Article

Modèle de pariticule infinite

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

En considerant le champ gravitationnel comme un cas limite du champ electromagnetique en relativite generalisee, dans lequel la densite de charge electrique est nulle en tous les points de l'espace, on est conduit pour le champ d'une particule non chargee a un tenseur metrique donnant une densite de masse finie en tout point de l'espace mais tendant vers zero a l'infini, l'integrale de la densite de masse etendue a l'espace entier etant egale a la masse de la particule, la plus grande partie de la masse etant concentree au voisinage du centre de symetrie de la particule. La forme du potentiel electrostatique d'une charge electrique qu'on obtient conduit de meme a une distribution de densite de charge et de densite d'energie dans l'espace entier. L'equation des ondes electromagnetiques trouve une interpretation qui permettrait d'expliquer une action dirigeante de l'onde de la mecanique ondulatoire sur la particule en mouvement. On remarque dans le tenseur force electromagnetique dans l'etat statique, un terme de torsion qui pourrait etre analogue au spin.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... He published the initial line of thoughts in 1947 in the Proceedings of National Academy of Sciences [2]. He also published a second paper in 1957 in French language entitled Modèle de particule infinie [3] (Model of Infinite Particles). ...
Article
The difficulties with which the concept of point-like particles is beset, such as the infinities encountered in the existing theories of elementary particles, suggest a different approach to the study of these particles. Instead of restricting ourselves to the concept of point-like particles, we should extend our investigation to the implication of the concept of particles having infinite extension. Such a particle should consist of a continuous distribution of energy over all space, the energy density tending to zero at infinity. To achieve this aim, we introduce into the theory of general relativity the postulate that the gravitational, electric and nuclear fields are special cases of a more general field. An expression is obtained for the gravitational potential which differs from the usual expression of the potential accepted in general relatvity, and which gives an energy density for the particle at every point of space, the integral of which over all space is equal to the mass of the particle, the greatest part of the mass being concentrated near the center of the spherical pattern constituting the particle. The particle is thus seen to consist of the energy of its field. No infinities are encountered in the integrations. The same result is obtained for a charged particle. The charge density is spread out over all space and the integrals of the charge density and energy density are respectively equal to the charge and mass of the particle. The electric potential this obtained is inserted in Dirac's wave equation, and gives a series of equations of increasing degree, the first of which gives the mass of the muon. When inserted in Dirac's wave equation, this potential gives the values of the masses of baryons. When inserted in the Klein-Gordon equation, this potential gives the values of the masses of mesons.
ResearchGate has not been able to resolve any references for this publication.