Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

D. R. Allan

School of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland

Correspondence e-mail: d.r.allan@ed.ac.uk

Key indicators

Single-crystal synchrotron study $T=205 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.063$
$w R$ factor $=0.072$
Data-to-parameter ratio $=12.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Cyclobutylamine hemihydrate

The asymmetric unit of cyclobutylamine hemihydrate, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, consists of two cyclobutylamine molecules bridged by a water molecule via $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$ hydrogen bonds. This molecular arrangement is further connected by significantly weaker $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts to form columns parallel to the b axis.

Comment

The crystal structure of cyclobutylamine hemihydrate $\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NH}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$, (I), was determined at 205 K (just below the $\sim 210 \mathrm{~K}$ melting point) as part of our low-temperature and high-pressure structural studies of prototypical hydrogenbonded molecular systems. It crystallizes in the monoclinic space group $P 2_{1} / n$ with two cyclobutylamine molecules and one water molecule in the asymmetric unit (Fig. 1). Pairs of cyclobutylamine molecules are bridged by a single water molecule through $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$ hydrogen bonds, which have $\mathrm{N} \cdots \mathrm{O}$ distances of 2.880 (3) and 2.895 (2) \AA (Fig. 2 and Table 1). Significantly weaker $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts link this molecular assembly to form columns parallel to the b axis, with $\mathrm{N} \cdots \mathrm{O}$ distances ranging in length from 3.176 (3) and 3.281 (3) A to a more marginal distance of 3.604 (3) \AA. As the $\mathrm{N} \cdots \mathrm{O}$ distances increase, there is a concomitant decrease in the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angles from $173.0(19)$ to $160.1(19)^{\circ}$ as the interaction weakens. The remaining $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction ($\mathrm{N} 11-\mathrm{H} 111 \cdots \mathrm{O} 1$) would appear to link the columns into slabs parallel to ($\overline{1} 01$). However, as this interaction has a very long $\mathrm{N} \cdots \mathrm{O}$ contact distance of 3.833 (3) \AA, and the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle is $134.3(15)^{\circ}$, it is unlikely to offer any significant contribution to the intermolecular bonding.

(I)

Experimental

The sample of cyclobutylamine hemihydrate was prepared from anhydrous starting material (of 99% purity, as received from Aldrich) and placed in a sealed glass capillary tube with an internal diameter of $c a 0.2 \mathrm{~mm}$. The sample was cooled using an Oxford Cryosystems lowtemperature device (Cosier \& Glazer, 1986) until crystallization was observed. The temperature was then cycled, by successive translations of the capillary through the gas stream, so that the sample was

Received 10 January 2006 Accepted 18 January 2006 Online 25 January 2006
partially remelted and the number of crystallites reduced, until a single crystal was obtained at 205 K .

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=80.13$
Monoclinic, $P 2_{h} / n$
$a=14.048$ (6) A
$b=5.209$ (2) A
$c=14.489$ (6) \AA
$\beta=97.369(4)^{\circ}$
$V=1051.5$ (7) \AA^{3}
$Z=8$
$D_{x}=1.012 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.55, T_{\text {max }}=0.99$
8565 measured reflections
2525 independent reflections

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.072$
$S=1.14$
1411 reflections
118 parameters
H atoms treated by a mixture of independent and constrained refinement

Synchrotron radiation
$\lambda=0.6813 \AA$
Cell parameters from 2051 reflections
$\theta=8-46^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=205 \mathrm{~K}$
Cylinder, colourless
0.20×0.20 (radius) mm

1411 reflections with $I>2 \sigma(I)$

$$
R_{\text {int }}=0.071
$$

$\theta_{\text {max }}=27.5^{\circ}$
$h=-18 \rightarrow 19$
$k=-6 \rightarrow 6$
$l=-19 \rightarrow 18$

$$
\begin{aligned}
& w=\left[1-\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} / 36 \sigma^{2}(F)\right]^{2} / \\
& {\left[2.28 T_{\mathrm{o}}(x)+0.243 T_{1}(x)+\right.} \\
& \left.1.74 T_{2}(x)\right] \text { where } T_{i} \text { are Cheby- } \\
& \text { chev polynomials and } x=F_{c} / F_{\text {max }} \\
& (\text { Prince, } 1982 ; \text { Watkin, } 1994) \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{N} 11$	$0.82(1)$	$2.08(1)$	$2.895(2)$	$174(3)$
O1-H2 21	$0.82(1)$	$2.07(1)$	$2.880(3)$	$174(3)$

