,y) B(t,y), (4.3)

0 (O+,x,y) A(x,y), (4.2)
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e (t,x,o+) B(e(t,x,o+) c(t,x)) et(t,x +),
Y

(4.4)

3(e(t,x,y)} f(s,u,v) exists. (4.5)

The problem lacks symmetry only in (4.4);

of Sucec’ s problem.

provides the direct generalization

1e appllcatlon of the Laplace transformations again, as in Sections 2 and 3,

lead to the consideration of the denominator in which v p w1/2, w s + u + 2
is now critical. Hence we must have the compatabillty condition

+ s + B p}g(s,u,O+) a{u,wll2 + p} +

+ b{s,wll2 + D] Bc(s,u) s(u,O+) (4.6)

for which we also need the continuity assumption a(u,0+) c(0+,u). We have

introduced the notations 2(A(x,y)) a(u,v), 2(B(t,y))=b(s,v), 2(C(t,x))=c(s,u),
and (A(x,0+)) a(u,0+). After some calculations we obtain the transforms of the

desired functions

g(s u,O+) a(u’wl/2+P) + b(s’wl/2+]) + 6c{s,u) + a(u,O+)
I12w +s+6 -p

(4.7)

gy(S u,O+)-
(s+B)[a(u’wl/2+P)l +

1/2w +s+-p

(wll2-p) (c (s,u)+a (u,0+) )
I/2

w +s+8 -p
(4.8)

(wl/2+p
f(s,u,v) )a(u’v)-va(u’wll2+)

(wll2+s’t-IJ) ((v-U)

(s4-2p) [a(u,v)-a(uewl/2+p) +
(wz/2+.+e-u) ((v-u) 2_)

+, Sc(x,u) + a(u,O+)
112 112(w +s+-p) (v-+

(4.9)

The terms of equation (4.9) are set up in forms slmllar to the differences which

appear in the tables [5]. Lengthy calculations involving convolution formulas,

entrles such as those in the Appendix, and extensions of entries from the tables [6]
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and [5] are needed to invert these transforms, especially the terms of (4.9); the

results involve various convolutions. Teras involving b sees to be the alaplest.

For specific functions A, B, and C, it is often easier to find the transfor a, b,

and c and then invert (4.7), (4.8), or (4.9) after the substitutio u a method

for the evaluation of the convolutions, rather than atteapting to evaluate the

convolutions directly.
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APPENDIX

Erfc(px1/2) e
(p-v)t

Erfc 1/2 + pXll2
2x

(ull2+p) (ull2+s+v) X(t,x)-e
(p-v)t2XErfc 12xl12t + pxll2

(A.3)

-11 exp (-yul/2) 1u-2) (ul/2+v) v2_p2
E 2xl/2 + px1 +

px1/2] + vxl/2]
l(r) exp(r2)e.rfc(r).Notmtton: (A.$)
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