ChapterPDF Available
A preview of the PDF is not available
Article
Full-text available
Ants (Hymenoptera: Formicidae) have great potential to exert influence over the morphological evolution of their obligate mutualist partners. Obligately myrmecophilic mealybugs are noted for their unusual morphology, and while this is often attributed to their relationship with ants, a quantitative assessment of this link is lacking. We address this need by evaluating morphological change among mealybugs as a function of ant association. This study considers the associates of 2 independent ant clades—Acropyga Roger, 1862 ants associated with root mealybugs from the families Xenococcidae and Rhizoecidae and herdsmen ants from the Dolichoderus cuspidatus (Smith, F., 1857) species-group associated with mealybugs from the tribe Allomyrmococcini (Pseudococcidae)—and compares them to free-living or potentially myrmecophilic species sampled from among the mealybugs and root mealybugs. We use a combination of geometric morphometric and linear datasets to evaluate characteristics of body shape, body size, leg metrics, and ostiole development. Obligate myrmecophily significantly influences both body shape and size. Myrmecophilous mealybugs are smaller than their free-living counterparts and are either pyriform or rotund in shape rather than oval. Ant-associates from Rhizoecidae also have significantly reduced anterior pairs of ostioles compared to free-living species. Ostioles are involved in defense against natural enemies and mutualist ants typically protect their partners, presumably supplanting the need for structures like ostioles among myrmecophilous species. We discuss the influence ants have on the evolution of their associates in the context of domestication and offer avenues for future exploration.
Article
Full-text available
Host-plant phenology can directly and indirectly mediate the abundance of insect herbivores. Our objective was to determine how host-plant flowering phenology shapes a facultative ant-lycaenid mutualism. The focus of our research was the hops azure, Celastrina humulus Scott & D. Wright, a rare species whose larvae feed on the pollen-bearing inflorescences of Humulus lupulus var. neomexicanus. We used several approaches to evaluate the role of host-plant flowering phenology in this system. First, we monitored larvae over three study years (2020-2022) to parse the role of host-plant flowering phenology and other factors in shaping the likelihood of ant tending. Second, we tested larval performance at various phenological stages of the host plant. We also quantified variation in soluble proteins and secondary metabolites among inflorescences at varying phenological stages. Lastly, we treated artificial sugar-protein baits with extracts from different phenological stages of the host plant; this allowed us to assess how chemical variation among stages could impact ant recruitment. Monitoring results revealed that the likelihood of ant tending was lowest for larvae on host plants with early-stage inflorescences. These floral stages had the greatest concentrations of both soluble proteins and α-acids (humulone and cohumulone), and in the feeding trial, early-stage flowers enabled greater weight gain for larvae. However, extracts from early-stage flowers reduced ant recruitment to sugar-protein baits. Altogether, these results suggest that early-stage inflorescences enhance larval growth while also reducing the recruitment of mutualist ants. This shows an indirect mechanism whereby changing host-plant phenology can mediate herbivore populations through interactions with ants.
Article
Full-text available
Honey produced by the Australian honeypot ant (Camponotus inflatus) is valued nutritionally and medicinally by Indigenous peoples, but its antimicrobial activity has never been formally studied. Here, we determine the activity of honeypot ant honey (HPAH) against a panel of bacterial and fungal pathogens, investigate its chemical properties, and profile the bacterial and fungal microbiome of the honeypot ant for the first time. We found HPAH to have strong total activity against Staphylococcus aureus but not against other bacteria, and strong non-peroxide activity against Cryptococcus and Aspergillus sp. When compared with therapeutic-grade jarrah and manuka honey produced by honey bees, we found HPAH to have a markedly different antimicrobial activity and chemical properties, suggesting HPAH has a unique mode of antimicrobial action. We found the bacterial microbiome of honeypot ants to be dominated by the known endosymbiont genus Candidatus Blochmannia (99.75%), and the fungal microbiome to be dominated by the plant-associated genus Neocelosporium (92.77%). This study demonstrates that HPAH has unique antimicrobial characteristics that validate its therapeutic use by Indigenous peoples and may provide a lead for the discovery of novel antimicrobial compounds.
Article
Full-text available
The invasive mealybug Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) has become a key pest in Mediterranean citrus. This mealybug species excretes honeydew that can be consumed by ants, which may give rise to mutualistic relationships and increase the invasibility of this exotic pest. Here, we studied the interaction between D. aberiae and ants in 16 citrus orchards located in the main citrus-growing area of Spain (Valencia) during two consecutive years. Four native ant species were observed feeding on D. aberiae honeydew, and Lasius grandis Forel (Hymenoptera: Formicidae) represented more than 95% of these ants. Lasius grandis was observed attending D. aberiae throughout the year and in all the orchard sites where the mealybug was present. Mealybug colony size had a positive effect on both relative and absolute ant-attendance by L. grandis, but these interactions varied across seasons. Moreover, we found a positive correlation between L. grandis activity and D. aberiae density in all citrus orchards. Our results suggest that the native ant L. grandis and the invasive pest D. aberiae have established a mutualistic association that promotes the establishment and accelerate the invasion of D. aberiae in Spanish citrus orchards. Further research with the aim of evaluating whether the management of this ant species can improve the control of D. aberiae in citrus would be recommended.