H atoms attached to C atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.94-1.00 \AA)$ and allowed to ride on their parent atoms. H atoms attached to N and O atoms were located in a difference map and restrained to idealized distances and angles $[\mathrm{N}-\mathrm{H}=0.90$ (1) \AA A, $\mathrm{O}-\mathrm{H}=0.82(1) \AA$ and $\left.\mathrm{O}-\mathrm{H}-\mathrm{O}=104(1)^{\circ}\right]$. All H atoms were constrained so that $U_{\text {iso }}(\mathrm{H})$ was equal to $1.2 U_{\text {eq }}$ of their respective parent atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT; data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2003).

We thank Dr T. Prior of Daresbury Laboratory for his help during the experiment on station 9.8 at SRS. We also thank the EPSRC for funding both this project and DRA's Advanced Research Fellowship.

References

Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435-436.

Figure 1
The asymmetric unit of (I), showing 30% probability displacement ellipsoids. The dashed lines indicate the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

The packing of (I), viewed along the b axis. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as dashed lines.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Sheldrick, G. M. (2004). SADABS. University of Gottingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
Watkin, D. J., Prout, C. K. \& Pearce, L. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supporting information

Acta Cryst. (2006). E62, o751-o752 [doi:10.1107/S1600536806002327]

Cyclobutylamine hemihydrate

D. R. Allan

S1. Comment

The crystal structure of cyclobutylamine hemihydrate $\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NH}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$, (I), was determined at 205 K (just below the $\sim 210 \mathrm{~K}$ me lting point) as part of our low-temperature and high-pressure structural studies of prototypical hydrogenbonded molecular systems. It crystallizes in the monoclinic space group $P 2_{1} / n$ with two cyclobutylamine molecules and one water molecule in the asymmetric unit (Fig. 1). Pairs of cyclobutylamine molecules are bridged by a single water molecule through $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$ hydrogen bonds, which have $\mathrm{N} \cdots \mathrm{O}$ distances of 2.880 (3) and 2.895 (2) \AA (Fig. 2 and Table 1). Significantly weaker $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts link this molecular assembly to form columns parallel to the b axis, with $\mathrm{N} \cdots \mathrm{O}$ distances ranging in length from 3.176 (3) and 3.281 (3) \AA to a more marginal distance of 3.604 (3) \AA. As the $\mathrm{N} \cdots \mathrm{O}$ distances increase, there is a concomitant decrease in the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angles from 173.0 (19) to $160.1(19)^{\circ}$ as the interaction weakens. The remaining $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction ($\mathrm{N} 11-\mathrm{H} 111 \cdots \mathrm{O} 1$) would appear to link the columns into slabs parallel to ($\overline{1} 01$). However, as this interaction has a very long $\mathrm{N} \cdots \mathrm{O}$ contact distance of 3.833 (3) \AA, and the $\mathrm{N} — \mathrm{H} \cdots \mathrm{O}$ angle is $134.3(15)^{\circ}$, it is unlikely to offer any significant contribution to the intermolecular bonding.

S2. Experimental

The sample of cyclobutylamine hemihydrate was prepared from anhydrous starting material (of 99% purity, as received from Aldrich) and placed in a sealed glass capillary tube with an internal diameter of ca 0.2 mm . The sample was cooled using an Oxford Cryosystems low-temperature device (Cosier \& Glazer, 1986) until crystallization was observed. The temperature was then cycled, by successive translations of the capillary through the gas stream, so that the sample was partially remelted and the number of crystallites reduced, until a single-crystal was obtained at 205 K .

S3. Refinement

H atoms attached to C atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=\mathbf{0 . 9 4}-1.00 \AA)$ and allowed to ride on their parent atoms. H atoms attached to N and O atoms were located in a difference map and restrained to idealized distances and angles $\left[\mathrm{N}-\mathrm{H}=0.90\right.$ (s.u.?) $\AA, \mathrm{O}-\mathrm{H}=0.82$ (s.u.?) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=104$ (s.u.?) $\left.{ }^{\circ}\right]$. All H atoms were constrained so that $U_{\text {iso }}(\mathrm{H})$ was equal to $1.2 U_{\text {eq }}$ of their respective parent atoms.

Figure 1
The asymmetric unit of (I), showing 30% probability displacement ellipsoids. The dashed lines indicate the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Figure 2
The packing of (I), viewed along the b axis. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as dashed lines.

cyclobutylamine hemihydrate

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=80.13$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=14.048$ (6) \AA
$b=5.209$ (2) \AA
$c=14.489(6) \AA$
$\beta=97.369(4)^{\circ}$
$V=1051.5$ (7) \AA^{3}
$Z=8$
$F(000)=360$
$D_{\mathrm{x}}=1.012 \mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation, $\lambda=0.68130 \AA$
Cell parameters from 2051 reflections
$\theta=8-46^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=205 \mathrm{~K}$
Cylinder, colourless
$0.20 \times 0.20 \times 0.20 \times 0.20$ (radius) mm

Data collection

Bruker SMART
diffractometer
Curved silicon monochromator
$\omega / 2 \theta$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.55, T_{\text {max }}=0.99$
8565 measured reflections

Refinement

Refinement on F
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.072$
$S=1.14$
1411 reflections
118 parameters
7 restraints
Primary atom site location: structure-invariant direct methods

> 2525 independent reflections
> 1411 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.071$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=4.0^{\circ}$
> $h=-18 \rightarrow 19$
> $k=-6 \rightarrow 6$
> $l=-19 \rightarrow 18$

> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=\left[1-\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} / 36 \sigma^{2}(F)\right]^{2} /\left[2.28 \mathrm{~T}_{\mathrm{o}}(\mathrm{x})+\right.$ $\left.0.243 \mathrm{~T}_{1}(\mathrm{x})+1.74 \mathrm{~T}_{2}(\mathrm{x})\right]$
> where T_{i} are the Chebychev polynomials and x
> $\quad=F_{\mathrm{c}} / F_{\max }($ Prince, $1982 ;$ Watkin, 1994)
> $(\Delta / \sigma)_{\max }=0.000218$
> $\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}$

Special details

Refinement. ABSTM02_ALERT_3_B The ratio of expected to reported Tmax/Tmin $\left(R R^{\prime}\right)$ is $<0.75 \mathrm{~T}$ min and Tmax reported: $0.5500 .990 \mathrm{~T} \min$ (prime) and Tmax expected: $0.9870 .987 R R$ (prime) $=0.556$
$S A D A B S$ was also used to correct for the decay of the synchrotron X-ray beam. The overall sample absorption, especially at the relatively short wavelength, is extremely low.
PLAT241_ALERT_2_C Check High $U_{\text {eq }}$ as Compared to Neighbors for C23 PLAT242_ALERT_2_C Check Low $U_{\text {eq }}$ as Compared to Neighbors for C12 PLAT242_ALERT_2_C Check Low $U_{\text {eq }}$ as Compared to Neighbors for C22
The data were collected very close to the sample melting temperature and, consequently, the temperature factors are relatively large.
PLAT420_ALERT_2_C D—H Without Acceptor N11-H111 …? PLAT420_ALERT_2_C D—H Without Acceptor N21 - H211 …?

Although the relevant $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angles suggest that the oxygen atom acts as an acceptor for both $\mathrm{N} 11-\mathrm{H} 111$ and $\mathrm{N} 21-$ H 211 , the $\mathrm{H} \cdots \mathrm{A}$ distances are relatively long and suggest that these interactions are at best extremely weak. Details of the various distances are mentioned in the comments section.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N11	$0.66281(12)$	$0.6261(3)$	$0.22065(10)$	0.0590
C12	$0.63480(12)$	$0.6188(3)$	$0.31320(12)$	0.0524
C13	$0.52996(14)$	$0.5731(4)$	$0.32271(17)$	0.0742
C14	$0.54031(19)$	$0.7577(5)$	$0.40528(19)$	0.0882
C15	$0.62917(17)$	$0.8626(4)$	$0.37068(15)$	0.0751
O1	$0.60087(11)$	$0.1702(3)$	$0.11547(10)$	0.0705
N21	$0.40677(12)$	$0.2763(3)$	$0.03446(11)$	0.0623
C22	$0.33839(13)$	$0.2419(4)$	$0.09937(11)$	0.0534
C25	$0.34180(17)$	$-0.0039(5)$	$0.15398(16)$	0.0773
C24	$0.23267(16)$	$0.0020(5)$	$0.14836(15)$	0.0752
C23	$0.23237(15)$	$0.1925(6)$	$0.06886(15)$	0.0846
H121	0.6732	0.4839	0.3504	0.0625^{*}