Article
Full-text available
Phenological mismatch can occur when plants and herbivores differentially respond to changing phenological cues, such as temperature or snow melt date. This often shifts herbivore feeding to plant stages of lower quality. How herbivores respond to plant quality may be also mediated by temperature, which could lead to temperature‐by‐phenology interactions. We examined how aphid abundance and mutualism with ants were impacted by temperature and host plant phenology. In this study system, aphids Aphis asclepiadis colonize flowering stalks of the host plant, Ligusticum porteri. Like other aphids, abundance of this species is dependent on ant protection. To understand how host plant phenology and temperature affect aphid abundance, we used a multiyear observational study and a field experiment. We observed 20 host plant populations over five years (2017–2021), tracking temperature and snow melt date as well as host plant phenology and insect abundance. We found host plant and aphid phenology to differentially respond to temperature and snow melt timing. Early snow melt accelerated host plant phenology to a greater extent than aphid phenology, which was more responsive to temperature. Both the likelihood of aphid colony establishment and ant recruitment were reduced when aphids colonized host plants at post‐flowering stages. In 2019, we experimentally accelerated host plant phenology by advancing snow melt date by two weeks. We factorially combined this treatment with open top warming chambers surrounding aphid colonies. Greatest growth occurred for colonies under ambient temperatures when they occurred on host plants at the flowering stage. Altogether, our results suggest that phenological mismatch with host plants can decrease aphid abundance, and this effect is exacerbated by temperature increases and changes to the ant–aphid mutualism.
Article
Full-text available
Ant colonies have vast and diverse nutritional needs but forager ants have limited mobility to meet these needs. Forager ants would accrue significant energy savings if they were able to sense and orient toward odor plumes of both carbohydrate and protein food sources. Moreover, if worker ants, like other flightless insects, had reduced olfactory acuity, they would not recognize the specific odor signatures of diverse carbohydrate and protein sources, but they may be able to orient toward those odorants that are shared between (macronutrient) food sources. Using the Western carpenter ant, Camponotus modoc, as a model species, we tested the hypotheses that (1) food sources rich in carbohydrates (aphid honeydew, floral nectar) and rich in proteins (bird excreta, house mouse carrion, cow liver infested or not with fly maggots) all prompt long-distance, anemotactic attraction of worker ants, and (2) attraction of ants to plant inflorescences (fireweed, Chamaenerion angustifolium; thimbleberry, Rubus parviflorus; and hardhack, Spiraea douglasii) is mediated by shared floral odorants. In moving-air Y-tube olfactometer bioassays, ants were attracted to two of four carbohydrate sources (thimbleberry and fireweed), and one of four protein sources (bird excreta). Headspace volatiles of these three attractive sources were analyzed by gas chromatography-mass spectrometry, and synthetic odor blends of thimbleberry (7 components), fireweed (23 components), and bird excreta (38 components) were prepared. In Y-tube olfactometer bioassays, synthetic blends of thimbleberry and fireweed but not of bird excreta attracted ants, indicating that only the two floral blends contained all essential attractants. A blend of components shared between thimbleberry and fireweed was not attractive to ants. Our data support the conclusion that C. modoc worker ants can sense and orient toward both carbohydrate and protein food sources. As ants were selective in their responses to carbohydrate and protein resources, it seems that they can discern between specific food odor profiles and that they have good, rather than poor, olfactory acuity.
Article
Full-text available
Based on a global compilation of data on ant associates of 523 Lycaenidae species, a synthesis is attempted as to which ants participate in these interactions. Ants from 63 genera have thus far been observed as visitors of facultative myrmecophiles or as hosts of obligate myrmecophiles among the Lycaenidae. Over 98% of records come from nectarivorous and trophobiotic ants in just three subfamilies, viz. Formicinae, Myrmicinae and Dolichoderinae, with the genera Crematogaster and Camponotus occupying the top ranks. Accumulation analysis suggests that rather few ant genera remain to be added to the list of associates. The representation of ant genera as attendants of lycaenid immatures is related to their global species richness, but with some notable exceptions. Ants that form ecologically dominant, large, long-lived colonies are over-represented as hosts of obligate myrmecophiles. The taxonomic diversity of lycaenid-ant associations is highest in the Oriental and Australian region, and lowest in the Neotropical and Afrotropical region. Among tropical African lycaenids, this is due to two butterfly lineages (genus Lepidochrysops and subfamily Aphnaeinae) that have massively radiated in the Neogene, but mostly maintaining their general affiliations with either Camponotus or Crematogaster ants, respectively. Many tropical and subtropical lycaenids nowadays form associations also with invasive alien tramp ants, giving rise to novel mutualistic interactions.
Article
Full-text available
Ants select sustained carbohydrate resources, such as aphid honeydew, based on many factors including sugar type, volume and concentration. We tested the hypotheses (H1–H3) that western carpenter ants, Camponotus modoc, seek honeydew excretions from Cinara splendens aphids based solely on the presence of sugar constituents (H1), prefer sugar solutions containing aphid-specific sugars (H2) and preferentially seek sugar solutions with higher sugar content (H3). We further tested the hypothesis (H4) that workers of both Ca. modoc and European fire ants, Myrmica rubra , selectively consume particular mono-, di- and trisaccharides. In choice bioassays with entire ant colonies, sugar constituents in honeydew (but not aphid-specific sugar) as well as sugar concentration affected foraging decisions by Ca. modoc . Both Ca. modoc and M. rubra foragers preferred fructose to other monosaccharides (xylose, glucose) and sucrose to other disaccharides (maltose, melibiose, trehalose). Conversely, when offered a choice between the aphid-specific trisaccharides raffinose and melezitose, Ca. modoc and M. rubra favoured raffinose and melezitose, respectively. Testing the favourite mono-, di- and trisaccharide head-to-head, both ant species favoured sucrose. While both sugar type and sugar concentration are the ultimate cause for consumption by foraging ants, strong recruitment of nest-mates to superior sources is probably the major proximate cause.
ResearchGate has not been able to resolve any references for this publication.