H131	0.5138	0.3963	0.3372	0.0889^{*}
H132	0.4884	0.6336	0.2675	0.0894^{*}
H141	0.5514	0.6690	0.4633	0.1089^{*}
H142	0.4882	0.8755	0.4054	0.1088^{*}
H151	0.6820	0.8860	0.4183	0.0917^{*}
H152	0.6191	1.0139	0.3349	0.0923^{*}
H221	0.3435	0.3886	0.1421	0.0646^{*}
H251	0.3778	0.0052	0.2178	0.0935^{*}
H252	0.3650	-0.1418	0.1190	0.0938^{*}
H241	0.2105	0.0777	0.2026	0.0910^{*}
H242	0.1995	-0.1578	0.1341	0.0915^{*}
H231	0.1894	0.3458	0.0706	0.1014^{*}
H232	0.2216	0.1046	0.0084	0.1013^{*}
H211	$0.4070(17)$	$0.435(2)$	$0.0116(15)$	0.0744^{*}
H1	$0.6198(15)$	$0.303(3)$	$0.1417(16)$	0.1011^{*}
H2	$0.5447(9)$	$0.202(5)$	$0.0966(18)$	0.0737^{*}
H212	$0.4029(16)$	$0.142(3)$	$-0.0039(13)$	0.0715^{*}
H111	$0.7268(7)$	$0.634(4)$	$0.2227(14)$	0.0719^{*}
H112	$0.6347(14)$	$0.767(3)$	$0.1950(14)$	

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N11	$0.0650(9)$	$0.0589(9)$	$0.0525(8)$	$-0.0002(7)$	$0.0051(7)$	$-0.0081(7)$
C12	$0.0524(9)$	$0.0517(9)$	$0.0517(9)$	$0.0010(7)$	$0.0018(7)$	$-0.0005(7)$
C13	$0.0556(11)$	$0.0703(13)$	$0.0975(15)$	$-0.0014(9)$	$0.0131(10)$	$-0.0004(12)$
C14	$0.0908(16)$	$0.0859(16)$	$0.0964(16)$	$0.0068(13)$	$0.0448(13)$	$-0.0057(14)$
C15	$0.0918(15)$	$0.0652(12)$	$0.0728(13)$	$-0.0111(10)$	$0.0278(11)$	$-0.0215(10)$
O1	$0.0712(9)$	$0.0643(9)$	$0.0741(9)$	$0.0055(7)$	$0.0025(7)$	$-0.0171(7)$
N21	$0.0700(10)$	$0.0620(10)$	$0.0558(8)$	$-0.0048(8)$	$0.0120(7)$	$0.0000(8)$
C22	$0.0667(10)$	$0.0482(9)$	$0.0447(8)$	$0.0021(8)$	$0.0054(7)$	$-0.0016(7)$
C25	$0.0811(14)$	$0.0738(14)$	$0.0764(13)$	$0.0088(11)$	$0.0073(10)$	$0.0255(11)$
C24	$0.0802(14)$	$0.0782(15)$	$0.0694(13)$	$-0.0122(11)$	$0.0181(10)$	$0.0092(11)$
C23	$0.0596(11)$	$0.122(2)$	$0.0709(12)$	$0.0029(12)$	$0.0025(9)$	$0.0293(13)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{N} 11-\mathrm{C} 12$	$1.446(2)$	$\mathrm{O} 1-\mathrm{H} 2$	$0.819(10)$
$\mathrm{N} 11-\mathrm{H} 111$	$0.896(9)$	$\mathrm{N} 21-\mathrm{C} 22$	$1.439(2)$
$\mathrm{N} 11-\mathrm{H} 112$	$0.892(9)$	$\mathrm{N} 21-\mathrm{H} 211$	$0.892(9)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.516(3)$	$\mathrm{N} 21-\mathrm{H} 212$	$0.892(9)$
$\mathrm{C} 12-\mathrm{C} 15$	$1.526(3)$	$\mathrm{C} 22-\mathrm{C} 25$	$1.502(3)$
$\mathrm{C} 12-\mathrm{H} 121$	1.001	$\mathrm{C} 22-\mathrm{C} 23$	$1.520(3)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.527(4)$	$\mathrm{C} 22-\mathrm{H} 221$	0.980
C13—H131	0.977	$\mathrm{C} 25-\mathrm{C} 24$	$1.525(3)$
C13—H132	0.980	$\mathrm{C} 25-\mathrm{H} 251$	0.996
C14—C15	$1.506(3)$	$\mathrm{C} 25-\mathrm{H} 252$	0.960
C14—H141	0.955	$\mathrm{C} 24-\mathrm{C} 23$	$1.520(3)$

supporting information

$\mathrm{C} 14-\mathrm{H} 142$	0.955
$\mathrm{C} 15-\mathrm{H} 151$	0.954
$\mathrm{C} 15-\mathrm{H} 152$	0.944
$\mathrm{O} 1-\mathrm{H} 1$	$0.817(10)$
$\mathrm{C} 12-\mathrm{N} 11-\mathrm{H} 111$	$111.2(14)$
$\mathrm{C} 12-\mathrm{N} 11-\mathrm{H} 112$	$104.5(14)$
$\mathrm{H} 111-\mathrm{N} 11-\mathrm{H} 112$	$111.5(19)$
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13$	$118.15(16)$
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 15$	$121.58(16)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 15$	$87.84(15)$
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{H} 121$	109.1
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 121$	107.7
$\mathrm{C} 15-\mathrm{C} 12-\mathrm{H} 121$	110.6
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$88.64(17)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 131$	115.0
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 131$	115.2
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 132$	111.1
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 132$	115.1
$\mathrm{H} 131-\mathrm{C} 13-\mathrm{H} 132$	110.4
C13-C14-C15	$88.14(16)$
C13-C14-H141	111.9
C15-C14-H141	114.9
C13-C14-H142	114.2
C15-C14-H142	115.8
H141-C14-H142	110.3
C12-C15-C14	$89.01(17)$
C12-C15-H151	114.3
C14-C15-H151	114.0
C12-C15-H152	114.2
C14-C15-H152	114.5
H151-C15-H152	109.8
H1-O1-H2	$103(2)$

$\mathrm{C} 24-\mathrm{H} 241$	0.966
$\mathrm{C} 24-\mathrm{H} 242$	0.963
$\mathrm{C} 23-\mathrm{H} 231$	1.004
$\mathrm{C} 23-\mathrm{H} 232$	0.983
$\mathrm{C} 22-\mathrm{N} 21-\mathrm{H} 211$	$113.2(15)$
$\mathrm{C} 22-\mathrm{N} 21-\mathrm{H} 212$	$108.5(14)$
$\mathrm{H} 211-\mathrm{N} 21-\mathrm{H} 212$	$120(2)$
$\mathrm{N} 21-\mathrm{C} 22-\mathrm{C} 25$	$118.13(17)$
$\mathrm{N} 21-\mathrm{C} 22-\mathrm{C} 23$	$122.83(15)$
$\mathrm{C} 25-\mathrm{C} 22-\mathrm{C} 23$	$88.44(17)$
$\mathrm{N} 21-\mathrm{C} 22-\mathrm{H} 221$	108.3
$\mathrm{C} 25-\mathrm{C} 22-\mathrm{H} 221$	109.7
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 221$	107.8
$\mathrm{C} 22-\mathrm{C} 25-\mathrm{C} 24$	$89.49(16)$
$\mathrm{C} 22-\mathrm{C} 25-\mathrm{H} 251$	115.2
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 251$	115.9
$\mathrm{C} 22-\mathrm{C} 25-\mathrm{H} 252$	110.5
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 252$	113.2
$\mathrm{H} 251-\mathrm{C} 25-\mathrm{H} 252$	111.0
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 23$	$87.61(15)$
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{H} 241$	113.1
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 241$	112.4
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{H} 242$	116.7
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 242$	116.6
$\mathrm{H} 241-\mathrm{C} 24-\mathrm{H} 242$	109.2
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$89.02(15)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 231$	115.4
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 231$	116.3
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 232$	111.8
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 232$	111.6
$\mathrm{H} 231-\mathrm{C} 23-\mathrm{H} 232$	
C	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1—H1 $\cdots \mathrm{N} 11$	$0.82(1)$	$2.08(1)$	$2.895(2)$	$174(3)$
O1—H2 $\cdots \mathrm{N} 21$	$0.82(1)$	$2.07(1)$	$2.880(3)$	$174(3)$

